
XEP-0148: Instant Messaging Intelligence Quotient (IM IQ)

Peter Saint-Andre
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org

https://stpeter.im/

2022-11-03
Version 1.1

Status Type Short Name
Active Humorous iq-iq

This specification provides canonical documentation of the jabber:iq:iq namespace.

mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Concepts and Approach 1

3 Use Cases 1
3.1 Discover Another User’s IM IQ . 1
3.2 Discovering One’s Own IM IQ . 2
3.3 Messaging Hints . 3

4 Implementation Notes 4
4.1 Intelligence Levels . 4
4.2 Determination of IM IQ . 5
4.3 Analysis Methods . 5

5 Internationalization Considerations 6

6 Security Considerations 7

7 IANA Considerations 7

8 XMPP Registrar Considerations 7

9 XML Schema 7

3 USE CASES

1 Introduction
The early Jabber community was a hotbed of innovation and experimentation. Although the
community produced a large number of interesting protocols and technologies, not all of
them were widely adopted. For example, server-side message filtering (implemented in the
mod_filter module of the jabberd 1 server) was one promising technology that simply did
not scale up beyond a few hundred concurrent users. Another potentially helpful technology
(though even less well-known) was that of the ”Instant Messaging Intelligence Quotient”
(IM IQ) as defined by the ’jabber:iq:iq’ protocol. For the sake of historical completeness, this
specification provides canonical documentation of that protocol.

2 Concepts and Approach
It is a harsh reality of the modern Internet that plenty of stupid people have found their way
onto today’s communication networks (email, Usenet, IM, and the like). Because the early
Jabber developers were your typically elitist geeks (whose mantra seems to have been ”not
everyone can be as smart as we are”), they sought to shield themselves from the inevitable
emergence of dumb Jabber users.
At the same time, recognizing the wisdom of the age-old saying ”to err is human”, they
knew that even normally intelligent people sometimes say appallingly stupid things. In fact,
such normally intelligent people (well, okay, geniuses) might be the developers themselves!
Thus they sought to build protective measures into Jabber servers so that they could avoid
appearing dumb.
The early Jabber developers sought to achieve both of these objectives through the design of
server-side intelligence detection systems using dedicated protocol elements qualified by the
’jabber:iq:iq’ namespace. This protocol implements procedures for discovering, monitoring,
and getting feedback on the intelligence of one’s own instant messages, as well as that of
other users on the network. The ”IM IQ” of each user is determined by server-side parsing of
messages sent by all registered users of a server, using advanced linguistic analysis techniques
(as described under Implementation Notes below) enforced by the mod_iq jabberd module.

3 Use Cases
3.1 Discover Another User’s IM IQ
Before chatting with another user over the network or adding that user to one’s Jabber roster,
it can be helpful to get a sense of how intelligent or unintelligent that person is. This is done
by requesting the person’s IM IQ from that person’s server by sending an IQ get qualified by
the ’jabber:iq:iq’ namespace to the person’s bare JID (user@host) rather than full JID (similar

1The jabberd server is the original server implementation of the Jabber/XMPP protocols, first developed by
Jeremie Miller, inventor of Jabber. For further information, see <http://jabberd.org/>.

1

http://jabberd.org/
http://jabberd.org/

3 USE CASES

in this regard to the functionality of vcard-temp (XEP-0054) 2).

Listing 1: Requesting Someone’s IM IQ
<iq type=’get’

from=’kindanormal@example.com/IM’
to=’stupidnewbie@example.com’
id=’imiq1 ’>

<query xmlns=’jabber:iq:iq ’/>
</iq>

The server then returns the person’s IM IQ, expressed as a REQUIRED <num/> integer between
zero and 256, and an OPTIONAL <desc/> containing a natural-language descriptive phrase
associated with that range of integer values.

Listing 2: Receiving Someone’s IM IQ
<iq type=’result ’

from=’stupidnewbie@example.com’
to=’kindanormal@example.com/IM’
id=’imiq1 ’>

<query xmlns=’jabber:iq:iq ’>
<num>66</num>
<desc>moron </desc>

</query >
</iq>

3.2 Discovering One’s Own IM IQ
In order for a user to discover his or her own IM IQ, the user sends an IQ get without any ’to’
address.

Listing 3: Requesting One’s Own IM IQ
<iq type=’get’ id=’myiq’>

<query xmlns=’jabber:iq:iq ’/>
</iq>

Listing 4: Receiving One’s Own IM IQ
<iq type=’result ’ id=’myiq’>

<query xmlns=’jabber:iq:iq ’>
<num>83</num>
<desc>dull</desc>

</query >
</iq>

2XEP-0054: vcard-temp <https://xmpp.org/extensions/xep-0054.html>.

2

https://xmpp.org/extensions/xep-0054.html
https://xmpp.org/extensions/xep-0054.html

3 USE CASES

A user may not agree with his or her IM IQ as computed by the server (after all, everyone
thinks they are above average). Therefore it is possible that a user may attempt to change his
or her IM IQ by sending an IQ set to the server:

Listing 5: Attempting to Set One’s Own IM IQ
<iq type=’set’ id=’myiq’>

<query xmlns=’jabber:iq:iq ’>
<num>143</num>
<desc>genius </desc>

</query >
</iq>

However, allowing users to change their own IM IQs is unacceptable, since it would make
such information unreliable. Therefore, if a server receives such an IQ set, it MUST return a
<not-allowed/> error to the user, and MAY further decrement the user’s IM IQ as a result.

Listing 6: Server Returns Error to User on Attempted Set
<iq type=’error ’ id=’myiq’>

<query xmlns=’jabber:iq:iq ’>
<num>143</num>
<desc>genius </desc>

</query >
<error code=’405’ type=’cancel ’>

<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

3.3 Messaging Hints
Even smart people say stupid things, and we are all familiar with the experience of having
said something stupid (or just average) and realizing later that one could have said something
exceedingly clever. To prevent people from saying stupid things and to help users appear as
smart as possible, the mod_iq jabberd module provides hints to users regarding what to say
at a given point in a conversation, based on the advanced linguistic analysis technologies de-
scribed under Implementation Notes below. A user can ask for a hint by sending the complete
message to the server itself, wrapped in a <query/> element qualified by the ’jabber:iq:iq’
namespace. (While it may be argued that this functionality could be provided client-side,
thus saving a roundtrip, it is consistent with the Jabber philosophy of ”smart servers, dumb
clients” as explained in XMPP Design Guidelines (XEP-0134) 3.)

Listing 7: Requesting IM IQ Information

3XEP-0134: XMPP Design Guidelines <https://xmpp.org/extensions/xep-0134.html>.

3

https://xmpp.org/extensions/xep-0134.html
https://xmpp.org/extensions/xep-0134.html

4 IMPLEMENTATION NOTES

<iq type=’get’
from=’kindanormal@example.com/IM’
to=’example.com’
id=’hint1 ’>

<query xmlns=’jabber:iq:iq ’>
<message to=’stupidnewbie@example.com’>

<thread >some -thread -id</thread >
<body>d00d , u r dum -{}- RTFM , OK?</body>

</message >
</query >

</iq>

The server then determines amore intelligentmessage to send and returns the XML character
data of the <body/> element to the user in a <hint/> element.

Listing 8: Server Hints at a More Intelligent Message
<iq type=’result ’

from=’example.com’
to=’kindanormal@example.com/IM’
id=’hint1 ’>

<query xmlns=’jabber:iq:iq ’>
<hint>

I've heard that there's this thing called the Internet
, which

contains incredible amounts of helpful information. Have you
considered

using it?
</hint>

</query >
</iq>

Messages checked with the server before sending SHOULD NOT affect the user’s IM IQ
computation; however, the server MAY decrement the user’s IM IQ more significantly if the
user ends up sending the original message rather than the smarter one provided by the server.

4 Implementation Notes
4.1 Intelligence Levels
The mod_iq jabberd module uses somewhat out-of-date terminology for intelligence levels 4,
as shown in the following table.

4See, for example, D. Wechsler, The Measurement of Adult Intelligence (Baltimore: The Williams and Wilkins
Company), 1944.

4

4 IMPLEMENTATION NOTES

Number Range Descriptive Label
140+ genius
120-139 very superior
110-119 superior
90-109 normal
80-89 dull
70-79 borderline deficiency
50-69 moron
20-49 imbecile
0-19 idiot

While once common, these terms are now considered politically incorrect. However, please
note that this specification merely provides informational documentation of a protocol
historically used within the Jabber community, and is not intended to stereotype individuals
in any manner whatsoever. A given server implementation of the ’jabber:iq:iq’ protocol
MAY substitute more modern ranges and terminology if desired or leave out the descriptive
phrases entirely, and a given client implementation MAY rename or disguise the descriptive
phrases.
That said, it is true that many people on the Jabber network do act like morons, imbeciles, and
even idiots.

4.2 Determination of IM IQ
Using the methods described in the next section, the mod_iq jabberd module assigns and
dynamically updates a person’s IM IQ based on all the messages sent by the user. Upon
registration, each user is assigned a baseline IM IQ of 100 (”intelligent until proven an idiot”),
unless the user made errors in the registration process or chose an especially stupid password
(e.g., ”password”), in which case the initially assigned IM IQ could be as low as 70 (”borderline
deficiency”). In a manner similar to server-side ”karma” ratings, the IM IQ is then modified
dynamically based on the semantic value of the user’s outbound messages, up to a high of 256
or down to a low of zero (0).
IM IQ is determined based on a user’s actual message traffic only, not on other factors such
as inane presence status text or the contacts added to the user’s roster. While the latter
functionality might have been useful, it would violate the rule of not assigning guilt based on
association.

4.3 Analysis Methods
The mod_iq jabberd module makes use of several Analytical Language Engine (ALE) technolo-
gies for determining the intelligence of specific messages and thus also a user’s IM IQ (the

5

5 INTERNATIONALIZATION CONSIDERATIONS

average of all messages sent). These technologies include the following:

Phrasal Objectification of Realtime Threads (PORT) This is a parsing technique for break-
ing conversation threads into meaningful phrases, even across message boundaries.

Bayesian Estimation of Entropic Responses (BEER) Within information theory, entropy is
a measure of the rate of information transfer; this technique uses Bayesian estimation
methods to determine whether a given message imparts useful information or not.

Situational Analysis of Kladistic Evolution (SAKE) Kladistics (also spelled ”cladistics”),
from the Greek ”klados” (meaning ”branch”), is the study of grouping things into
branches that diverge from a common origin; it is used in biology to study descent from
a common ancestor, and also in the study of conversation threads to determine how a
conversation would evolve depending on things said (or messages sent) at any point in
the conversation flow.

Semantic Correlation and Observation of Truth in Conversation Handling (SCOTCH)
A person may seem intelligent to the casual observer, but his or her messages may
actually not provide deep insights or even track reality in a useful or consistent fashion;
this technique builds on early semantic web insights to determine the truth value of a
given message within the context of a realtime conversation.

Webs of Intelligent Network Endpoints (WINE) Any given person can engage in conversa-
tions with a large number of interlocutors, yet that person’s status as an intelligent net-
work endpoint is influenced by reputational factors across the full web of linguistic in-
teractions, not just with any one person; this technique accounts for such reputational
effects to paint a complete picture of the person’s perceived intelligence across the net-
work.

Naturally, because of the powerful and potentially unpredictable effects of these technologies,
development of mod_iq was restricted to senior developers on the jabberd team, or at least
(for developers in the U.S.) those over the age of 21. 5

5 Internationalization Considerations
The descriptive phrases for various intelligence levels SHOULD be localized based on the
user’s preferred language; however, if the server does not support the ’xml:lang’ attribute,
this localization MAY be performed by the client.

5SeeTitle 23, Chapter 1, Subchapter 1, Section 158 of theUnited States federal legal code as enacted by theNational
Minimum Drinking Age Act of 1984 <https://www.law.cornell.edu/uscode/text/23/158>.

6

https://www.law.cornell.edu/uscode/text/23/158

9 XML SCHEMA

6 Security Considerations
Most people become somewhat insecure when they realize that in fact they are not as smart
as they thought they were; for this reason, querying the server for one’s own IM IQ is NOT
RECOMMENDED on a regular basis.

7 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
6.

8 XMPP Registrar Considerations
The XMPP Registrar 7 shall include the ’jabber:iq:iq’ namespace in its registry of protocol
namespaces.

9 XML Schema

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’jabber:iq:iq ’
xmlns=’jabber:iq:iq ’
elementFormDefault=’qualified ’>

<xs:import namespace=’jabber:client ’/>

<xs:annotation >
<xs:documentation >

The protocol documented by this schema is defined in
XEP -0148: http://www.xmpp.org/extensions/xep -0148. html

</xs:documentation >
</xs:annotation >

<xs:element name=’query ’>

6The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

7The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

7

http://www.iana.org/
https://xmpp.org/registrar/
http://www.iana.org/
https://xmpp.org/registrar/

9 XML SCHEMA

<xs:complexType >
<xs:choice xmlns:jabber=’jabber:client ’>

<xs:sequence >
<xs:element name=’num’ type=’xs:byte ’/>
<xs:element name=’desc’ type=’xs:string ’ minOccurs=’0’/>

</xs:sequence >
<xs:element ref=’jabber:message ’/>
<xs:element name=’hint’ type=’xs:string ’/>

</xs:choice >
</xs:complexType >

</xs:element >

</xs:schema >

8

	Introduction
	Concepts and Approach
	Use Cases
	Discover Another User's IM IQ
	Discovering One's Own IM IQ
	Messaging Hints

	Implementation Notes
	Intelligence Levels
	Determination of IM IQ
	Analysis Methods

	Internationalization Considerations
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	XML Schema

