
XEP-0052: File Transfer

Thomas Muldowney
mailto:temas@box5.net
xmpp:temas@jabber.org

Matthew Miller
mailto:linuxwolf@outer-planes.net
xmpp:linuxwolf@outer-planes.net

Justin Karneges
mailto:justin@affinix.com
xmpp:justin@andbit.net

2018-11-03
Version 0.2.1

Status Type Short Name
Retracted Standards Track N/A

A protocol for transferring a file between two Jabber IDs.

mailto:temas@box5.net
xmpp:temas@jabber.org
mailto:linuxwolf@outer-planes.net
xmpp:linuxwolf@outer-planes.net
mailto:justin@affinix.com
xmpp:justin@andbit.net

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Use Cases 1
2.1 Send File Use Case . 1

3 Basic Usage 2

4 Stream Relation 5
4.1 ”iq:oob” Relation . 5

5 Formal Description 5
5.1 DTD . 5
5.2 <file/> Element . 6
5.3 <desc/> Element . 7
5.4 <range/> Element . 7
5.5 Error Descriptions . 7

6 Security Considerations 7

7 IANA Considerations 8

8 JANA Considerations 8

2 USE CASES

1 Introduction
This document describes the http://www.jabber.org/protocol/filexfer namespace, which
is used for offering and transferring files from one Jabber ID to another. It tries to expand
the basic method (iq:oob) that currently exists to allow for numerous stream methods, and
more detailed file information before accepting an offer. This document only describes the
negotiation method and suggests how streams could link back to the negotiated information.

2 Use Cases
This document covers one use case of sending a file to another user. Future specifications
may enhance this to include searching and offering.

2.1 Send File Use Case
Primary Flow:

1. Determine if the receiver supports FT through disco/browse. [E1]

2. Sender sends metadata and available methods to receiver

3. Receiver sends the accepted method to Sender and any range/offset information.
[E2],[E3]

4. Sender and Receiver establish the negotiated method[E4]

5. Sender sends data as described by method

6. After the stream closes the Receiver notifies the Sender of completion. [E5]

7. END

Errors Conditions:

1. User does not support filetransfer. END

2. Receiver rejects send. END

3. Receiver does not have any methods shared with the sender. END

4. The stream is unable to be started. END

5. The Receiver notifies sender of an error transferring. END

1

3 BASIC USAGE

3 Basic Usage
In order to send a file, the sender must first tell the receiver a little bit about the file to
make sure they will accept it. At the same time they list the stream methods they sup-
port in the order they wish to use them. This is done by sending the information in the
http://www.jabber.org/protocol/filexfer namespace.

Listing 1: Generic Offer
<iq type=’set’ id=’ft_1’ to=’recvr@jabber.org/Home’>

<file xmlns=’http: //www.jabber.org/protocol/filexfer ’
action=’offer ’
id=’a0’
name=’myfile.txt’
size=’1024’
mime -type=’text/plain ’>

<feature xmlns=’http: // jabber.org/protocol/feature -neg’>
<x xmlns=’jabber:x:data ’>

<field var=’file -transfer -method ’ type=’list -single ’>
<option ><value >jabber:iq:oob </value ></option >

</field >
</x>

</feature >
</file>

</iq>

That is the basic request, a more complete requeset with range support is shown below.

Listing 2: Complete File Offer
<iq type=’set’ id=’ft_1’ to=’recvr@jabber.org/Home’>

<file xmlns=’http: //www.jabber.org/protocol/filexfer ’
action=’offer ’
id=’a0’
name=’myfile.txt’
size=’1024’
mime -type=’text/plain ’
date=’20020412 T00:00:00 ’
hash=’23 e4ad6b63343b33a333c334 ’>

<desc>A cool file</desc>
<range/>
<feature xmlns=’http: // jabber.org/protocol/feature -neg’>

<x xmlns=’jabber:x:data ’>
<field var=’file -transfer -method ’ type=’list -single ’>

<option ><value >jobs</value ></option >
<option ><value >dtcp</value ></option >
<option ><value >jabber:iq:oob </value ></option >
<option ><value >ibb</value ></option >

</field >

2

3 BASIC USAGE

</x>
</feature >

</file>
</iq>

If a receiver decides to accept an offered file they request it from the sending with an <iq/>
type result. The receiver sends back the id of the file being sent, the method they wish to use,
and the range they wish to download (if the sender announced support). When range support
is being used the receiver MUST specify the length and MAY specify a beginning offset with
the acceptance.

Listing 3: Request the Offered File
<iq type=’result ’ id=’ft_req_1 ’ to=’sender@jabber.org/res’>

<file xmlns=’http: //www.jabber.org/protocol/filexfer ’ id=’a0’
action=’get’>

<feature xmlns=’http: // jabber.org/protocol/feature -neg’>
<x xmlns=’jabber:x:data ’>

<field var=’file -transfer -method ’>
<option ><value >jabber:iq:oob </value ></option >

</field ’>
␣␣␣␣␣␣␣␣␣␣ </x>
␣␣␣␣␣␣␣␣ </feature >
␣␣␣␣␣␣ </file >
␣␣␣␣</iq >

Listing 4: Accept the Offered File with a Range and Offset
<iq type=’result ’ id=’ft_req_q ’ to=’sender@jabber.org/res’>

<file xmlns=’http: //www.jabber.org/protocol/filexfer ’ id=’a0’
action=’get’>

<range offset=’100’ length=’500’ />
<x xmlns=’jabber:x:data ’>

<field var=’file -transfer -method ’>
<option ><value >jobs</value ></option >

</field >
</x>

</feature >
</file>

</iq>

If the receiver decides to not accept the file they SHOULD send back an error 403 to the sender.

Listing 5: Declining the Offered File
<iq type=’error ’ id=’ft_1’ to=’sender@jabber.org/res’>

<error code=’403’>Offer Declined </error >
</iq>

3

3 BASIC USAGE

If the receiver does not support any of the offered stream methods they SHOULD send back
an error 406 to the sender.

Listing 6: No Acceptable Methods
<iq type=’error ’ id=’ft_1’ to=’sender@jabber.org/res’>

<error code=’406’>No Acceptable Methods </error >
</iq>

At this point the sender will setup the stream method and begin to transfer data. The stream
itself can use the file transfer namespace to tie the metadata to the actual data sent, this is
illustrated below using iq:oob.

Listing 7: Starting an iq:oob transfer
<iq type=’set’ id=’ft_oob_1 ’ to=’recvr@jabber.org/Home’>

<file xmlns=’http: //www.jabber.org/protocol/filexfer ’ id=’a0’
action=’start ’/>

<query xmlns=’jabber:iq:oob ’>
<url>http: //www.jabber.org/file.txt</url>
<desc>Here is the file</desc>

</query >
</iq>

If the receiver is unable to start the negotiated stream for any reason they should send an
<error/> with a 502 code to the sender.

Listing 8: Unable to Start Stream
<iq type=’error ’ id=’ft_oob_e_1 ’ to=’sender@jabber.org/res’>

<file xmlns=’http: //www.jabber.org/protocol/filexfer ’ id=’a0’
action=’error ’/>

<error code=’502’>Unable to Start Stream </error >
</iq>

Once the data has been transferred the receiver SHOULD send the sender a notification that
the transfer completed. This is done by sending an <iq/> type set with the file id and a
completed action.

Listing 9: Completed Transfer Notification
<iq type=’set’ id=’ft_c_1 ’ to=’sender@jabber.org/res’>

<file xmlns=’http: //www.jabber.org/protocol/filexfer ’ id=’a0’
action=’complete ’ />

</iq>

If the transfer does not complete, for any reason after the metadata negotiation, the party
that has the error SHOULD send an error 500 and the file id to the other party.

4

5 FORMAL DESCRIPTION

Listing 10: Failed Transfer Error
<iq type=’error ’ id=’ft_1’ to=’sender@jabber.org/res’>

<error code=’500’>File Transfer Failed </error >
<file xmlns=’http: //www.jabber.org/protocol/filexfer ’ id=’a0’

action=’error ’/>
</iq>

4 Stream Relation
By staying in just the realm of negotiating the metadata to a file, we allow for multiple
transport layers, or streams, to be used. Some streams will need to tie the metadata to the
actual data transfer, to help accomodate this the stream may use the <file/> with an action of
start and the correct id. The <file/> could be transported in the stream negotiations, or along
side it. Although this spec does not mandate any specific methods to new stream authors, it
does provide the syntax for the currently existing ”iq:oob” system.

4.1 ”iq:oob” Relation
For an ”iq:oob” transfer to be related to its metadata, a <file/> is transported along side the
<query/>. The id used on the <file/> is the id for the metadata of the actual data that is being
sent. The action on the <file/> is ”start”. An example of this can be found in the Basic Usage
section.

5 Formal Description
5.1 DTD

<!ELEMENT file ((desc)? | (range)? | (PCDATA)*) >
<!ELEMENT desc (#PCDATA)* >
<!ELEMENT range EMPTY >

<!ATTLIST file
id CDATA #REQUIRED
action ”offer” | ”get” | ”complete” | ”start” | ”error” #

IMPLIED ”offer”
name CDATA #OPTIONAL
size CDATA #OPTIONAL >
mime -type CDATA #OPTIONAL
date CDATA #OPTIONAL
hash CDATA #OPTIONAL

<!ATTLIST range
length CDATA #OPTIONAL

5

5 FORMAL DESCRIPTION

offset CDATA #OPTIONAL >

5.2 <file/> Element
The <file/> element is the ”workhorse” element. This element is used to convey metadata and
report file transfer actions. This elemnt contains attributes for file metadata and actions, and
MAY contain a <desc/>, a <range/>, and zero or more <feature xmlns=’jabber:iq:negotiate’/>
(Feature Negotiation (XEP-0020) 1) elements.
The ”id” attribute specifies the identifier for this particular file transfer. This attribute MUST
be present at all times. There are no value requirements other than it MUST be unique
between the sender and receiver.
The ”action” attribute specifies the action to undertake with the given file. This attribute
SHOULD be present in most cases. If not present, the value ”offer” is implied. The value of
”action” MUST be one of the following:

Value Description
complete The file transfer is complete.
get The file transfer should start.
offer The file transfer is offered (metadata MUST be present)
start The file transfer is starting.
error The file transfer has failed. The outlying error tag has more information.

The ”name” attribute specifies the file name. This attribute MUST be present if the action is
”offer”, otherwise it SHOULD NOT be present.
The ”size” attribute specifies the file size, in bytes. This attribute MUST be present if the
action is ”offer”, otherwise it SHOULD NOT be present.
The ”mime-type” attribute specifies the MIME-type for the file. This attribute SHOULD
be present if the action is ”offer”, otherwise it SHOULD NOT be present. The value of this
attribute MUST follow the specification for MIME-types from RFC-20462.
The ”date” attribute specifies the file date. This attribute MAY be present if the action is
”offer”, otherwise it SHOULD NOT be present. The value MUST follow the specification for
ISO 8601 date/time formats3.
The ”hash” attribute specifies the hash of the file contents. This attribute MAY be present if
the action is ”offer”, otherwise it SHOULD NOT be present. The value MUST be an SHA1 hash
of the file contents.

1XEP-0020: Feature Negotiation <https://xmpp.org/extensions/xep-0020.html>.
2RFC 2046: ”Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types” -- http://www.ietf.org/r
fc/rfc2046.txt

3ISO 8601: ”[Summary of the] International Standard Date and Time Notation” -- http://www.cl.cam.ac.uk/~{}m
gk25/iso-time.html

6

https://xmpp.org/extensions/xep-0020.html
https://xmpp.org/extensions/xep-0020.html
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html

6 SECURITY CONSIDERATIONS

5.3 <desc/> Element
The <desc/> element contains a human-readable description of the file. This element has no
attributes, and contains character data content.

5.4 <range/> Element
The <range/> element describes range information for a partial transfer. This element has
attributes to define the range length and range offset. This element contains no content.
The ”length” attribute defines the range length, in bytes. This attribute MUST be present if
the containing <file/> has an action value of ”get”, otherwise it SHOULD NOT be present. The
value of this attribute MUST be an integer value and MUST be less than or equal to the (size +
offset) of the file.
The ”offset” attribute defines the range offset, in bytes. This attribute MAY be present if the
containing <file/> has an action value of ”get”, otherwise it SHOULD NOT be present. If this
attribute is not present, a value of 0 is implied. The value of this attribute MUST be an integer,
MUST NOT be less than 0, and MUST be less than (size - length).

5.5 Error Descriptions
There are three main error conditions in file transfer. Following are the conditions, error
codes and descriptions:

• Declining Transfer (403): During the metadata negotiation the receiver may decline the
transfer by sending the 403 error. The <error/> CDATAMAYcontain a descriptive reason
why, but is not necessary.

• No Available Methods (406): When the sender presents the available stream methods, and
the receiver can not use any of them, they send a 406 error. The <error/> CDATA is not
important.

• Transfer Failed (500): If the file transfer fails for any reason after negotiation, the error
generator SHOULD send a 500 error to the other party. This is the only error message
that both the sender and reciever may send. The <error/> CDATA MAY contain infor-
mation about the failure.

• Unable to Start Stream (502): When the receiver is unable to start the negotiated stream
method they send a 502 error to the sender. The <error/> CDATA is not important.

6 Security Considerations
Data integrity can be checked with the sha1 of the file that is sent. This could be attacked via
a man in the middle attack, but much more embarrasing things could result from that than a

7

8 JANA CONSIDERATIONS

bad file. The wire integrity is left to the stream method.

7 IANA Considerations
The mime-type attribute on <file/> is a valid MIME type as controlled by the IANA.

8 JANA Considerations
The ”http://jabber.org/protocol/filexfer” is the only namespace that needs to be registered
with the JANA.

8

	Introduction
	Use Cases
	Send File Use Case

	Basic Usage
	Stream Relation
	"iq:oob" Relation

	Formal Description
	DTD
	<file/> Element
	<desc/> Element
	<range/> Element
	Error Descriptions

	Security Considerations
	IANA Considerations
	JANA Considerations

