XVIPP

XEP-0037: DSPS - Data Stream Proxy Service

David Sutton "Bac9”
mailto: mailto:bac9@bac9.yi.org
Xmpp : xmpp:bac9@jabber.org
2016-10-04

Version 0.8.1

Status Type Short Name
Rejected Standards Track N/A

A proposal for proxy support in Jabber.

mailto:
xmpp:
mailto:bac9@bac9.yi.org
xmpp:bac9@jabber.org

Legal

Copyright

This document has been placed in the public domain.

Permissions
Warranty
Liability

Conformance

Contents

1 Introduction

2 Startup
3 General Operation
3.1 Stream Creation/Relay {optional}
3.2 Connectionwaiting e
3.3 Establishing prepared connection
3.3.1 DSPSrelaysetup foptional}
3.3.2 Connecting to DSPS via HTTP method {optional}
3.3.3 Connecting to DSPS via SSL method {optional}
3.3.4 Connecting to DSPS via default method
3.4 Streamadministration. L L Lo
3.4.1 Invitation to stream {foptional}
3.4.2 Droppingfromstream
3.5 Invitationreply e
3.5.1 Acceptinganinvite oo
3.5.2 Rejectinganinvite oo s
3.6 Disconnectionhandling
3.7 Endingaconnection e
3.8 Streamuse e e e e
3.9 Streaminformation
3.9.1 Streampeerlisting
3.9.2 Streamstatuslisting
3.10 Streamshutdown
3.11 Errormessageformat

4 Possible applications

4.1 File transfer
4.2 VoIP. . ..
43 Multicast .
4.4 File Storage

......................................

5 Why DSPS instead of PASS

51 Ports ...

5.2 Knowledge of IP e

5.3 IP Addresses

.....................................

5.4 Intuitiveness o e e e e e e e e e e e e e e

5.5 Scalability

6 DSPS with P2P

......................................

0 U U R W WN R

e e S e S T
000 Ol D WN R MH OO

18
18
19
19
19

19
19
20
20
20
20

21

/'3 GENERAL OPERATION

1 Introduction

Data Stream Proxy Service (DSPS) is designed to be a common stream protocol for multicast
(unicast as special case) over P2S2P (P2P as special case) connections.

2 Startup

This document follows DSPS protocol version 0.5. Any XML data not explicitly defined or
mentioned will be ignored without error. On startup, full fledged DSPS starts listening on port
5290 (and 80 if HTTP handshake implemented).

3 General Operation

3.1 Stream Creation/Relay {optional}

(optional) Creating or modifying stream is done like so:

<iq
id="dsps1’
type=’get’

from=’rob@nauseum.org/dspsclient’
to="dsps. jabber.org/0beec7b5ea3fofdbc95d0dd47f3c5bc275da8a44’ >
<query type=’create’
xmlns=’jabber:iq:dsps’
minthroughput="1.5KB’
maxpublic="20">
<peer port=’5290’'>
dsps.myjabber.net/@beec7b5ea3fofdbc95d0dd47f3c5bc275da8a33
</peer>
<comment>public comment</comment>
</query>
</iqg>

« ”to” with resource implies reconnection to previous relay stream with previously sup-
plied credentials and authentication as per section "DSPS relay setup”, otherwise implies
creation of new stream where creator is granted "master” rights.

« ”minthroughput” (optional) is minimum 16 second average throughput below which
peers will be disconnected (but not dropped). Checked after every unit of outgoing
transfer against the fourth value returned by "who” query for each peer. Legal only
upon initial creation of stream. If omitted or negative, 0 is assumed.

/'3 GENERAL OPERATION

« ”maxpublic” (optional) is maximum number of peers that can join without invitation.
If omitted or negative, 0 is assumed. If positive, DSPS generates globally unique id for
public peers to acknowledge, reported within "stats” message. Said id remains constant
for life of stream.

« <peer/> (optional) full JID of stream on another DSPS. Relay stream will be treated us-
ing "slave” rights. Legal only upon initial creation of stream. Multiple such blocks tried
in series until successful connection. First successful (last if all failed) remembered by
DSPS, all successive <peer/> ignored.. On connection, DSPS initiates handshake using
peer’s full JID and contents of block for destination’s full JID to the relay destination as
per section "Connecting to DSPS via default method”. Authentication is done as per sec-
tion "DSPS relay setup”. Upon successful handshake, DSPS sends presence notification
to peer as per section ”Acknowledge of DSPS connection”.

« "port” (optional) for connecting to destination DSPS. If omitted, default is assumed.

+ <comment/> (optional) all such blocks reported in "stats” message. Multiple such blocks
allowed. Block may contain a full XML stack of elements. No order implied for "stats”
message.

Possible failure messages:

Code Message Description

405 Method Not Allowed Attempt at reconnect to relay with-
out existing credentials, relay still con-
nected, <peer/> block present in recon-

nect request, or feature not supported
504 Gateway Timeout All destination DSPS are unreachable.

3.2 Connection waiting

DSPS creates ”id” (empty string is legal), used in "who” replies and notifies client of waiting
connection like so:

<iq
id="dsps1’
type=’result’
from=’dsps. jabber.org/0beec7b5ea3fofdbc95d0dd47f3c5bc275da8a33’
to="rob@nauseum.org/dspsclient’>
<query type=’create’ xmlns=’jabber:iqg:dsps’
wait="10’
host="dsps. jabber.org’

/'3 GENERAL OPERATION

port=’5290’
minthroughput="1.5KB’
protocol="0.5">
<feature type=’http’ version=’1.1"/>
<feature type=’ssl’ version=’3.0’/>
</query>
</iqg>

« ”from” full JID of DSPS, internally globally unique. Used in handshake and every sub-
sequent communication with stream. May differ with the one specified in "invite” mes-
sage.

* ”wait” amount of time in milliseconds that DSPS will wait for client to initiate hand-
shake. If timeout occurs, DSPS will totally forget prepared connection and act accord-

ingly.

* "host” (optional) for handshake and data stream. If omitted default from the "from” is
assumed. Intended for P2P connections to be able to report alternate hostname or IP for
connection.

« "port” (optional) for handshake and data stream. If omitted default is assumed.
« "minthroughput” value from "create”.
« "protocol” version this DSPS supports.

« <feature/> (optional) supported by this DSPS. Type and version are properties and addi-
tional data stored in body. HTTP stream will not follow HTTP protocol. SSL handshake
performed encrypted. Both HTTP and SSL connections are only between client and DSPS.

3.3 Establishing prepared connection

Upon receipt of message as per section ”Connection waiting”, client can either ignore it
and connection will timeout, or connect to the DSPS directly via any supported connection
method or via relay. There may be a maximum of 1 (one) established connection to DSPS from
any Client_full_JID + DSPS_full_JID pair, deviations are handles as per section ”"Connecting to
DSPS via default method”. DSPS will not discriminate method via which direct connection
is made, even if prior to "disconnect” a different method was used. Any packet from an
unauthorized connection is ignored without reporting an error.

3.3.1 DSPS relay setup {optional}

Client may request another DSPS to relay this connection as per section ”Stream Creation/Re-
lay”, utilizing the "create” body. There is no limit on length of relay chain. Upon initiation of
handshake with destination, DSPS reports key like so (message sequence unrelated to current

/'3 GENERAL OPERATION

DSPS handshake):

<iqg
id="dsps1’
type=’get’
from="dsps. jabber.org/0beec7b5ea3fofdbc95dodd47f3c5bc275da8a33’
to=’rob@nauseum.org/dspsclient’>
<query type=’create’ xmlns=’jabber:iq:dsps’>acDgH63I27Gb1</query>
</ig>

« "get” denotes request for auth key.

« ”create” body contains key returned by destination.

Client must send said key to destination as per section "Connecting to DSPS via default
method” and send response to DSPS (which will be transmitted to destination) like so:

<iqg
id="dsps1’
type=’result’
from=’rob@nauseum.org/dspsclient’
to="dsps. jabber.org/0beec7b5ea3fofdbc95dodd47f3c5bc275da8a33’
<query type=’create’ xmlns=’jabber:iq:dsps’>acDgH63I27Gb1</query>
</ig>

« "result” denotes reply with auth key.

« ”create” body contains key returned by destination.

3.3.2 Connecting to DSPS via HTTP method {optional}

Client must connect to DSPS on port 80 and initiate handshake. This may be attempted after
"create” result received or ”disconnect” occurred, and prior to "wait” timeout expiring, then
send HTTP request like so:

GET /DSPS/STREAM/ HTTP/1.0<CR>
Host: dsps.server<CR>
<CR>

And will receive reply from DSPS before the start of data stream, like so:

HTTP/1.0 200 OK<CR>
Content-Type: application/octet-stream<CR>
<CR>

/'3 GENERAL OPERATION

Upon completion, Client must resume DSPS handshake as per either section "Connecting to
DSPS via default method” or section ”"Connecting to DSPS via SSL method” (if applicable).
Subsequent data will not follow HTTP protocol. On error connection closed immediately with
optional error messages.

Possible failure messages:

Code Message Description
401 Unauthorized (optional) Returned if any error in HTTP
handshake.

3.3.3 Connecting to DSPS via SSL method {optional}

Client must connect to DSPS on specified port and initiate handshake. This may be attempted
after "create” result received or ”disconnect” occurred, and prior to "wait” timeout expiring,
then send following on stream:

starttls<CR>

Next, regular TLS handshake is initiated. Upon completion, Client must resume DSPS hand-
shake as per section "Connecting to DSPS via default method”. On error connection closed
immediately with optional error messages.

Possible failure messages:

Code Message Description
401 Unauthorized (optional) Returned if any error in SSL
handshake.

3.3.4 Connecting to DSPS via default method

Client must connect to DSPS on specified port and initiate handshake. May be attempted
after "create” result received or ”disconnect” occurred, and prior to "wait” timeout expiring.
Standard and SSL handshakes are identical in decrypted state and take the form of:

Client_full_JID DSPS_full_JID<CR>

« ”Client_full_JID” client full JID as supplied in either the "create” or "acknowledge” mes-
sage.

/'3 GENERAL OPERATION

« ”DSPS_full_JID” DSPS full JID as supplied in "from” field of "create” result message from
section ”"Connection waiting”

* <CR> regular carriage return, commonly referred to as the newline character.

For example, the appropriate string for the above request would be:

rob@nauseum.org/dspsclient dsps. jabber.org/0
beec7b5ea3fofdbc95dodd47f3c5bc275da8a33

If Client_full_JID and DSPS_full_JID do not have an associated stream, are no longer valid, (e.g.
timeout reached or client removed from stream), or connection from said Client_full_JID +
DSPS_full_JID pair is in use (i.e. client is still connected to it), connection is closed immediately
with possible optional error messages reported. Otherwise DSPS returns uniquely generated
key followed by a <CR> like so:

uGhhb74d21

Client must now send key to DSPS via XML stream like so:

<iq
id="dsps1’
type=’get’

from=’rob@nauseum.org/dspsclient’

to="dsps. jabber.org/0beec7b5ea3fofdbc95dodd47f3c5bc275da8a33’>

<query type=’auth’ xmlns=’jabber:iq:dsps’>uGhhb74d21</query>
</ig>

« “get” denotes request for next auth key.

« ”auth” body contains key returned by DSPS.

DSPS will now check key, if not valid, close connection, report possible optional error message
and resume waiting on original key. If valid, generate new key and send to client like so:

<iq
id=’dsps1’
type=’result’
from="dsps. jabber.org/0beec7b5ea3fofdbc95dodd47f3c5bc275da8a33’
to=’rob@nauseum.org/dspsclient’
<query type=’auth’ xmlns=’jabber:iq:dsps’>qgqB421j784</query>
</ig>

* "result” denotes return of next auth key.

/'3 GENERAL OPERATION

« ”auth” body contains key returned by DSPS.

Client must now send received key to DSPS via the stream followed by a <CR>. Once received,
DSPS checks key, on mismatch connection is closed immediately with possible optional error
messages reported, waiting on key is resumed. Upon successful handshake a message is
sent to members of the stream in accordance with the following rules; If the client had type
“master” connection, all members of the stream get notified. If the client had type “slave”
connection, only other type "master” members get notified. The message takes the form of:

<iq
id="dsps2’
type=’set’

from="dsps. jabber.org/0beec7b5ea3fofdbc95dodd47f3c5bc275da8a33’
to="foo@bar.com/resource’>
<query type=’presence’ xmlns=’jabber:iq:dsps’>
<peer status=’connect’>JID</peer>
</query>
</ig>

« ”presence” denotes presence change. Body may contain multiple <peer/> blocks where
same JID peers must be placed in chronological order relative to each other from start
to end of message.

« <peer/>body is full JID of the joined peer unless peer of type "relay”, in which case the
resource is not reported.

« ”status” is new status of peer.

Possible failure messages:

Code Message Description

401 Unauthorized (optional) Returned if the DSPS is not
aware of said Client_full_JID + DSPS_-
full_ JID pair. Where "from” contains
DSPS_full_JID that was used in the hand-
shake and "to” contains Client_full_JID

that was used in the handshake.
409 Conflict (optional) Returned if connection from

said full client JID and full DSPS JID is
in use (i.e. client is still connected to
it). Where "from” contains DSPS_full_-
JID that was used in the handshake and
"to” contains Client_full_JID that was
used in the handshake.

/'3 GENERAL OPERATION

3.4 Stream administration

DSPS protocol allows multiple peers to use the same stream. Manipulation of the authorized
peer list is done through admin functionality described in next several subsections. DSPS
protocol allows for three types of peer connections: "master”, "slave”, and "relay”. "master”
peers get full control of the stream, "slave” peers get limited control of the stream, and "relay”
are treated similar to "slave” except in reporting of JIDs where the resource must be omitted.
“master” peers are allowed to invite any other user to the stream and drop any peer registered
with the stream, including themselves. "slave” peers are only allowed to drop themselves
from the stream. Any administrative changes coming from a "slave” peer that are not for the
peer’s own connection are ignored. Dropping one’s own connection is the preferred way of
permanently disconnecting from the stream.

Any data received from a "master” gets copied to every other peer on the stream. Any data
received from a "slave” peer gets copied to all "master” peers on the stream only.

Stream administration request looks like so:

<iq
id="dsps3”’
type=’set’

from=’rob@nauseum.org/dspsclient’
to="dsps. jabber.org/0beec7b5ea3fofdbc95d0dd47f3c5bc275da8a33’>
<query type=’admin’ xmlns=’jabber:iq:dsps’ expire=’20’ wait=’10’>
<comment>welcome to the stream</comment>
<peer type=’master’>someone@somewhere.net</peer>
</query>
</iqg>

« ”admin” denotes administrative functions are to follow. Any properties within this
block apply to this block alone. Multiple such blocks are allowed.

« ”expire” time DSPS should wait for the "acknowledge” message from any invited peer
within block. An ”expire” of 0 denotes no time limit. Actual value sent to peer as "expire”
is minimum of this value and default value preset for DSPS. If value unparseable or not
present, default is used.

« ”wait” time DSPS should wait for invited peer to connect to DSPS after ”acknowledge” is
received and message from section ”Connection waiting”. is sent. A "wait” of 0 denotes
no time limit. Actual value sent to peer as "wait” is minimum of this value and default
value preset for DSPS. If the value unparseable or not present, default is used.

« <comment/> (optional) block sent to each of the peers. Multiple such blocks are allowed.
Block may contain a full XML stack of elements. All such blocks are sent to each of the
invited peers as is. No guarantee is made on their order in the <invite/> message.

/'3 GENERAL OPERATION

« <peer/>JID to execute action upon. If invitation then body will not necessarily be same
full JID as one that would respond. Multiple such blocks allowed.

* "type” type of action to do. "master” denotes invitation, granting master rights. "slave”
denotes invitation, granting slave rights. “drop” denotes request to drop peer from
stream. "relay” peers may not be invited but may be dropped using this method.

Possible optional errors include the following:

<iq
id="dsps3’
type='result’
from="dsps. jabber.org/@0beec7b5ea3fofdbc95d0dd47f3c5bc275da8a33’
to="user@server.org/resource’>
<query type=’admin’ xmlns=’jabber:iq:dsps’>
<peer acknowledge=’expire’>abc@company.com/net</peer>
<peer acknowledge=’reject’>friend@someplace.com/home</peer>
<peer acknowledge=’timeout’>abd@company.com/net</peer>
<peer acknowledge="missing’>who@knows.org/winjab</peer>
</query>
</iqg>

« ”admin” denotes admin response, sent to sender of "admin” request for every peer in
block. Peers may be combined from multiple "admin” requests or peers from single
"admin” request may be split over multiple "admin” replies.

+ <peer/> peer in question. For “expire” JID is one from invite request. For "reject” JID
is one from which reject received. For "timeout” JID is one from invite request. For
"missing” is one from drop request. After this DSPS will totally forget about this peer.

« ”acknowledge” reason for failure. "expire” denotes "expire” timeout sent, has ended.
"reject” denotes peer rejected invite. “timeout” denotes "wait” timeout sent, has ended.
"missing” denotes peer marked for drop not found registered on tis stream.

Possible failure messages:

Code Message Description

403 Forbidden (optional) Returned if peer with "slave”
rights attempts to use "master” admin
privileges.

/'3 GENERAL OPERATION

3.4.1 Invitation to stream {optional}

Upon invite DSPS will attempt to invite each of the peers like so:

<iq
id="dsps4’
type=’get’

from="dsps. jabber.org/@beec7b5ea3fofdbc95dodd47f3c5bc275da8a33’
to=’foo@bar.com/resource’>
<query type=’acknowledge’
xmlns=’jabber:iq:dsps’
status="master’
expire=’20">
<peer>rob@nauseum.org/dspsclient</peer>
<comment>some long comment block or structure</comment>
</query>
</ig>

« ”from” is unique JID/resource pair generated for this JID, not necessarily same as JID/re-
source pair specified in section "Connection waiting”. It is used for identification of the
“acknowledge” message.

« “acknowledge” denotes request for invitation acknowledge.
« ”status” type of connection the client is granted. Same type as tag in invitation request.
« ”expire” time DSPS will wait for the "acknowledge” message.

« <peer/>peer who initiated this invite. Multiple such blocks may exist if multiple distinct
peers sent invitation that have not yet been received by the invitee.

+ <comment/> is <comment/> structure(s) sent in admin request, present if admin re-
quest contained it.
3.4.2 Dropping from stream

Upon drop DSPS will immediately closes the connection to the dropped peer. It then will
totally forget this peer right after sending it a notification message like so:

<iq
id="dsps5’
type=’set’

from="dsps. jabber.org/0beec7b5ea3fofdbc95dodd47f3c5bc275da8a33’
to="foo@bar.com/resource’>
<query type=’acknowledge’ xmlns=’jabber:iq:dsps’ status=’drop’>
<comment>some long comment block or structure</comment>
</query>
</ig>

10

/'3 GENERAL OPERATION

+ ”from” is the DSPS JID/resource pair which DSPS has associated with this connection.

« "acknowledge” denotes drop notification. Despite the block name, this message does
not require a reply.

» ”status” drop denotes a connection drop.

+ <comment/> is <comment/> structure(s) sent in admin request, preset if admin request
contained it.

For every successfully dropped peer a message is sent to all other stream members, following
the rules stated for the "presence” message, and takes the form of:

<iq
id="dsps6’
type=’set’

from="dsps. jabber.org/@beec7b5ea3fofdbc95dodd47f3c5bc275da8a33’
to=’foo@bar.com/resource’>
<query type=’presence’ xmlns=’jabber:iq:dsps’>
<peer status=’drop’>JID</peer>
</query>
</iqg>

+ ”from” is the DSPS JID/resource pair which DSPS has associated with the connection of
the recipient of the message.

« ”presence” denotes presence change. Body may contain multiple <peer/> blocks where
same JID peers must be placed in chronological order relative to each other from start
to end of message.

« <peer/> body is full JID of the dropped peer registered on the stream, unless peer is of
type "relay”, in which case the resource is not reported.

« ”status” is new status of peer.

3.5 Invitation reply

An invited peer has the option to accept or reject an invitation to a stream.

3.5.1 Accepting an invite

To accept an invitation to a stream, the peer must reply like so:

11

/'3 GENERAL OPERATION

<iq

id="dsps4’

type=’result’

from=’foo@bar.com/moredsps’

to="dsps. jabber.org/0beec7b5ea3f@fdbc95d0dd47f3c5bc275da8a33>
_.<query._type=’acknowledge’_xmlns=’jabber:iq:dsps’_status=’connect’/>
</ig>

+ ”from” is the JID/resource pair which will be associated with this connection, only it will
be allowed to connect to this stream as this user. A peer may be registered to multiple
streams from the same full JID, hence all DSPS full JIDs linked to a given peer must be
unique.

* "to” contains the DSPS JID/resource pair which was the source in the original "acknowl-
edge” message.

« "acknowledge” denotes acknowledgment to invitation.

« ”’status” connect denotes an acceptance of invitation.

Upon receipt of this reply the DSPS creates a unique resource for this client JID/resource pair.
It then prepares the "create” message as described in section "Connection waiting”.

3.5.2 Rejecting an invite

Rejecting an invitation can be done in two ways. A peer can forget about the invitation and
let the invitation "expire”, or preferably a message can be sent like so:

<iq

id="dsps4’

type=’result’

from=’foo@bar.com/moredsps’

to="dsps. jabber.org/0beec7b5ea3fofdbc95d0dd47f3c5bc275da8a33>
_.<query_type="acknowledge’_xmlns=’jabber:iq:dsps’_status="drop’/>
</ig>

* "to” contains the DSPS JID/resource pair which was the source in the original "acknowl-
edge” message.

« "acknowledge” denotes acknowledgment to invitation.

« ”status” drop denotes an rejection of invitation.

12

/'3 GENERAL OPERATION

Regardless of the way a rejection was achieved a notification message is sent to the inviting
peer, as was described in section ”Stream administration”. If unknown “type” is sent, it will
be interpreted as a reject. A maximum of one "acknowledge” is allowed during the lifetime of
an invitation. If multiple such tags are sent, the first tag takes precedence. Any rejection of a
public connection will be ignored.

3.6 Disconnection handling

If a peer ever disconnects without first dropping themselves, the following policy applies:
The peer may reconnect within the "wait” timeout provided in the "create” reply in section
”Connection waiting”. The peer may choose any supported mode of reconnection supplied
in "create” reply, regardless of mode previously used. The "wait” timeout is not cumulative
over multiple disconnects. After reconnect, peer will not receive any data that exists on the
stream while it was disconnected.

Upon such disconnection DSPS notifies all other members of the stream, following the rules
stated for the "presence” message, and takes the form of:

<iq
id="dsps7’
type=’set’

from="dsps. jabber.org/0beec7b5ea3fofdbc95dodd47f3c5bc275da8a33’
to=’foo@bar.com/resource’>
<query type=’presence’ xmlns=’jabber:iq:dsps’>
<peer status=’waiting’>JID</peer>
</query>
</iqg>

+ ”from” is the DSPS JID/resource pair which DSPS has associated with the connection of
the recipient of the message.

« ”presence” denotes presence change. Body may contain multiple <peer/> blocks where
same JID peers must be placed in chronological order relative to each other from start
to end of message.

« <peer/>body is full JID of the disconnected peer registered on the stream, unless peer
is of type “relay”, in which case the resource is not reported.

« ”status” is new status of peer.

Upon reaching "wait” timeout the procedure is the same if the peer dropped its own connec-
tion.

13

/'3 GENERAL OPERATION

3.7 Ending a connection

Permanent termination of connection can be done in two ways: peer may disconnect from the
stream and let the "wait” timeout expire, or more preferably the peer will drop itself from the
stream via an "admin” message. The "admin” is still allowed to contain multiple "peer” blocks.

3.8 Stream use

The use policy for the stream follows the standard rules described in this document. Type and
structure of the data must be negotiated by the peers separately (presumably via the normal
XML message stream or within <comment/> blocks). The DSPS stream operates at the speed
of the slowest connection (or slower if it is so configured in its internal configuration).

Data read from peer in a unit of transfer (decided by DSPS) is sent to other peers in a format
like so:

0<size><CR><id><CR><data>

* ”0” at beginning for checking start of block.

« <size> length in bytes including id and its trailing CR in form of [1-9][0-9]*[0-9A-Z],
where last character is base 36 numerical equivalent power of 1024.

« <id> id of the sender as per "who” query.
+ <data> data sent.

« <CR> regular carriage return, commonly referred to as the newline character.

For example, the appropriate string for the above block would be:

0340<CR>
Q10<CR>
this is the data in ASCII form

First block received after connection will always be full block. If discrepancy occurs, receiving
peer should disconnect and reconnect back to stream.

3.9 Stream information

Two mechanisms exists to gain information about the stream configuration and its members.
They are described within next few subsections.

14

/'3 GENERAL OPERATION

3.9.1 Stream peer listing

To retrieve listing of all registered peers of this stream and their respective connection status
any registered peer sends a message like so:

<iq
id=’dsps8’
type=’get’

from=’rob@nauseum.org/dspsclient’
to="dsps. jabber.org/0beec7b5ea3fofdbc95dodd47f3c5bc275da8a33’>
<query type=’who’ xmlns=’jabber:iq:dsps’/>

</ig>

* ”to” has the usual meaning for this client when referring to this DSPS stream.

« ”"who” denotes that this is a listing request. It may not contain a body or attributes,
otherwise it will be ignored without error.

The query follows the standard rules: query originating from a “"master” peer will return
listing of all registered peers and their associated statuses, query originating from a "slave”
peer will only return listing of all registered "master” peers and their associated statuses.
Returned results do not have any strict order. If multiple "who” queries were requested by a
peer that have not yet received a reply, only one reply need be sent.

The query reply is formatted like so:

<iq
id="dsps8’
type=’result’
from="dsps. jabber.org/@beec7b5ea3fofdbc95dodd47f3c5bc275da8a33’
to="rob@nauseum.org/dspsclient’>
<query type=’who’ xmlns=’jabber:iq:dsps’>
<peer
type="master’
id="0’
status=’connect’
throughput="1KB////4.8KB//3KB’>
rob@nauseum.org/dspsclient
</peer>
</query>
</iqg>

« ”from” is unique DSPS JID/resource pair for the peer receiving the result.

« <peer/>body is full JID of registered peer, unless peer is of type "relay”, in which case
the resource is not reported. A separate block exists for every viewable peer.

15

/'3 GENERAL OPERATION

”

"type” the type of connection peer has. May contain value of "master”, "slave”, or "re-

”

lay”.
”id” id prepended to data coming from this peer.

"status” current status of peer. "connect” denotes peer able to receive data. "wait”
denotes peer registered but not connected. “expire” denotes peer was invited but no
reply was received yet.

”throughput” shows the average throughput to that peer per second in the units spec-
ified after the number (e.g. B, KB, MB, GB, TB, EB) in capital letters. Time is measured
only during data transfer. Value contains multiple fields delimited by slash (/). Each
field represents time span of power of two (2), relative to its position from start of the
string. Each filled-in field contains the average throughput over that timespan. e.g. (1B
per sec in last sec)/(1.1B per sec in last 2 sec)/(0.9B per sec in last 4 sec). Only fields
representing power of zero (2°0 sec) and power of four (2°4 sec) are required. Last field
must be filled-in.

3.9.2 Stream status listing

To retrieve listing of all stream configuration/statistics values or public streams, any regis-
tered peer sends a message like so:

<iq
id="dsps9’
type=’get’

from="rob@nauseum.org/dspsclient’
to="dsps. jabber.org/0beec7b5ea3fofdbc95dedd47f3c5bc275da8a33’>
<query type=’stats’ xmlns=’jabber:iq:dsps’/>

</iqg>

« "to” if contains a resource, will return statistics for specified stream. Otherwise will

return listing of public streams, i.e. any stream with "maxpublic” greater then 0.

« "stats” denotes that this is a configuration/statistics request. It may not contain a body

or attributes, otherwise it will be ignored without error.

The query reply is formatted like so:

<iq

id="dsps9’

type=’result’

from="dsps. jabber.org/@beec7b5ea3fofdbc95dodd47f3c5bc275da8a33’
to="rob@nauseum.org/dspsclient’>

<query type=’stats’ xmlns=’jabber:iq:dsps’

init="00000000000000"

16

/'3 GENERAL OPERATION

protocol="0.5"
port=’5290’
minthroughput="1.5KB’
expiredefault="150"
waitdefault="100"
wait=’10"’
public=’5"
maxpublic=’25"
mastercount=’20"
slavecount="40"
relaycount="0">
<feature type=’http’ version=’1.1"/>
<feature type=’ssl’ version=’3.0’/>
<peer>mydsps@jabber.org/8xd67f56df4f546fdgsfdg65f6g58f</peer>
<comment>some server comment</comment>
</query>
</iqg>

« ”from” the DSPS JID/resource pair for the peer receiving the result.

* ”init” UNIX timestamp of the date this stream was initiated.

« "protocol” protocol version this DSPS supports.

« ”port” default port this DSPS listens for connections on.

+ "minthroughput” as defined in "create”.

« "expiredefault” default time this DSPS will wait for an "acknowledge” response.

« "waitdefault” default time this DSPS will wait for a connection to its default port after
an invitation is accepted.

* "wait” time this DSPS will wait for this particular client to reconnect if it ever gets dis-
connected. This is the same value as one sent in the "create” response.

« ”public” number of "slave” peers registered with stream without invitation.

* ”"maxpublic” maximum number of "slave”peers allowed without invitation.

* ”"mastercount” number of peers with a "master” connection registered on this stream.
« ”slavecount” number of peers with a slave” connection registered on this stream.

« ”relaycount” number of peers with a "relay” connection registered on this stream.

+ <feature/> (optional) denotes a supported feature. All supported features must be listed.

« <peer/> (optional) list of public stream connections where all reported statistics match.
Present only if "to” in original request contained no resource. Multiple allowed where
statistics match for all.

17

\J 4 POSSIBLE APPLICATIONS

+ <comment/> (optional) parameter(s) with a comments from "create”. This block may
contain full XML stack of elements. Multiple such blocks are allowed.

All "status” attributes are required. Any other undefined blocks with any multiplicity, are
legal in this block as long as their tags are not identical to any tag within the protocol. Results
returned do not have any strict order. If ”to” in original request contained no resource,
multiple "stats” blocks are allowed, where each contains at least one <peer/> block which has
“maxpublic” greater than 0. To join a public stream a client must send message as per section
”Accepting an invite”.

3.10 Stream shutdown

Stream exists from its "create”ion time to the time when there are no more "master” peers
registered with the stream.

When last "master” peer is dropped from the stream, DSPS will make sure that all the data
sent by all the "master” peers was actually copied to all the "slave” peers still present. For
every remaining "slave” peer DSPS will initiate a drop event. Once stream is void of any peers
it will be totally forgotten by the DSPS and all associated data is released.

3.11 Error message format

Error messages look like so:

<iq
id="dsps9’
type=’error’
from="dsps. jabber.org/0beec7b5ea3fofdbc95dodd47f3c5bc275da8a33’
to=’rob@nauseum.org/dspsclient’>
<error code=’405’>Method Not Allowed</error>
</iqg>

« <error/> denotes error block where body is text description.

« ”code” denotes error code.

4 Possible applications

4.1 File transfer

File transfer can be easily accomplished over DSPS. Where one user invites another user
to a DSPS stream. File details can be transfered in the invitation comment as such: <meta
type="file’ name="myfile.txt’ size="500K’ crc32="12345" sha1="23451" mime="application/octet-
stream’ timestamp="12345" date="20020412T00:00:00’/>. Where the "size” would be in bytes.

18

/5 WHY DSPS INSTEAD OF PASS

All properties should reflect their appropriate values for this instance. Once the second
peer has accepted, it can simply put a CR on the stream stating that transfer can begin.
then the first party simply dumps the contents of file on the stream, closes the stream
and "drop”s itself from the stream. DSPS will make sure the second party gets everything
that the first party sent before closing the connection. If multiple recipients of the file
are required, the sending client can save a lot of bandwidth and transmit only one copy if
the file to the DSPS which in term will transmit the data over to all the other connected clients.

4.2 VoIP

Same idea as the file transfer. However if more then two parties are involved, every party
must have a "master” connection.

4.3 Multicast

A server has a JID which it registers with a stream. Any client wishing to join the multicast
sends an XML message to the server, which then invites the client with a "slave” connection.
Thus everything the server sends is received by every client on the stream. If there are
multiple back-up servers, they can be invited with a "master” connection, thus if one of them
goes down, the others can take over.

4.4 File Storage

It has long been discussed in many Jabber places that a file storage facility is desired. The
communication with such a facility can be easily accommodated with DSPS, as such a facility
would merely appear as a user to DSPS which can either be "invite”ed or "invite” other users
onto personal streams to transfer files as described in 6.1.

5 Why DSPS instead of PASS

PASS has the following design flaws that make it unsuitable for its stated purpose of providing
raw data-streams to all classes of users, including those behind firewalls or NAT.

5.1 Ports

PASS requires the use of a large number of individual ports, which on a heavily loaded server
can lead to the number of spare ports dropping to zero, causing connections to be refused.
This is also problematic if PASS is situated behind a firewall. Firewall administrators are
typically loathe to allow incoming connections to a large range of ports.

19

/5 WHY DSPS INSTEAD OF PASS

DSPS only uses one port, and so resolves the first problem, while making the second almost a
non-issue.

5.2 Knowledge of IP

PASS requires the client to have some knowledge of IP, which immediately forces the assump-
tion that the XML stream’s underlying protocol is in fact, IP. While at the time of writing this
is always the case, it may not always be this way.

DSPS uses the Jabber ID to do its routing, and so avoids these problems. And while DSPS does
use the concept of a TCP connection and an IP port, this information is never actually used any-
where on the XML stream, making the actual connection to the DSPS implementation-defined.

5.3 IP Addresses

PASS makes the IP address of the remote client available to the local client. While it is rare that
this is an actual problem, many users and administrators prefer that IP address information
is never actually revealed.

DSPS never transmits IP address information across the XML stream, and so does not have
this problem.

5.4 Intuitiveness

PASS requires a client to initiate a connection by opening a (proxied) listening socket, and
then soliciting connections. However, TCP works by having the client connect to a remote
resource directly. This difference can make the operation of PASS difficult to understand.
Also, it is left to the client to distribute the information about this listening socket, which
places an additional burden on the client.

DSPS, while it uses listening sockets to do its work, does all the work of setting up the
connection after a client initiates it. All the initiating client has to do is request a connection,
connect to the DSPS, and wait - everything else is handled automatically.

5.5 Scalability

Due to the master/slave design, DSPS is already able to handle multicasts of streams or such,
whilst PASS was only designed for simple p2p stream connections. This will becoming increas-
ingly more important as more emphasis is made on streaming capabilities, for technologies
such as audio and video conferencing.

Due to DSPS generality, the protocol can be easily used for either P2P or P2S2P needs. This
eliminates the need for a separate protocol for each of the tasks.

20

\J 6 DSPSWITH P2P

6 DSPS with P2P

It is not mandated for DSPS to reside beside a Jabber server. It is entirely possible for any client
to implement a stripped down version of such a server. In such a case the only sections that
are required are any error reporting, invitation acknowledgment and statistical responses.
Any other area of the protocol becomes optional since the recipient peer will not have the
ability to use it anyway.

Any client may, but is not required to utilize the striped down functionality. When utilizing
such functionality the serving client sends an invitation to the recipient client to join the
serving client’s DSPS stream. Thus the "create” message would list the serving client as the
DSPS and would utilize the "host” attribute to tell the recipient client where to connect to the
DSPS.

This ability is advantageous since the recipient client only needs to know one protocol for
data transmission over P2P or P2S2P connections, and would not see a difference between
the two. The proposed method is for one side to fist try serving a connection to the other.
If that fails the other side may attempt to serve the connection. If the second attempt fails
the clients may utilize an external DSPS server. The negotiation of who will serve is done
outside DSPS protocol. DSPS has no functionality to decide when a P2P connection is possible
or desirable, nor does it have enough information to do so reliably.

21

	Introduction
	Startup
	General Operation
	Stream Creation/Relay {optional}
	Connection waiting
	Establishing prepared connection
	DSPS relay setup {optional}
	Connecting to DSPS via HTTP method {optional}
	Connecting to DSPS via SSL method {optional}
	Connecting to DSPS via default method

	Stream administration
	Invitation to stream {optional}
	Dropping from stream

	Invitation reply
	Accepting an invite
	Rejecting an invite

	Disconnection handling
	Ending a connection
	Stream use
	Stream information
	Stream peer listing
	Stream status listing

	Stream shutdown
	Error message format

	Possible applications
	File transfer
	VoIP
	Multicast
	File Storage

	Why DSPS instead of PASS
	Ports
	Knowledge of IP
	IP Addresses
	Intuitiveness
	Scalability

	DSPS with P2P

