
XEP-0058: Multi-User Text Editing

Alexey Shchepin
mailto:alexey@sevcom.net
xmpp:aleksey@jabber.ru

2002-11-12
Version 0.1

Status Type Short Name
Deferred Standards Track N/A

This document defines how several people may simultaneously edit text.

mailto:alexey@sevcom.net
xmpp:aleksey@jabber.ru

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Protocol description 1

3 Formal Definitions 4

2 PROTOCOL DESCRIPTION

1 Introduction
This document defines an XMPP protocol extension for editing one text document by several
people. This can be useful when several people write different parts of one single document,
or one person edits the text and other people can see the changes. The advantage of using this
protocol in compared to using a version control systems is that all changes are distributed
between editors in real-time.

2 Protocol description
To start editing a file, the user must subscribe to it on special ”server” The server stores text
files. A User first can ask for list of these documents.

Listing 1: User asks the server list of editable texts
<iq type=’get’ to=’server ’ id=’mute1 ’>

<list xmlns=’http: // jabber.org/protocol/mute#server ’/>
</iq>

After that the server returns a list of the documents. For each list item an ID and description
is given.

Listing 2: Ancestor returns list of editable texts
<iq type=’result ’ to=’editor1 ’ id=’mute1 ’>

<list xmlns=’http: // jabber.org/protocol/mute#server ’>
<item id=’id1’ desc=’Useful␣text’/>
<item id=’id2’ desc=’Useless␣text’/>

</list>
</iq>

Then the user can send a subscribe request to the server by sending the documents ID.
Attribute type can be rdwr for full access or rdonly for read-only access.

Listing 3: User sends subscribe request
<iq type=’set’ to=’server ’ id=’mute2 ’>

<subscribe xmlns=’http: // jabber.org/protocol/mute#server ’>
<item id=’id1’ type=’rdwr’/>

</subscribe >
</iq>

Listing 4: Positive response from server on subscribe request
<iq type=’result ’ to=’editor1 ’ id=’mute2 ’/>

1

2 PROTOCOL DESCRIPTION

Listing 5: Negative response from server on subscribe request
<iq type=’error ’ to=’editor1 ’ id=’mute2 ’>

<subscribe xmlns=’http: // jabber.org/protocol/mute#server ’>
<item id=’id1’ type=’rdwr’/>

</subscribe >
<error code=”405”>Not Allowed </error >

</iq>

After successful subscription, the server sends the full contents of the document to the new
editor.

Listing 6: Server sends text to editor
<iq type=’set’ to=’editor1 ’ id=’mute3 ’>

<text xmlns=’http: // jabber.org/protocol/mute#editor ’ id=’id1’>
...
8. Admin Use Cases

8.1. Banning a User
8.2. Modifying the Ban List
8.3. Granting Membership
8.4. Revoking Mambership
8.5. Modifying the Member List
8.6. Granting Moderator Privileges
8.7. Revoking Moderator Privileges
8.8. Modifying the Moderator List

...
</text>

</iq>

Listing 7: Positive response from editor
<iq type=’result ’ to=’server ’ id=’mute3 ’/>

If an editor wants to commit the changes he made, then he sends a patch file to this text in
GNU diff(1) unified format without first two lines (they specify file names and modification
dates, that is not needed).

Listing 8: Editor sends patch to server
<iq type=’set’ to=’server ’ id=’mute4 ’>

<patch xmlns=’http: // jabber.org/protocol/mute#server ’ id=’id1’>
@@ -2,7 +2,7 @@

8.1. Banning a User
8.2. Modifying the Ban List
8.3. Granting Membership

- 8.4. Revoking Mambership
+ 8.4. Revoking Membership

8.5. Modifying the Member List

2

2 PROTOCOL DESCRIPTION

8.6. Granting Moderator Privileges
8.7. Revoking Moderator Privileges

</patch >
</iq>

Listing 9: Server accepts patch
<iq type=’result ’ to=’editor1 ’ id=’mute4 ’/>

Listing 10: Server not accepts patch
<iq type=’error ’ to=’editor1 ’ id=’mute4 ’>

<patch xmlns=’http: // jabber.org/protocol/mute#server ’ id=’id1’>
@@ -2,7 +2,7 @@

8.1. Banning a User
8.2. Modifying the Ban List
8.3. Granting Membership

- 8.4. Revoking Mambership
+ 8.4. Revoking Membership

8.5. Modifying the Member List
8.6. Granting Moderator Privileges
8.7. Revoking Moderator Privileges

</patch >
<error code=”405”>Not Allowed </error >

</iq>

If server accepts the patch, then it resends it to all subscribed text editors and readers.

Listing 11: Server resend accepted patch to all editors and readers of this text
<iq type=’set’ to=’editor1 ’ id=’mute5 ’>

<patch xmlns=’http: // jabber.org/protocol/mute#editor ’ id=’id1’>
@@ -2,7 +2,7 @@

8.1. Banning a User
8.2. Modifying the Ban List
8.3. Granting Membership

- 8.4. Revoking Mambership
+ 8.4. Revoking Membership

8.5. Modifying the Member List
8.6. Granting Moderator Privileges
8.7. Revoking Moderator Privileges

</patch >
</iq>

Listing 12: Positive response from editors and readers
<iq type=’result ’ to=’server ’ id=’mute5 ’/>

If server receives an error IQ reply from one of the editors/readers on any of above requests,
then it must remove him from subscribers list and may send a message to him about this.

3

3 FORMAL DEFINITIONS

3 Formal Definitions

Listing 13: DTD for http://jabber.org/protocol/mute#server
<?xml version=”1.0” encoding=”UTF -8” ?>

<!ELEMENT list ((item)*)>
<!ELEMENT subscribe (item)>

<!ELEMENT item EMPTY >
<!ATTLIST item

id CDATA #REQUIRED
desc CDATA #IMPLIED
type (rdwr | rdonly) #IMPLIED >

<!ELEMENT patch (# PCDATA)>

Listing 14: DTD for http://jabber.org/protocol/mute#editor
<?xml version=”1.0” encoding=”UTF -8” ?>

<!ELEMENT patch (# PCDATA)>
<!ELEMENT text (# PCDATA)>

4

	Introduction
	Protocol description
	Formal Definitions

