
XEP-0132: Presence Obtained via Kinesthetic Excitation (POKE)

Peter Saint-Andre
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/

Joe Hildebrand
mailto:jhildebr@cisco.com
xmpp:hildjj@jabber.org

2004-04-01
Version 1.0

Status Type Short Name
Active Humorous poke

This document defines an XMPP protocol extension that enables probing for presence via physical
rather than electronic means.

mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/
mailto:jhildebr@cisco.com
xmpp:hildjj@jabber.org

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Approach 1

3 Protocol 1
3.1 Presence . 2
3.2 IQ . 5
3.3 Methods . 6

4 Privacy Considerations 6

5 Security Considerations 7

6 IANA Considerations 7

7 XMPP Registrar Considerations 7
7.1 Protocol Namespaces . 7
7.2 Method Values . 7

8 XML Schema 8

3 PROTOCOL

1 Introduction
XMPP Core 1 and XMPP IM 2 define methods for exchanging information about a person’s
network availability via the XML <presence/> stanza. In general, such presence information
is generated only when a person initiates interaction with a client, although it can be gen-
erated programmatically through features such as auto-away. However, sometimes a user
is present in the vicinity of a client but is not actively engaged with the client interface. In
such circumstances, it would be helpful to have a mechanism that is sometimes referred to
as <presence type=’probe-irl’/>: the ability to invoke a real-life means of determining the
physical presence of the user. This document defines just such a mechanism.

2 Approach
Physical presence is best determined through direct interaction with an object. In this
document, our approach is labelled ”kinesthetic excitation”: some form of physical contact
is initiated with the object (in most cases a user), resulting in hard evidence of presence
obtained by a sense modality such as sight, touch, or hearing. To ensure reliability, the
physical contact MUST impinge upon the object or user to such an extent that it measurably
reacts in the form of motion through space (e.g., moving in relation to a visual observation
device), generation of an auditory event (e.g., vocalization), and the like. The exact means
of excitation and perception are implementation-specific and therefore not specified fully in
this document, although suggestions are provided in the Methods section below.

3 Protocol
In the past, some members of the Jabber community have suggested the addition of a new
presence type: ”probe-irl”. However, this has several drawbacks. First, the XMPP specifi-
cations (XMPP Core and XMPP IM) approved by the IETF do not allow any values for the
’type’ attribute other than those defined in the XML schemas for the ’jabber:client’ and
’jabber:server’ namespaces. Second, presence probes are handled by a server on behalf of a
user and therefore are not routed to clients (which presumably often have the best opportu-
nity for discovering evidence of physical presence); an <iq/> stanza is more appropriate for
client-to-client information exchange. Therefore, this document defines a general extension
mechanism that can be used in both <presence/> and <iq/> stanzas.
The extension mechanism is encapsulated in a <poke/> element qualified by the
’http://jabber.org/protocol/poke’ namespace; this element MAY be included as a direct
child of a <presence/> stanza of type ”probe” or an <iq/> stanza of type ”get” (for a request),
”result” (for a successful response), or ”error” (for an unsuccessful response).

1RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
2RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc6121>.

1

http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121

3 PROTOCOL

The requesting entity MAY specify a preferred method of excitation and observation; in
general, these methods correspond to particular sense modalities such as sight, touch, and
hearing (see the Methods section below).

3.1 Presence
As defined in XMPP IM, presence stanzas of type ”probe” are handled on behalf of the
target entity by the entity’s server. While normally these presence stanzas are generated by
the requesting entity’s server (e.g., when the requesting entity sends initial presence), the
requesting entity itself (or, more precisely, its client) is allowed to generate presence stanzas
of type ”probe”. In this document we make use of this ability to query the target entity’s
server regarding the entity’s physical presence.
In the following example, a star-crossed lover pokes the server of his beloved to determine
her physical presence (notice that the value of ’to’ address lacks a resource identifier and
therefore is a bare JID, not a full JID).

Listing 1: Poking via the server
<presence

type=’probe ’
from=’romeo@montague.net/orchard ’
to=’juliet@capulet.com’
id=’poke1 ’>

<poke xmlns=’http: // jabber.org/protocol/poke’/>
</presence >

If the user’s server does not support the POKE protocol, it SHOULD ignore the extension and
treat the presence stanza as a normal (non-IRL) presence probe. However, the user’s server
MAY return a ”Service Unavailable” error to the requesting entity to inform the requesting
entity that IRL probes are not supported (for details regarding error syntax, refer to Error
Condition Mappings (XEP-0086) 3):

Listing 2: Server returns service unavailable error
<presence

type=’error ’
from=’juliet@capulet.com’
to=’romeo@montague.net/orchard ’
id=’poke1 ’>

<poke xmlns=’http: // jabber.org/protocol/poke’/>
<error code=’503’ type=’cancel ’>

<service -unavailable
xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >

3XEP-0086: Error Condition Mappings <https://xmpp.org/extensions/xep-0086.html>.

2

https://xmpp.org/extensions/xep-0086.html
https://xmpp.org/extensions/xep-0086.html
https://xmpp.org/extensions/xep-0086.html

3 PROTOCOL

</presence >

If the user’s server supports the POKE protocol, it MUST first perform appropriate access
checks to determine if the requesting entity has permission to view the user’s presence (e.g.,
by checking presence subscriptions and privacy lists). If the user’s server determines that the
requesting entity is not allowed to learn the user’s physical presence information, it MUST
return a ”Forbidden” error:

Listing 3: Server returns forbidden error
<presence

type=’error ’
from=’juliet@capulet.com’
to=’romeo@montague.net/orchard ’
id=’poke1 ’>

<poke xmlns=’http: // jabber.org/protocol/poke’/>
<error code=’403’ type=’auth’>

<forbidden
xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</presence >

If the requesting entity has permission to discover the user’s physical presence, the server
SHOULD attempt to determine if the user is physically present. Methods for doing so are
implementation-specific and therefore out of scope for this document, but possible mecha-
nisms might include:

1. sending messages to contacts in the user’s roster who would be likely to have knowl-
edge of the user’s whereabouts (perhaps derived from physical proximity information
gleaned from vcard-temp (XEP-0054) 4 or User Geolocation (XEP-0080) 5 data)

2. generating an IQ ”get” in the ’poke’ namespace to each of the user’s connected resources

3. sending specialized commands to each of the user’s connected resources using Ad-Hoc
Commands (XEP-0050) 6

If the server determines that the user is physically present in the vicinity of a client, it SHOULD
return that information to the requesting entity, including the appropriate resource:

Listing 4: Server returns success
<presence

from=’juliet@capulet.com/chamber ’

4XEP-0054: vcard-temp <https://xmpp.org/extensions/xep-0054.html>.
5XEP-0080: User Geolocation <https://xmpp.org/extensions/xep-0080.html>.
6XEP-0050: Ad-Hoc Commands <https://xmpp.org/extensions/xep-0050.html>.

3

https://xmpp.org/extensions/xep-0054.html
https://xmpp.org/extensions/xep-0080.html
https://xmpp.org/extensions/xep-0050.html
https://xmpp.org/extensions/xep-0050.html
https://xmpp.org/extensions/xep-0054.html
https://xmpp.org/extensions/xep-0080.html
https://xmpp.org/extensions/xep-0050.html

3 PROTOCOL

to=’romeo@montague.net/orchard ’
id=’poke1 ’>

<poke xmlns=’http: // jabber.org/protocol/poke’/>
</presence >

The server SHOULD NOT wait an inordinate amount of time before returning the presence
information (e.g., usually not more than two minutes), but the timeout period SHOULD be
configurable. If the request times out, the server SHOULD return a ”Request Timeout” error
to the requesting entity:

Listing 5: Server returns request timeout error
<presence

type=’error ’
from=’juliet@capulet.com’
to=’romeo@montague.net/orchard ’
id=’poke1 ’>

<poke xmlns=’http: // jabber.org/protocol/poke’/>
<error code=’408’ type=’wait’>

<remote -server -timeout
xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</presence >

The server SHOULD NOT return a ”Not Found” error unless the user does not exist. If the
server determines that the user has died, it MAY return a ”Gone” error with appropriate
descriptive text, although it SHOULD wait to do so pending notification of next-of-kin; note
well that such notification is out of scope for this document (though this seems like a sensible
application of the Publish-Subscribe (XEP-0060) 7 protocol):

Listing 6: Server returns gone error
<presence

type=’error ’
from=’juliet@capulet.com’
to=’romeo@montague.net/orchard ’
id=’poke1 ’>

<poke xmlns=’http: // jabber.org/protocol/poke’/>
<error code=’302’ type=’cancel ’>

<gone xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<text xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’>

Please accept our condolences: the user you are
trying to reach has died.

</text>
</error >

</presence >

7XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.

4

https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html

3 PROTOCOL

3.2 IQ
If the requesting entity knows at least one resource with which the user is currently con-
nected, it MAY send an IQ to the user’s full JID (<user@host/resource>) instead of sending a
probe to the user’s server.

Listing 7: Poking via the client
<iq type=’get’

from=’romeo@montague.net/orchard ’
to=’juliet@capulet.com/balcony ’
id=’poke2 ’>

<poke xmlns=’http: // jabber.org/protocol/poke’
method=’taste ’/>

</iq>

The same errors as shown above for presence stanzas SHOULD be used by clients responding
to IQ stanzas containing POKE protocols (e.g., ”Request Timeout” if the user cannot be found
in some reasonable period of time), and therefore are not repeated here.
Note that the preceding example includes the optional ’method’ attribute. If the target entity
does not support the specified method, it MAY return a ”Feature Not Implemented” error:

Listing 8: Client returns feature not implemented error
<iq type=’error ’

from=’juliet@capulet.com/balcony ’
to=’romeo@montague.net/orchard ’
id=’poke1 ’>

<poke xmlns=’http: // jabber.org/protocol/poke’/>
<error code=’501’ type=’cancel ’>

<feature -not -implemented
xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

Alternatively, it MAY choose to use some other method that it does implement, in which case
it SHOULD specify the method used in the IQ result (this is the recommended behavior).
If the client determines that the user is physically present, it SHOULD return presence to the
requesting entity (subject to privacy lists and any other appropriate access controls):

Listing 9: Client returns success
<iq type=’result ’

from=’juliet@capulet.com/balcony ’
to=’romeo@montague.net/orchard ’
id=’poke1 ’>

<poke xmlns=’http: // jabber.org/protocol/poke’
method=’touch ’/>

5

4 PRIVACY CONSIDERATIONS

</iq>

3.3 Methods
The following values of the ’method’ attribute are defined and SHOULD be supported by a
compliant implementation:

dna The physical presence of the target entity shall be determined by means of DNA testing;
for example, the user’s client may take a hair or skin sample from the user (not recom-
mended if the testing time is inordinately long).

infrared The physical presence of the target entity shall be determined by means of infrared
wavelengths; for example, the user’s client may scan the area for the telltale heat signa-
ture of the user.

sight The physical presence of the target entity shall be determined by means of sight; for
example, the user’s client may flash a strobe light that draws the user within the range
of visual observation (note: this method is limited to visual wavelengths).

smell The physical presence of the target entity shall be determined by means of olfaction;
for example, the user’s client may produce a stench known to make the user nervous
and sweaty.

sound The physical presence of the target entity shall be determined by means of sound; for
example, the user’s client may generate a sound so annoying that when the user hears
it, he or she reacts vocally in the form of a yell, scream, or imprecation.

taste The physical presence of the target entity shall be determined by means of taste; for
example, the user’s client may extend a device that licks the user’s skin.

touch The physical presence of the target entity shall be determined by means of bodily con-
tact; for example, the user’s client may extend a probe that comes into contact with the
user’s body.

4 Privacy Considerations
Determination of physical presence necessarily involves an invasion of the target entity’s
”personal space”. The XMPP Standards Foundation (XSF) 8 shall not be held liable for any
use of this protocol. Client implementations MUST enable the user to disable support for this
protocol via configuration options.

8The XMPP Standards Foundation (XSF) is an independent, non-profit membership organization that develops
open extensions to the IETF’s Extensible Messaging and Presence Protocol (XMPP). For further information,
see <https://xmpp.org/about/xmpp-standards-foundation>.

6

https://xmpp.org/about/xmpp-standards-foundation
https://xmpp.org/about/xmpp-standards-foundation

7 XMPP REGISTRAR CONSIDERATIONS

5 Security Considerations
Responding entities (whether server or client) MUST NOT return physical presence informa-
tion to requesting entities that are not entitled to discover such information.

6 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
9.

7 XMPP Registrar Considerations
7.1 Protocol Namespaces
The XMPP Registrar 10 shall add the ’http://jabber.org/protocol/poke’ namespace to its
registry of protocol namespaces.

7.2 Method Values
The XMPP Registrar shall maintain a registry of values for the ’method’ attribute. The
following values shall be added initially:

• dna

• infrared

• sight

• smell

• sound

• taste

• touch

9The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

10The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

7

http://www.iana.org/
https://xmpp.org/registrar/
http://www.iana.org/
https://xmpp.org/registrar/

8 XML SCHEMA

8 XML Schema

<?xml version=”1.0” encoding=”UTF -8” ?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’http: // jabber.org/protocol/poke’
xmlns=’http: // jabber.org/protocol/poke’
elementFormDefault=’qualified ’>

<xs:annotation >
<xs:documentation >

The protocol documented by this schema is defined in
XEP -0132: http://www.xmpp.org/extensions/xep -0132. html

</xs:documentation >
</xs:annotation >

<xs:element name=’poke’>
<xs:complexType >

<xs:simpleContent >
<xs:extension base=’empty ’>

<xs:attribute name=’method ’
use=’optional ’
type=’xs:NCName ’/>

</xs:extension >
</xs:simpleContent >

</xs:complexType >
</xs:element >

<xs:simpleType name=’empty ’>
<xs:restriction base=’xs:string ’>

<xs:enumeration value=’’/>
</xs:restriction >

</xs:simpleType >

</xs:schema >

8

	Introduction
	Approach
	Protocol
	Presence
	IQ
	Methods

	Privacy Considerations
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	Method Values

	XML Schema

