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This document defines an XMPP protocol extension for negotiating compression of XML streams, espe-
cially in situations where standard TLS compression cannot be negotiated. The protocol provides a mod-
ular framework that can accommodate a wide range of compression algorithms; the ZLIB compression
algorithm is mandatory-to-implement, but implementations may support other algorithms in addition.
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Legal

Copyright

This XMPP Extension Protocol is copyright © 1999 - 2024 by the XMPP Standards Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
"Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

## NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https: //xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).
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1 Introduction

XMPP Core ! specifies the use of Transport Layer Security (TLS; see RFC 5246 2) for encryption
of XML streams, and TLS includes the ability to compress encrypted traffic (see RFC 3749 3).
However, not all computing platforms are able to implement TLS, and traffic compression
may be desirable for communication by applications on such computing platforms. This
document defines a mechanism for negotiating the compression of XML streams outside the
context of TLS.

2 Use Case

The protocol flow is as follows:

Listing 1: Receiving Entity Offers Stream Compression Feature

<stream:features>
<starttls xmlns=’urn:ietf:params:xml:ns:xmpp-tls’/>
<compression xmlns=’http://jabber.org/features/compress’>
<method>zlib</method>
<method>1lzw</method>
</compression>
</stream:features>

Note: The <compression/> element MUST contain at least one <method/> child element.
Each <method/> element MUST contain XML character data that specifies the name of a
compression method, and such method names SHOULD be registered as described in the
Compression Methods Registry section of this document. The methods SHOULD be provided
in order of preference.

The initiating entity then MAY request compression by specifying one of the methods adver-
tised by the receiving entity:

Listing 2: Initiating Entity Requests Stream Compression

<compress xmlns=’http://jabber.org/protocol/compress’>
<method>zlib</method>
</compress>

Note: If the initiating entity did not understand any of the advertised compression methods,
it SHOULD ignore the compression option and proceed as if no compression methods were
advertised.

If the initiating entity requests a stream compression method that is not supported by the

IRFC 6120: Extensible Messaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
2RFC5246:TheTransportLayerSecurity(TLS)ProtocolV’ersion1.2<http://tools‘ietf.org/html/rfc5246>.
RFC 3749: Transport Layer Security Protocol Compression Methods <http://tools.ietf.org/html/rfc3749>,
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receiving entity, the receiving entity MUST return an <unsupported-method/> error:

Listing 3: Receiving Entity Reports That Method is Unsupported

<failure xmlns=’http://jabber.org/protocol/compress’>
<unsupported-method/>
</failure>

If the receiving entity finds the requested method unacceptable or unworkable for any other
reason, it MUST return a <setup-failed/> error:

Listing 4: Receiving Entity Reports That Negotiation of Stream Compression Failed

<failure xmlns=’http://jabber.org/protocol/compress’>
<setup-failed/>
</failure>

Note: Failure of the negotiation SHOULD NOT be treated as an unrecoverable error and
therefore SHOULD NOT result in a stream error. In particular, the initiating entity is free to
retry the compression negotiation if it fails.

If no error occurs, the receiving entity MUST inform the initiating entity that compression
has been successfully negotiated:

Listing 5: Receiving Entity Acknowledges Negotiation of Stream Compression

<compressed xmlns=’http://jabber.org/protocol/compress’/>

Both entities MUST now consider the previous (uncompressed) stream to be null and void,
just as with TLS negotiation and SASL negotiation (as specified in RFC 3920 *) and MUST begin
compressed communications with a new (compressed) stream. Therefore the initiating entity
MUST initiate a new stream to the receiving entity:

Listing 6: Initiating Entity Initiates New (Compressed) Stream

<stream:stream
xmlns=’jabber:client’
xmlns:stream="http://etherx. jabber.org/streams’
to=’shakespeare.lit’>

If compression processing fails after the new (compressed) stream has been established, the
entity that detects the error SHOULD generate a stream error and close the stream:

Listing 7: Entity Closes Stream Because of a Processing Error

<stream:error>

*RFC 3920: Extensible Messaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc3920>.
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<undefined-condition xmlns="urn:ietf:params:xml:ns:xmpp-streams’/>
<failure xmlns=’http://jabber.org/protocol/compress’>
<processing-failed/>
</failure>
</stream:error>
</stream:stream>

3 Business Rules

The following business rules apply:

« If stream compression is negotiated, it MUST be used in both directions.
* TLS compression and stream compression SHOULD NOT be used simultaneously.

* Stream compression MAY be offered after TLS negotiation if TLS compression is not
used.

For detailed recommendations regarding the order of stream feature negotiation, refer to
Recommended Order of Stream Feature Negotiation (XEP-0170) °.

4 Mandatory-to-Implement Technologies
Support for the ZLIB compression method as specified in RFC 1950 ¢ is REQUIRED.

All other methods are OPTIONAL; such methods may be defined in future specifications or by
registration as described in the Compression Methods Registry section of this document.

5 Optional Technologies

Implementations MAY support the following methods in addition to ZLIB:

+ Stream Compression with LZW (XEP-0229)

°XEP-0170: Recommended Order of Stream Feature Negotiation <https://xmpp.org/extensions/xep-0170.h
tml>,

SRFC 1950: ZLIB Compressed Data Format Specification version 3.3 <http://tools.ietf.org/html/rfc1950>,

"XEP-0229: Stream Compression with LZW <https://xmpp.org/extensions/xep-0229.html>,
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6 Implementation Notes

When using ZLIB for compression, the sending application SHOULD complete a partial flush
of ZLIB when its current send is complete. Note that this statement is deliberately somewhat
vague: the sending application may end up performing this partial flush after sending every
XML stanza, but on the other hand may perform the partial flush only after sending a group
of stanzas that have been queued up for delivery. When to flush the state of the compression
application is up to the sending application.

7 Security Considerations

Due to attacks like CRIME that apply equally to the zlib method defined here, this method is
deemed insecure.

8 IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
8

9 XMPP Registrar Considerations

9.1 Stream Features

The XMPP Registrar ? includes "http://jabber.org/features/compress’ in its registry of stream
features.

9.2 Protocol Namespaces

The XMPP Registrar includes "http://jabber.org/protocol/compress’ in its registry of protocol
namespaces.

8The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

*The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.
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9.3 Compression Methods Registry

The XMPP Registrar maintains a registry of compression methods at <https://xmpp.org/r
egistrar/compress.html>,

9.3.1 Process

In order to submit new values to this registry, the registrant shall define an XML fragment of
the following form and either include it in the relevant XMPP Extension Protocol or send it to
the email address <registrar@xmpp.org>:

<method>
<name>the XML character data of the method element</name>
<desc>a natural-language description of the compression method</desc
>
<doc>the document that specifies or registers the compression method
</doc>
</method>

The registrant may register more than one compression method at a time, each contained in
a separate <method/> element.

9.3.2 Registration

<method>
<name>zlib</name>
<desc>the ZLIB compression method</desc>
<doc>RFC 1950</doc>

</method>

10 XML Schemas

10.1 Stream Feature

<?xml version=’1.0’ encoding=’UTF-8’7?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="http://jabber.org/features/compress’
xmlns="http://jabber.org/features/compress’
elementFormDefault="qualified’>

<xs:annotation>
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<xs:documentation>
The protocol documented by this schema is defined in
XEP-0138: http://www.xmpp.org/extensions/xep-0138.html
</xs:documentation>
</xs:annotation>

<xs:element name=’compression’>
<xs:complexType>
<xs:sequence>
<xs:element name="method’ type=’xs:NCName’ maxOccurs=’
unbounded’ />
</Xxs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

10.2 Protocol Namespace

<?xml version=’1.0’ encoding=’UTF-8’?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="http://jabber.org/protocol/compress’
xmlns="http://jabber.org/protocol/compress’
elementFormDefault="qualified’>

<xs:annotation>
<xs:documentation>
The protocol documented by this schema is defined in
XEP-0138: http://www.xmpp.org/extensions/xep-0138.html
</xs:documentation>
</xs:annotation>

<xs:import namespace=’urn:ietf:params:xml:ns:xmpp-stanzas’

schemalocation="http://xmpp.org/schemas/stanzaerror.xsd’/
>

<xs:element name=’compress’>
<xs:complexType>
<xs:sequence>
<xs:element name="method’ type=’xs:NCName’ minOccurs=’1"’
maxOccurs="unbounded’/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name=’compressed’ type=’empty’/>
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<xs:element name=’failure’>
<xs:complexType>
<xs:choice>
<xs:element name=’setup-failed’ type=’empty’/>
<xs:element name=’processing-failed’ type=’empty’/>
<xs:element name=’unsupported-method’ type=’empty’/>
<xs:sequence xmlns:err=’urn:ietf:params:xml:ns:xmpp-stanzas’>
<xs:group ref=’err:stanzaErrorGroup’/>
<xs:element ref=’err:text’ minOccurs=’0’/>
</xs:sequence>
</xs:choice>
</xs:complexType>
</xs:element>

<xs:simpleType name=’'empty’>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’’/>
</xs:restriction>
</xs:simpleType>

</xs:schema>
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