
XEP-0040: Jabber Robust Publish-Subscribe

Tim Carpenter
mailto:tim.carpenter@in8limited.co.uk

xmpp:

2004-07-26
Version 0.2

Status Type Short Name
Retracted Standards Track None

Note: This proposal has been superseded by XEP-0060; please refer to that document for the successor
protocol.

mailto:tim.carpenter@in8limited.co.uk
xmpp:

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

1.1 Background . 1
1.2 Positioning . 1

2 Gap Detection And Repair 3
2.1 Sequence Numbering . 3
2.2 Link Level Swquence Numbering . 4
2.3 Source Level Sequence Numbering . 4
2.4 Gap Filling . 5
2.5 Heartbeats . 6

3 Publish Types 7
3.1 Publish Type Field Values . 7

4 Source Queries 8

5 Implementation Issues 9
5.1 Permissioning Requirements . 9
5.2 Contributions . 10

1 INTRODUCTION

1 Introduction
Note: This XEP has been superseded by Publish-Subscribe (XEP-0060) 1; please refer to that document
for the successor protocol.
This document introduces and lays out a preliminary protocol for a robust form of publish-
subscribe over the Jabber messaging environment -- Jabber Robust Publish Subscribe (JRPS).
Implementation issues in the environment are appended, covering Permissioning and Contri-
butions. Both are likely to require separate XEPs, but need to be constructed sympathetically.
In creating this addition, I have an underlying philosophy to sustain a ”fractal” world of
publish-subscribe components, such that a subscriber to a pubsub component may well be a
pubsub component in itself, representing its own community of subscribers. This will allow
Jabber to support organic scalability found on other platforms.

1.1 Background
Publish-Subscribe and other messaging environments that exist are often classified as pro-
viding one or more of the following three levels of service.

1. Best Try, where data may on rare occasions get lost. Small footprints and ultimate per-
formance are the aim where the impact of occasional data loss in business, legal, confi-
dential or other terms is not significant comparedwith the core priority of performance.

2. Robust, where non-delivery of data can be detected and recovered by recipients and that
the sequence, integrity and completeness of data can be ascertained with a high level of
confidence. Non-delivery of data would have a significant and lasting negative impact
on the quality and integrity of the data.

3. Transactional, where there is an absolute, mission-critical need to ensure that all com-
munication flow is guaranteed and if problems occur during a set of connected steps,
then the situation can be rolled back (reversed) to the state before the operation com-
menced.

This document concerns itself with level 2 Publish Subscribe -- ”Robust”.

1.2 Positioning
JRPS is required in environments where there is a higher demand for guaranteed delivery in
high throughput, low latency environments where data has value and can contain business
intelligence, but does not demand a full transactional (e.g. 2-phase commit) strength envi-
ronment.
Such environments often exercise business logic upon data received, so the notion of updates

1XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.

1

https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html

1 INTRODUCTION

to all or part of data, the expression of the definitive, full compliment of a particular set of
related data, the correction of data in full or in part and the notification that data is no longer
valid needs to be supported. The existing type=”set”, though very suitable in a wide range of
applications, does not provide suitable granularity in all environments.
Robust environments require that a receiver can tell when data has been lost and that a
receiver also has the means to request the repair of any gaps efficiently. This must be done
whilst keeping delay or disruption to ongoing data flow to a minimum. Jabber does not
provide the means to detect or repair gaps, and traditional ACKing of each packet is slow and
costly.
It would be advantageous to permit forms of permissioning and access control upon data that
has value. Such permissioning and control should not be overly burdensome on the rapid
transmission of data. It should allow a suitable level of abstraction to keep changes to a data
item”s expression of permission coding/level to a minimum, to avoid the need for excessive
changes to such codes. Abstraction will also permit permission coding to be kept compact, as
it will, in effect, be tokenised.
JRPS then requires the ability to detect and repair gaps in the stream, to provide a means to
convey richer information about the nature of the data in context to what has come before
and to enable the publisher to have control over who sees what.
In addition, a pubsub component should be able to provide information and parameters about
its implementation of JRPS to subscribers. Subscribers must inquire about such information
from the pubsub component to gain the full benefit of a JRPS service.

1. Identify the tasks that users can’t complete because we are lacking this crucial piece of
protocol. (Note: users are not just IM users, but any person, system, or application that
could gain value from interacting with Jabber.)

2. Discuss other projects or protocols and how Jabber could interface with them because
of your proposed protocol enhancement (e.g., XML-RPC, SOAP, DotGNU).

3. Compare Jabber to ”the competition” (other IM systems or other messaging protocols)
and point out holes in the Jabber protocol that need to be filled in order to offer similar
functionality.

4. Review the relevant history of thinking within the Jabber community.

JRPS is a layer on Jabber Publish-Subscribe (XEP0024, XEP0036) and should interoperate with
them and support namespaces and topics. Included in this document is the capability for
permission tokens. It is included as the author believes that such tokens should exist within
the <publish> tag, being a means to identify data much as the namespace or topic does.
JRPS is different from other IM systems in that the publisher and pubsub components send out
the data so that downstream entities can detect if problems occur. As a comparison, a sender
in, say, MSN is told that the packet they sent cannot be delivered but in JRPS, the receiver
knows that a packet or packets have not been delivered and can ask for retransmissions.
The sender need not normally know about such events as the intermediate components can
usually cater for it. Thus JRPS has a future in areas such as Multicasting, large distributed and

2

2 GAP DETECTION AND REPAIR

proxy-based environments where the end subscribersmay be very remote from the publisher.
Existing commercial middlewares provide such facilities and it is especially necessary when
data is pushed between applications and may not have an obvious ”context” in the stream to
data immediately before or after. Thus, JRPS may seem over-the-top for a chatroom world,
but is a basic requirement for, say, distributing real-time process states, events or persistent,
mutable data.

2 Gap Detection And Repair
This can be achieved by the use of packet sequence numbering and heartbeats whilst avoiding
the necessity to positively ACK each packet.

2.1 Sequence Numbering
Multiple levels of sequence numbers are envisaged andwill be used in different circumstances.
Multiple levels allow a rapid repair of short ”transient” breaks whilst catering for longer
breaks, recoveries and resynchronisations without placing too great a burden on either
subscriber or pubsub component. This discussion explains the use of a dual sequence number
environment: link and source.
Sequence numbers will be sent in each publish thus:

<iq type=”set”
to=”myclient@server.net”
from=”pubsub.localhost”>

<query xmlns=”jabber:iq:pubsub”>
<publish ns=”data␣topics”

linkseq=”57372”
sourceseq=”7547392”
from=”publisher.fromaplace”>

</publish >
<publish ns=”data␣topics”

linkseq=”57373”
sourceseq=”44211”
from=”publisher.elsewhere”>

</publish >
</query >

</iq>

The above shows sequence numbers placed in the <publish/> node or element. This is to
abstract the publishing from any packet construction algorithms that may occur and thus
allow a recovery to make use of network capacity as it sees fit and to interleave recovery and
ongoing publishing data.
The subscriber stub is responsible for ordering information and detecting and repairing any

3

2 GAP DETECTION AND REPAIR

gaps to provide sequential data for consumption by the application, which should not concern
itself with such issues.
The operation of LINK and SOURCE sequence numbers are described below.

2.2 Link Level Swquence Numbering
This will concern itself with data sent on each channel. A channel can be, but is not limited to
the following:

• Socket connection between Subscriber (and/or resource within same) and the Jabber
pubsub component.

• Multicast datastream sent from a pubsub component but shared amongst 0..n sub-
scribers.

Each publish received should contain an incremental sequence number to the previous or
Zero. Zero is used to reset (or resynchronise) the sequence numbering. Zero should not
be used in the situation of sequence number wrapping/rollover, wherein the value1 should
be used. Sequence numbering bit resolution should be ascertained by querying the pubsub
component in an <iq/> before subscription requests are levied.
E.g., in a 16-bit sequence number resolution channel, the sequence numbers would run as
follows
1, 2, 3, 65533, 65534, 65535, 1, 2,
For information on sequence number bit resolution, see section 4, Source Queries.

2.3 Source Level Sequence Numbering
This will indicate the sequence number of messages sent from the publisher to the pubsub
component. Should a link be lost, timeout or other such eventuality where the context of link
sequence number be lost (e.g. the pubsub component decides the subscriber has disappeared
and discards context), the pubsub component is still in a position to re-filter and retransmit
data cached locally or even refer back to its source to maintain integrity and temporal
ordering of data to the subscriber.
To repair larger gaps, the pubsub component may provide the capability to request upwards
to the source using the source sequence number, or the pubsub component may draw upon
local or remote journaling services to repair the gap. The source sequence number seen by the
subscriber may be the link level sequence number between publisher and pubsub component,
may be the ultimate publisher sequence number or even an internal sequence number given
to the incoming published data to the pubsub component on a per source basis.
The subscriber need not know how the source sequencing operates, only notify from when
the link last gave a contiguous datastream.
One can now see that the pubsub component’s conversation to the source is akin to that of a

4

2 GAP DETECTION AND REPAIR

subscriber to a pubsub component.

2.4 Gap Filling
When a subscriber detects a gap on its link, it can request for the data to be resent thus:

<iq
type=”get”
id=”plugthegap1”
from=”myclient@server.net”
to=”pubsub.localhost”>

<query xmlns=”jabber:iq:pubsub”>
<gap linkfrom=”56737” linkto=”56739”>

</query >
</iq>

The values represent the missed link sequence numbers. For a gap of 1, the linkfrom and
linkto are the same.
Should the pubsub have lost the link context and thus is unable to plug the gaps it will return
an error <iq/> packet.
All is not lost. The subscriber has a last-ditch repair scenario by sending last-received source
sequence numbers.

<iq
type=”get”
id=”plugthegap1”
from=”myclient@server.net”
to=”pubsub.localhost”>

<query xmlns=”jabber:iq:pubsub”>
<gap ns=”publisher.fromaplace” after=”56737”>
<gap ns=”publisher.elsewhere” after=”211234”>

</query >
</iq>

Due to the non-contiguous nature of source sequence numbers from the subscriber point
of view, the values sent must represent not the gap, but the last valid sequence number
received. Each source may have a separate sequence number stream. This allows the pubsub
component to manage and, if necessary, request gaps itself from the publisher to resyn-
chronise the subscriber. The pubsub or publishing source should have the ability to refuse a
rebuild/resynchronise.
It should be possible for the subscriber to send the link and source sequence numbers in the
initial request. However, if link information has been discarded by the pubsub component
(e.g. the connection was dropped and presence set offline) the link sequence numbers will be
reset to zero (re-synchronised) thus:

5

2 GAP DETECTION AND REPAIR

<iq
type=”set”
to=”myclient@server.net”
from=”pubsub.localhost”>

<query xmlns=”jabber:iq:pubsub”>
<publish

ns=”data␣topics”
linkseq=”0”
sourceseq=”7547392”
from=”publisher.fromaplace”>

</publish >
<publish

ns=”data␣topics”
linkseq=”1”
sourceseq=”44211”
from=”publisher.elsewhere”>

</publish >
</query >

</iq>

2.5 Heartbeats
During times of low traffic, an active circuit can be provided with regular heartbeat trans-
missions. Heartbeats will increment the link level sequence numbers. Subscribers missing
or detecting overdue heartbeats will thus be able to detect gaps or delays even in low traffic
scenarios. If the data is simply delayed, the subscriber stub is in a position to take action
(and/or alert the application/user). If data is lost or heartbeats do not arrive in time, the
subscriber can decide to request retransmission, disconnect or wait.

<iq
type=”set”
to=”myclient@server.net”
from=”pubsub.localhost”>

<query xmlns=”jabber:iq:pubsub”>
<publish

ns=”link.heartbeat”
linkseq=”57374”
from=”pubsub.localhost”>

</publish >
</query >

</iq>

No source sequence numbering exists here, as it is purely a link-level entity.

6

3 PUBLISH TYPES

3 Publish Types
To be able to interpret published data in a more logical manner, more meaning needs to be
given to data received.
When a publish packet arrives with a topic or data namespace, there is currently no way of
knowing how to interpret the tags therein. Do they replace existing tag values seen? Should
previously sent tags that are not in the publish be kept or discarded? Are tag values being
updated or was the previous value incorrect?
To resolve this a type field may be added to the <publish/> tag.

<iq
type=”set”
to=”myclient@server.net”
from=”pubsub.localhost”>

<query xmlns=”jabber:iq:pubsub”>
<publish

ns=”data␣topics”
linkseq=”57372”
sourceseq=”7547392”
from=”publisher.fromaplace”
type=”update”>

</publish >
<publish

ns=”data␣topics”
linkseq=”57373”
sourceseq=”44211”
from=”publisher.elsewhere”
type=”correction”>

</publish >
</query >
</iq>

This option is preferable to extending the <iq/> type field as there will then be no need to split
<iq/> packets if <publish/> elements have different types.

3.1 Publish Type Field Values
The following extensions would be used in environments where topic/namespaces define
discrete sets of data items and/or data items changing over time, as opposed to only referring
to a topic datastream consisting of atomic, unrelated data. Other types can be defined as the
need arises.
’update’ - partial update of data. Replaces the values of the fields of the topic/namespace it
contains. Other fields held/cached downstream for this data item are still valid.
’correction’ - previous data for contained fields was incorrect - e.g. paragraph in a news story,
but, as per update, unsent items are still valid.

7

4 SOURCE QUERIES

’image’ - payload contains ALL the data for a data item/topic/namespace. All existing values
should be dropped and replaced with the new data. Previously received fields not now
contained within the image should be discarded.
’drop’ - namespace/topic item is now dead and all data in it should be deleted and purged
from cache.
’snapshot’ - requested by subscriber and is a request for data (an image if empty of granular
topics/namespaces) and no further updates, as distinct from a get, which is an on-going
subscription in pubsub world.
’add’ - new topic/data item on publisher’s feed. Note that an ”image” publish for an item can
be interpreted in the same way. Previous systems have had the ADD mechanism, but use of
”add” has been discontinued, with the role taken up by the ”image”. (thoughts?)
The above states (except ”add”) are very important for downstream caches and for applica-
tions that apply business logic to the datastreams.

4 Source Queries
As touched on above, subscribers should be able to enquire of the publisher regarding what
capabilities it provides and what to expect. Some items of use for JRPS are as follows:

• Heartbeat. Integer milliseconds. Represents the interval between heartbeat messages.
Useful for rapid detection of link level problems.

• Link Sequence Resolution. Integer. Allows subscriber to predict link sequence number
rollover. Zero would indicate that it is not supported.

• Source Sequence Resolution. Integer. Allows a subscriber to predict source sequence
number rollover. A zero would indicate that it is not supported.

• Gap Support. Boolean. Used to indicate if the publisher supports gap filling.

• Permissioning Scheme. There may be some standardisation of permissioning schemes
so that common plugins or mechanisms can be adopted. The publisher should be able
to define this.

• Rebuild On Demand. If the pubsub can support a rebuild/refresh of the current values
of all subscribed-to data on demand.

• Refresh Cycle. It has been common practice to transmit a regular refresh cycle for all
subscribed data. If a data item does not get an ’image’ from the source for a period
of time, the cache performs a logical ’drop’. Without this, intermediate caches would
very soon balloon with stale data, or publishers would get every cache re-requesting or
confirming if data is still alive. Zero would indicate that no refresh cycle exists for the
source.

8

5 IMPLEMENTATION ISSUES

5 Implementation Issues
5.1 Permissioning Requirements
Permissioning protocols should be open to permit a multitude of permissioning schemas.
Data providers may wish to enforce their schemes in ways that suit their particular business
models. The protocol should not bind or dictate such mechanisms.
The implementation of permissioning systems and regimes over time has repeatedly shown
that it is especially dangerous to assume the behaviour of data and to disregard how infor-
mation is used, protected, valued and owned or to force a scheme that is rigid and assumes a
narrow problem domain. Thus the scheme should permit explicit and tokenised permission-
ing mechanisms.
Tokenised permissioning allows sets of data can be treated en masse. By permitting the
concept of ”grant” and ”deny” permissions simultaneously (settings that define who CAN see
something or defining who CANNOT) individual publishers can manage access both broadly
and down to very fine granularity.
Permission tokens, if used, should be sent in-band with the data. This will allow data to
change its coding online and thus immediately affect permissioning without a redistribution
of the permissioning information.

<iq
type=”set”
to=”myclient@server.net”
from=”pubsub.localhost”>

<query xmlns=”jabber:iq:pubsub”>
<publish

ns=”data␣topics”
type=”update”
permtoken=”6747”
linkseq=”57372”
sourceseq=”7547392”
from=”publisher.fromaplace”>

</publish >
</query >

</iq>

This does not prevent namespace/topic permissioning systems from being applied, nor should
the permtoken be compulsory1.
The pubsub systems should be able to <iq/> the publisher for the permissioning regime that
applies.
The definition of the XML carrying permissioning tables/information should be regime
specific.
Further information on why tokenised grant and deny permissioning is advantageous can be
provided upon request.

9

5 IMPLEMENTATION ISSUES

5.2 Contributions
Contributions in this context are when a subscriber publishes to one or more sources for
redistribution so that it may reach the communities that subscribe to that source. By doing
this, the subscriber reaches large communities, focus on specific communities and can
abstract itself from delivery issues. The publisher gains information and broadens its appeal.
Delivery abstraction is valuable, as a subscriber can then connect once to the publisher to gain
access to all systems, networks, technologies, subscribers and media that the publisher and
contributor agree upon. As youmay guess, there is a need for content, flow control/throttling
and ongoing permissioning to be specified and handled over time.
Contributions requires a separate XEP, but the issues are important to the implementation
of pubsub and of its permissions (Contributors have specific, complex and business-critical
reasons to tightly control who sees data -- e.g. only customers, not competition!)

10

	Introduction
	Background
	Positioning

	Gap Detection And Repair
	Sequence Numbering
	Link Level Swquence Numbering
	Source Level Sequence Numbering
	Gap Filling
	Heartbeats

	Publish Types
	Publish Type Field Values

	Source Queries
	Implementation Issues
	Permissioning Requirements
	Contributions

