
XEP-0046: DTCP

Justin Karneges
mailto:justin@affinix.com
xmpp:justin@andbit.net

2003-04-11
Version 0.8

Status Type Short Name
Retracted Standards Track None

Direct TCP connection between two Jabber entities.

mailto:justin@affinix.com
xmpp:justin@andbit.net

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Requirements 1

3 Implementation 1
3.1 Requesting a DTCP connection . 1
3.2 Establishing the TCP connection . 2
3.3 The handshake . 3

3.3.1 SSL/TLS . 3
3.3.2 Authenticating . 3

3 IMPLEMENTATION

1 Introduction
There are cases where it would be more optimal for clients to exchange data directly with
each other rather than through the server. DTCP specifies a method for establishing a direct
TCP socket connection between two entities, so that a reliable bytestream can be created
out-of-band.

2 Requirements
The following design goals are considered:

• The protocol should be reasonably effective in scenarios involving NAT and/or fire-
walls.1

• It should be reasonably secure.

• Establishing a connection should be fast.

• The protocol should be simple.

3 Implementation
3.1 Requesting a DTCP connection
Say you wish to initiate a DTCP session with Joe:

Listing 1: Requesting a DTCP session
<iq type=”set” id=”dtcp_1” to=”joe@blow.com/Home”>

<query xmlns=”http: // jabber.org/protocol/dtcp”>
<key>c7b5ea3f </key>
<host>192.168.0.32 :8000 </host>
<host>63.110.44.12 :8000 </host>

</query >
</iq>

The ’key’ given is a unique key for Joe to use when referencing this session with you. If a ’host’
element is present, then you are indicating that you can be reached at the given ”host:port”.
Multiple hosts may be specified, but Joe cannot be expected to act onmore than three of them.

1DTCP works in situations where at least one client can accept incoming connections.

1

3 IMPLEMENTATION

Listing 2: Success response
<iq type=”result” id=”dtcp_1” from=”joe@blow.com/Home”>

<query xmlns=”http: // jabber.org/protocol/dtcp”>
<key>a1b2c3d4 </key>
<host>192.168.0.33 :8000 </host>

</query >
</iq>

The success response is in exactly the same format as the request. As before, Joe cannot
expect you to act on more than three hosts. The ’key’ is a unique key from Joe that you will
use when referring to the session with him.

Listing 3: Error response
<iq type=”error” id=”dtcp_1” from=”joe@blow.com/Home”>

<error code=”501”>DTCP not supported </error >
</iq>

Or he may send an error.

3.2 Establishing the TCP connection
If you received a success response, then the next step is to form the TCP connection. Each
entity should have a list of hosts (between 0-3 inclusive) and key of the other. With this
information, they should each try to establish a direct connection with the hosts provided.
When these connections take place is implementation dependent. Clients may choose to
connect to all provided hosts at once, and both clients may even end up connecting to each
other simultaneously. Clients may delay between connections, etc. As such, clients that are
listening for connections should be prepared for anything.
The procedure ends when either a successful DTCP connection is formed (and all other TCP
connections discarded), or when both entities have given up. An entity gives up when it is no
longer trying to connect to any hosts. This is done by sending an additional iq-error packet,
with the key of the other entity:

<iq type=”error” to=”joe@blow.com/Home”>
<query xmlns=”http: // jabber.org/protocol/dtcp”>

<key>a1b2c3d4 </key>
</query >
<error code=”503”>Could not connect to any of the hosts.</error >

</iq>

If an entity was not provided any hosts, then it is assumed that he has given up and this packet
need not be sent.

2

3 IMPLEMENTATION

3.3 The handshake
For a given host, a TCP socket connection is established. Once connected, the connecting
client must send a command across the channel. Each command is a line of text terminated
by the ASCII linefeed character (0x0A).

Listing 4: Command format
[command]:[argument]<LF>

Some commands may have an argument, which is placed on the same line and separated by a
colon character. If there is no argument, then the colon need not be present.
The serving client should keep the connection open after responding to a command, even if
it resulted in an error, in case the connecting client wishes to try another command.

3.3.1 SSL/TLS

If you want an encrypted channel, then it must be requested using the ’starttls’ command

starttls <LF>

If successful, the serving client should send back:

ok<LF>

This means that the serving client supports SSL and the connecting client should begin the
SSL/TLS negotiation. After this, further data sent/received over the channel should be in
encrypted form.
Or the serving client might report an error:

error <LF>

This means SSL is not supported by the serving client.

3.3.2 Authenticating

To complete the DTCP connection, the connecting client must authenticate with the serving
client. This is done by exchanging keys. First, the connecting client sends the serving client’s
key:

key:a1b2c3d4 <LF>

3

3 IMPLEMENTATION

If the serving client recognizes the key, then it should respond by sending the connecting
client’s key:

ok:c7b5ea3f <LF>

Or the serving client might report an error:

error <LF>

On success, there may be one more step necessary. If the connecting client is also the original
requestor of the DTCP connection (ie, he did the iq-set), then hemust send the following ”ack”:

ok<LF>

This gives the final say to the requestor, to prevent any sort of race-condition due to the
clients contacting each other at the same time. If the serving client is the requestor, then this
extra ”ack” is NOT needed and must NOT be sent.
At this point, the channel is established. No further commands may be issued, as the TCP
connection is now for application data only.

4

	Introduction
	Requirements
	Implementation
	Requesting a DTCP connection
	Establishing the TCP connection
	The handshake
	SSL/TLS
	Authenticating

