XVIPP

XEP-0158: CAPTCHA Forms

[an Paterson Peter Saint-Andre
mailto:ian.paterson@clientside.co.uk mailto:stpeter@stpeter.im
Xmpp: ian@zoofy.com Xmpp: stpeter@jabber.org

https://stpeter.im/

2019-11-07
Version 1.0.1

Status Type Short Name
Draft Standards Track captcha

This document specifies an XMPP protocol extension that entities may use to discover whether the
sender of an XML stanza is a human user or a robot.

mailto:ian.paterson@clientside.co.uk
xmpp:ian@zoofy.com
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/

Legal

Copyright

This XMPP Extension Protocol is copyright © 1999 - 2024 by the XMPP Standards Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
"Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https: //xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction

2 Requirements
2.1 Extensibility
22 Variety e e e e e

3 Protocol
3.1 SimpleChallenge.
3.1.1 TriggeringStanza e
3.1.2 ChallengeStanza
3.1.3 ResponseStanza i
3.14 ResultStanza
3.2 MultipleChallenges

4 Extended In-Band Registration
5 Multi-User Chat

6 Challenge Types
6.1 Introduction v it e e e
6.2 SHA-256Hashcash
6.3 CAPTCHAS . . . i e

7 Question and Answer for Legacy Clients
8 Discontinuation Policy

9 Internationalization Considerations

10 Security Considerations

11 IANA Considerations

12 XMPP Registrar Considerations
12.1 Protocol Namespaces v v v v v vt v it et e
12.2 Field Standardization
12.2.1 CAPTCHAFORM_TYPE i i
12.2.2 jabber:iqregister FORM_TYPE

13 XML Schema

14 Open Issues

N =

o NN NN NN

10

11

13
13
14
14

15

17

18

18

18

18
18
19
19
20

21

22

\J 2 REQUIREMENTS

1 Introduction

The appearance of large public IM services based on XMPP Core ! and XMPP IM ? makes it
desirable to implement protocols that discourage the sending of large quantities of instant
messaging spam (a.k.a. ”spim”) or, in general, abusive traffic. Abusive stanzas could be
generated by XMPP clients connected to legitimate servers or by XMPP servers with virtual
clients, where the malicious entities are hosted on networks of "zombie” machines. Such
abusive stanzas could take many forms; a full taxonomy is outside the scope of this document.
One technique developed to combat abusive messages and behavior via non-XMPP technolo-
gies requires humans to be differentiated from bots using a "Completely Automated Public Tur-
ing Test to Tell Computers and Humans Apart” or CAPTCHA (see <http: //www.captcha.net/>).
These challenge techniques are easily adapted to discourage XMPP abuse. The very occasional
inconvenience of responding to a CAPTCHA (e.g., when creating an IM account or sending
a message to a new correspondent) is small and perfectly acceptable -- especially when
compared to the countless robot-generated interruptions people might otherwise have to
filter every day.

An alternative technique to CAPTCHAs requires Desktop PC clients to undertake a Hashcash
3 challenge. These are completely transparent to PC users. They require clients to perform
specified CPU-intensive work, making it difficult to send large amounts of abusive traffic.
Both CAPTCHAs and hashcash have been criticized regarding their effectiveness (or lack
thereof). Therefore, the challenge protocol specified herein provides a great deal of flex-
ibility, so that challenges can include CAPTCHAs, hashcash, word puzzles, so-called kitten
authentication, and any other mechanism that may be developed in the future.

The generic challenge protocol described in this document is designed for incorporation into
protocols such as In-Band Registration (XEP-0077) *, Multi-User Chat (XEP-0045) °, Privacy
Lists (XEP-0016) ©, and SPIM-Blocking Control (XEP-0159) .

2 Requirements

2.1 Extensibility

The CAPTCHAS in most common use today are Optical Character Recognition (OCR) challenges
where an image containing deformed text is presented and the human enters the characters
they can read. However, if OCR software advances more rapidly than the techniques used to
disguise text from Artificial Intelligence (AI) then very different CAPTCHAs will need to be
deployed. This protocol must be extensible enough to allow the incorporation of CAPTCHA

'RFC 6120: Extensible Messaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.

’RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc6121>.

Hashcash <http://hashcash.org/>.

“XEP-0077: In-Band Registration <https://xmpp.org/extensions/xep-0077.html>.

>XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>,

®XEP-0016: Privacy Lists <https://xmpp.org/extensions/xep-0016.html>,

7XEP-0159: SPIM-Blocking Control <https: //xmpp.org/extensions/xep-0159.html>,

http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6121
http://www.captcha.net/
https://xmpp.org/extensions/xep-0077.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0016.html
https://xmpp.org/extensions/xep-0016.html
https://xmpp.org/extensions/xep-0159.html
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121
http://hashcash.org/
https://xmpp.org/extensions/xep-0077.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0016.html
https://xmpp.org/extensions/xep-0159.html

/'3 PROTOCOL

techniques that may not have been envisaged.

2.2 Variety

Several common CAPTCHA techniques present major problems to users with disabilities
(see Inaccessibility of Visually-Oriented Anti-Robot Tests 8). Clients running in constrained
environments may not be able to perform some challenges (e.g., due to the absence of audio
output or a lack of CPU performance). This protocol must allow clients to be offered a choice
from a variety of challenges.

3 Protocol

3.1 Simple Challenge
3.1.1 Triggering Stanza

A "triggering stanza” is an XMPP <message/>, <presence/>, or <iq/> stanza that is deemed
abusive by the receiving entity (e.g., a client) or an intermediate router (e.g., a server). The
entity that generates a triggering stanza is called a "sender”.

Listing 1: Sender Generates Triggering Stanza

<message from=’robot@abuser.com/zombie’
to="1innocent@victim.com’
xml:lang="en’
id=’spaml’>
<body>Love pills - 75% OFF</body>
<x xmlns=’jabber:x:oob’>
<url>http://www.abuser.com/lovepills.html</url>
</ x>
</message>

3.1.2 Challenge Stanza

Upon receiving a triggering stanza, an entity MAY send a "challenge stanza”. An entity MUST
NOT send a challenge stanza under any other circumstances. The entity that generates the
challenge stanza is called the "challenger”.

The challenge stanza consists of an XMPP <message/> stanza containing a data form for the
sender to fill out, formatted according to Data Forms (XEP-0004) °, optionally along with a
<body/> and other elements. The following rules apply to the challenge stanza.

8Inaccessibility of Visually-Oriented Anti-Robot Tests <http: //www.w3.org/TR/turingtest/>.
“XEP-0004: Data Forms <https://xmpp.org/extensions/xep-0004.html>

http://www.w3.org/TR/turingtest/
https://xmpp.org/extensions/xep-0004.html
http://www.w3.org/TR/turingtest/
https://xmpp.org/extensions/xep-0004.html

3

PROTOCOL

10.

11.

The challenge stanza MUST include an ’id’ attribute set to the challenge ID (i.e., a unique
identifier for this challenge within the challenger’s application).

The challenge stanza SHOULD include a <body/> element that provides an explanation
of the challenge for clients that do not yet support CAPTCHA forms.

The challenge stanza MAY include a URL (typically a Web page with instructions) us-
ing Out-of-Band Data (XEP-0066) '° as an alternative for clients that do not yet support
CAPTCHA forms.

The 'xml:lang’ attribute of the challenge stanza SHOULD be the same as the one received
from the sender, if any.

The challenge stanza MUST include a CAPTCHA form, i.e., a data form of type "form”
containing one or more challenges. !

The CAPTCHA form MUST include a hidden field named "FORM_TYPE” (in accor-
dance with Field Standardization for Data Forms (XEP-0068) '2) whose value MUST be
“urn:xmpp:captcha”.

The CAPTCHA form MUST include a hidden field named "challenge” set to the challenge
ID.

The CAPTCHA form MUST include a hidden field named "from” set to the value of the
'to’ attribute from the triggering stanza.

If the triggering stanza included an ’id” attribute, then the CAPTCHA form MUST include
a hidden field named ”sid” set to that value.

Each of the CAPTCHA form’s non-hidden <field/> elements MAY contain a different chal-
lenge.

Each CAPTCHA field MAY contain a media element (see Data Forms Media Element (XEP-
0221) 13) that in turn contains a pointer to media that the sender shall use in solving
puzzles, performing optical character recognition, identifying audio or video samples,
etc. When the sender replies to a media element via a data form of type "submit”, the
field type SHOULD be "text-single” (which is the default for data form fields) but MAY
in turn include a media element if acceptable to the challenger application.

Listing 2: Challenger Offers a Choice of Challenges to Sender

<message from=’victim.com’

1OXEP-0066: Out of Band Data <https://xmpp.org/extensions/xep-0066.html>

"nclusion of a CAPTCHA form not only makes it possible to flexibly support or require a large number of challenge
types, but also enables constrained clients to respond to challenges (e.g., mobile phone clients that cannot
present web pages, or clients on XMPP-only networks).

12XEP-0068: Field Data Standardization for Data Forms <https: //xmpp.org/extensions/xep-0068.html>,

B3XEP-0221: Data Forms Media Element <https://xmpp.org/extensions/xep-0221.html>,

https://xmpp.org/extensions/xep-0066.html
https://xmpp.org/extensions/xep-0068.html
https://xmpp.org/extensions/xep-0221.html
https://xmpp.org/extensions/xep-0221.html
https://xmpp.org/extensions/xep-0066.html
https://xmpp.org/extensions/xep-0068.html
https://xmpp.org/extensions/xep-0221.html

/'3 PROTOCOL

to=’robot@abuser.com/zombie’
xml:lang="en’
id="F3A6292C’ >
<body>
Your messages to innocent@victim.com are being blocked. To unblock
them, visit http://www.victim.com/challenge.html?F3A6292C
</body>
<x xmlns=’jabber:x:o00b’>
<url>http://www.victim.com/challenge.html?F3A6292C</url>
</ x>
<captcha xmlns=’urn:xmpp:captcha’>
<x xmlns=’jabber:x:data’ type=’form’>
<field type=’hidden’ var=’FORM_TYPE’>
<value>urn:xmpp:captcha</value>
</field>
<field type=’hidden’ var=’from’><value>innocent@victim.com</
value></field>
<field type=’hidden’ var=’challenge’><value>F3A6292C</value></
field>
<field type=’hidden’ var=’sid’><value>spaml</value></field>
<field var=’ocr’ label="Enter_the_text_you_see’>
<media xmlns=’urn:xmpp:media-element’
height="80"
width="290’>
<uri type=’image/jpeg’>
http://www.victim.com/challenges/ocr. jpeg?F3A6292C
</uri>
<uri type=’image/jpeg’>
cid:shal1+f24030b8d91d233bac14777be5ab531ca3b9f102@bob . xmpp
.org
</uri>
</media>
</field>
<field var=’picture_recog’ label=’Identify_the_picture’>
<media xmlns=’urn:xmpp:media-element’
height='150"
width="150">
<uri type=’image/jpeg’>
http://www.victim.com/challenges/picture. jpeg?F3A6292C
</uri>
<uri type=’image/jpeg’>
cid:shal+f2377f3a3287eac81028243079%9e1aa9905c466bc@bob . xmpp
.org
</uri>
</media>
</field>
<field var=’speech_recog’ label="Enter_the_words_you_hear’>
<media xmlns=’urn:xmpp:media-element’>
<uri type=’audio/x-wav’>

/'3 PROTOCOL

http://www.victim.com/challenges/speech.wav?F3A6292C
</uri>
<uri type=’audio/ogg-speex’>
http://www.victim.com/challenges/speech.ogg?F3A6292C
</uri>
</media>
</field>
<field var=’video_recog’ label=’Identity_the_video’>
<media xmlns=’urn:xmpp:media-element’
height="150"
width="150">
<uri type=’video/mpeg’>
http://www.victim.com/challenges/video.mpeg?F3A6292C
</uri>
</media>
</field>
<field label=’Type_the_color_of_a_stop_light’ type=’text-single’
var=’qa’/>
<field label=?93C7A’ type=’text-single’ var=’SHA-256’/>
</ x>
</captcha>
</message>

The sender then would retrieve the media data via HTTP or (for the cid: URIs) via XMPP as
described in Bits of Binary (XEP-0231) .

3.1.3 Response Stanza

The sender’s client SHOULD ignore the challenge stanza in either of the following cases:

« If it has not recently sent (e.g., in the last two minutes) a stanza to the JID specified in
the "from’ field of the form with the ’id’ specified in the ’sid’ field (or with no ’id’ if no
’sid’ field is included). 1

o If the 'from’ attribute of the challenge stanza does not match the 'from’ field of the form.
(If the values are different, then they still match if the bare JIDs are the same, or if the
"from’ attribute is the domain of the other JID.)

Otherwise, if the challenger provided a URL using Out-of-Band Data, then the sender’s client
MAY present the URL to the sender, instead of responding to the CAPTCHA form, in any of the
following cases:

14XEP—0231:BitsofBinary<https://xmpp.org/extensions/xep—0231.htm1>.
Botherwise the user’s presence would be disclosed, or a robot might dupe the user into providing answers to other
people’s challenges!

https://xmpp.org/extensions/xep-0231.html
https://xmpp.org/extensions/xep-0231.html

/'3 PROTOCOL

« if it does not understand the CAPTCHA form
- if it does not support all of the required challenges (see Multiple Challenges)

« if it does not support enough of the challenges (see Multiple Challenges)

Otherwise, the sender’s client MUST respond to the challenge.
The sender’s client MUST respond with a <not-acceptable/> error in any of the following cases:

« if it does not support all of the required challenges (see Multiple Challenges)
« if it does not support enough of the challenges (see Multiple Challenges)

« if the sender declines the challenge

Listing 3: Sender Reports Challenge Not Acceptable

<message type='error’
from=’robot@abuser.com/zombie’
to=’victim.com’
xml:lang="en’
id="F3A6292C’>
<error type=’modify’>
<not-acceptable xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/>
</error>
</message>

Otherwise, it MUST select one challenge according to the sender’s preferences and submit the
sender’s response form to the challenger.

Listing 4: Sender Sends One Response to Challenger

<ig type=’set’
from="robot@abuser.com/zombie’
to="victim.com’
xml:lang="en’
id=’z140r0s’>
<captcha xmlns=’urn:xmpp:captcha’>
<x xmlns=’jabber:x:data’ type=’submit’>
<field var=’FORM_TYPE’>
<value>urn:xmpp:captcha</value>
</field>
<field var=’from’><value>innocent@victim.com</value></field>
<field var=’challenge’><value>F3A6292C</value></field>
<field var=’sid’><value>spaml</value></field>
<field var=’ocr’><value>7nHL3</value></field>
</ x>
</captcha>
</ig>

/'3 PROTOCOL

3.1.4 Result Stanza

The challenger SHOULD send a <service-unavailable/> error to the sender if:

+ The challenger did not send the specified challenge. 1°
« The sender already submitted its response to this challenge.
« The sender took too long to submit its response.

Note: This error MAY be sent even in cases where the challenge became unnecessary while
the challenger was waiting for the response.

Listing 5: Challenger Indicates Challenge Not Found

<ig type=’error’
from=’victim.com’
to=’robot@abuser.com/zombie’
id=’z140r0s’>
<error type=’cancel’>
<service-unavailable xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/>
</error>
</iqg>

After receiving a correct response to its challenge, the challenger SHOULD inform the sender
that it was successful.

Listing 6: Challenger Tells Sender it Passed

<iq type=’'result’
from=’victim.com’
to="robot@abuser.com/zombie’
id=’z140r0s’ />

However, if the sender submits an incorrect response the challenger SHOULD send it a
<not-acceptable/> error with type "cancel”: '’

Listing 7: Challenger Tells Sender it Failed

<ig type=’error’
from=’victim.com’

'$1f the challenger is a client then it SHOULD be careful not to leak information about the presence of the sender
and reply to potentially bogus challenge responses with exactly the same XML that its server would send if the
sender were offline.

'71f a large proportion of the responses a server is receiving from another IP are incorrect then it SHOULD inform
the administrator of the other server using the protocol specified in Abuse Reporting (XEP-0161) '® or Abuse
Reporting (XEP-0236) *°. It SHOULD also automatically block all stanzas from the abusive user, users, server or
IP.

https://xmpp.org/extensions/xep-0161.html
https://xmpp.org/extensions/xep-0236.html
https://xmpp.org/extensions/xep-0236.html

/'3 PROTOCOL

to=’robot@abuser.com/zombie’
id=’z140r0s’>
<error type=’cancel’>
<not-acceptable xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/>
</error>
</iqg>

3.2 Multiple Challenges

The challenger MAY demand responses to more than one of the challenges it is offering;
this is done by including an ’answers’ <field/> element in the form, which specifies how
many answers the sender needs to include. The challenger also MAY require responses to
particular challenges; this is done by including a <required/> element in the compulsory fields.

Listing 8: Challenger Sets Multiple Challenges

<message from=’victim.com’
to="robot@abuser.com/zombie’
xml:lang="en’
id="73DE28A2’ >
<body>Your messages to innocent@victim.com are being blocked.
To unblock them, ask innocent@victim.com to send you a message.</
body>
<captcha xmlns=’urn:xmpp:captcha’>
<x xmlns=’jabber:x:data’ type=’form’>
<field type=’hidden’ var=’FORM_TYPE’>
<value>urn:xmpp:captcha</value>
</field>
<field type=’hidden’ var=’from’><value>innocent@victim.com</
value></field>
<field type=’hidden’ var=’challenge’><value>73DE28A2</value></
field>
<field type=’hidden’ var=’sid’><value>spam2</value></field>
<field type=’hidden’ var=’answers’><value>2</value></field>
<field var=’ocr’ label="Enter_the_text_you_see’>
<media xmlns=’urn:xmpp:media-element’
height="80"
width="290">
<uri type=’'image/jpeg’>
http://www.victim.com/challenges/ocr. jpeg?F3A6292C
</uri>
<uri type=’image/jpeg’>
cid:shal1+f24030b8d91d233bac14777be5ab531ca3b9f102@bob . xmpp
.org
</uri>
</media>
</field>
<field var=’audio_recog’ label=’Describe_the_sound_you_hear’>

/'3 PROTOCOL

<media xmlns=’urn:xmpp:media-element’>
<uri type=’audio/x-wav’>
http://www.victim.com/challenges/audio.wav?F3A6292C
</uri>
</media>
</field>
<field label=’Type_.the_color_of_a_stop_.light’ type=’text-single’
var=’qa’>
<required/>
</field>
<field label=’e03d7’ type=’text-single’ var=’SHA-256’/>
</ x>
</captcha>
</message>

If the sender finds the request acceptable, it MUST answer all challenges that include a
<required/> element. If the total number of answers was specified and it is greater than
the number of <required/> elements then the sender MUST also answer one or more
of the challenges without a <required/> element. In the example above, the sender should
respond to the qa’ challenge and one of the other challenges ('ocr’, ’audio_recog’ or 'SHA-256’).

Listing 9: Sender Sends Multiple Responses to the Challenger

<ig type=’set’

from="robot@abuser.com/zombie’

to="victim.com’

xml:lang="en’

id="73DE28A2’ >

<captcha xmlns=’urn:xmpp:captcha’>

<x xmlns=’jabber:x:data’ type=’submit’>

<field var=’FORM_TYPE’>
<value>urn:xmpp:captcha</value>
</field>
<field var=’from’><value>innocent@victim.com</value></field>
<field var=’challenge’><value>73DE28A2</value></field>
<field var=’sid’><value>spam2</value></field>
<field var=’answers’><value>2</value></field>
<field var=’qga’><value>red</value></field>
<field var=’SHA-256’><value>innocent@victim.com2450F06C173BO5E3<
/value></field>
</ x>
</captcha>
</iqg>

The challenger MAY decide the sender has passed a challenge even if the responses are not all
perfectly correct.

\/ 4 EXTENDED IN-BAND REGISTRATION

4 Extended In-Band Registration

This section shows how challenges SHOULD be combined with the existing In-Band Registra-
tion protocol according to the rules defined in the Extensibility section of In-Band Registration
(XEP-0077) .

Note: The <challenge/> wrapper element is not included, because In-Band Registration (XEP-
0077) ! specifies that data forms shall be contained as the direct children of the <query/>
element.

Listing 10: Entity Requests Registration Fields from Host

<iq type=’'get’ xml:lang=’en’ id=’regl’>
<query xmlns=’jabber:iq:register’/>
</ig>

Note that the CAPTCHA form MUST be inside the <query/> element, and the server’s challenge
ID is specified within the form:

Listing 11: Host Returns Registration and Challenge Fields to Entity

<iq type=’'result’ xml:lang=’en’ id=’regl’>
<query xmlns=’jabber:iq:register’>
<x xmlns=’jabber:x:data’ type=’form’>
<field type=’hidden’ var=’FORM_TYPE’>
<value>jabber:iq:register</value>
</field>
<field type=’hidden’ var=’challenge’><value>F3A6292C</value></
field>
<field type=’hidden’ var=’sid’><value>regli</value></field>
<field type=’hidden’ var=’answers’><value>3</value></field>
<field var=’ocr’ label="Enter_the_text_you_see’>
<media xmlns=’urn:xmpp:media-element’
height="80’
width="290">
<uri type=’image/jpeg’>
http://www.victim.com/challenges/ocr. jpeg?F3A6292C
</uri>
</media>
</field>
<field label=’93C7A’ type=’text-single’ var=’SHA-256"/>
<field type=’text-single’ var=’username’>
<required/>
</field>
<field type=’text-private’ var=’password’>
<required/>
</field>

“XEP-0077: In-Band Registration <https: //xmpp.org/extensions/xep-0077.html>
*IXEP-0077: In-Band Registration <https://xmpp.org/extensions/xep-0077.html>.

10

https://xmpp.org/extensions/xep-0077.html
https://xmpp.org/extensions/xep-0077.html
https://xmpp.org/extensions/xep-0077.html
https://xmpp.org/extensions/xep-0077.html
https://xmpp.org/extensions/xep-0077.html
https://xmpp.org/extensions/xep-0077.html

/5 MULTI-USER CHAT

</ x>

<instructions>
To register, visit http://www.victim.com/register.html

</instructions>

<x xmlns=’jabber:x:o00b’>
<url>http://www.victim.com/register.html</url>

</ x>

</query>
</ig>

The server MAY include an <instructions/> element and a URL using Out-of-Band Data (e.g.,
a web page) in the <query/> element (see example above). In-Band Registration recommends
that the challenger SHOULD submit the completed x:data form, however if it does not under-
stand the form, then it MAY present the instructions and the included URL to the user instead
of providing the required information in-band.

Listing 12: Entity Provides Required Information In-Band

<iq type=’set’ xml:lang=’en’ id=’reg2’>
<query xmlns=’jabber:iq:register’>
<x xmlns=’jabber:x:data’ type=’submit’>
<field var=’FORM_TYPE’>
<value>jabber:iq:register</value>
</field>
<field var=’challenge’><value>F3A6292C</value></field>
<field var=’sid’><value>regl</value></field>
<field var=’answers’><value>3</value></field>
<field var=’ocr’><value>7nHL3</value></field>
<field var=’username’><value>bill</value></field>
<field var=’password’><value>Calliope</value></field>
</ x>
</query>
</ig>

5 Multi-User Chat

A service that hosts multi-user chat rooms in accordance with Multi-User Chat (XEP-0045) 2
MAY challenge unknown entities that seek to join such rooms or that send messages in such
rooms.

Listing 13: Sender Attempts to Join Chat Room

<presence from=’robot@abuser.com/zombie’
to="friendly-chat@muc.victim.com/robot101’>
<x xmlns=’http://jabber.org/protocol/muc’/>

22X EP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>,

11

https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html

/5 MULTI-USER CHAT

‘</presence>

Listing 14: Challenger Offers a Choice of Challenges to Sender

<message from=’friendly-chat@muc.victim.com’
to="robot@abuser.com/zombie’
id="A4C7303D’ >
<body>
Your messages to friendly-chat@muc.victim.com are being blocked.
To unblock
them, visit http://www.victim.com/challenge.html?A4C7303D
</body>
<x xmlns=’jabber:x:oo0b’>
<url>http://www.victim.com/challenge.html?A4C7303D</url>
</ x>
<captcha xmlns=’urn:xmpp:captcha’>
<x xmlns=’jabber:x:data’ type=’form’>
<field type=’hidden’ var=’FORM_TYPE’>
<value>urn:xmpp:captcha</value>
</field>
<field type=’hidden’ var=’from’><value>friendly-chat@muc.victim.
com</value></field>
<field type=’hidden’ var=’challenge’><value>A4C7303D</value></
field>
<field var=’ocr’ label="Enter_the_text_you_see’>
<media xmlns=’urn:xmpp:media-element’
height="80"
width="290’>
<uri type=’image/jpeg’>
http://www.victim.com/challenges/ocr. jpeg?A4C7303D
</uri>
</media>
</field>
<field var=’picture_recog’ label=’Identify_the_picture’>
<media xmlns=’urn:xmpp:media-element’
height="150"
width="150">
<uri type=’image/jpeg’>
http://www.victim.com/challenges/picture. jpeg?A4C7303D
</uri>
<uri type=’image/jpeg’>
cid:shal+f2377f3a3287eac81028243079e1aa9905c466bc@bob . xmpp
.org
</uri>
</media>
</field>
<field var=’speech_recog’ label="Enter_the_words._you_hear’>
<media xmlns=’urn:xmpp:media-element’>
<uri type=’audio/x-wav’>
http://www.victim.com/challenges/speech.wav?A4C7303D

12

\/ 6 CHALLENGE TYPES

</uri>
<uri type=’audio/ogg-speex’>
http://www.victim.com/challenges/speech.ogg?A4C7303D
</uri>
</media>
</field>
<field var=’video_recog’ label=’Identity_the_video’>
<media xmlns=’urn:xmpp:media-element’
height="150"
width="150">
<uri type=’video/mpeg’>
http://www.victim.com/challenges/video.mpeg?A4C7303D
</uri>
</media>
</field>
<field label=’Type_the_color_of_a_stop_light’ type=’text-single’
var=’'qa’/>
<field label=?93C7A’ type=’text-single’ var=’SHA-256’/>
</x>
</captcha>
</message>

6 Challenge Types

6.1 Introduction

Entities MUST address the needs of disabled people and CPU-constrained clients by offering
senders a reasonable choice of different types of challenges.

Desktop clients running on modern PCs will typically be configured to automatically perform
a specified 'SHA-256" Hashcash challenge (see below) whenever it is below a certain level of
difficulty, with the result that many people may not even notice challenges most of the time.
However, people using CPU-constrained clients (e.g. Web or mobile clients) would notice the
performance hit. They might prefer to take a CAPTCHA challenge instead.

Visually disabled people using a CPU-constrained client could configure their client to always
present them with an audio CAPTCHA challenge.

Most of the challenges below are language sensitive. However, the evaluation of the OCR and
Hashcash responses does not depend on the language the sender is using.

Challenge types are distinguished by the 'var’ attribute of each <field/> element. Several
types of challenges are described below. More challenges MAY be documented elsewhere and
registered with the XMPP Registrar (see Field Standardization).

» A CPU-constrained client could ask a faster computer (e.g., its server) to perform a Hashcash challenge for it.

13

\/ 6 CHALLENGE TYPES

6.2 SHA-256 Hashcash

The SHA-256 Hashcash challenge is transparent to average PC users. It is indicated when
the value of the 'var’ attribute is 'SHA-256’. It forces clients to perform CPU-intensive work,
making it difficult to send large amounts of abusive traffic. This significantly reduces abusive
traffic, but alone it will not completely stop abusive stanzas from being sent through large
collections of 'zombie’ computers. 2*

The challenger MUST set the ’label’ attribute of the <field/> element to a hexadecimal random
number containing a configured number of bits (e.g., 220 < label < 221).

To pass the test, the sender MUST return a text string that starts with the JID the sender sent
the first stanza to (i.e., the stanza that triggered the challenge). The least significant bits of
the SHA-256 hash (see SHA ?) of the string MUST equal the hexadecimal value specified by
the challenger (in the ’label’ attribute of the <field/> element). For example, if the ’label’
attribute is the 20-bit value ’e03d7’ then the following string would be correct:

innocent@victim.com2450F06C173BO5E3

Note: When configuring the number of bits to be specified by a challenger in the ’label’
attribute values, administrators MUST balance the need to make mass abuse as difficult
as possible, with the inconvenience that may be caused to the users of less powerful com-
puters. (Most clients will be challenged only very occasionally, so the consumption of 70%
of a typical desktop CPU for 4 seconds might be considered appropriate.) Administrators
SHOULD increment the configured number of bits from time to time to match increases in
the performance of typical desktop PCs. If an administrator notices that abusive robots never
attempt the Hashcash challenge, then he SHOULD consider reducing the number of bits, to
avoid inconveniencing people unnecessarily.

6.3 CAPTCHAs

Note: It may be profitable to send abusive stanzas even if less than one percent of CAPTCHA
responses are successful. The effectiveness of a CAPTCHA challenge needs to be close to
perfect, unless it is used in combination with other anti-abuse techniques.

If a media type is specified (see table below) then the <field/> element MUST contain a <me-
dia/> element that includes a <uri/> element of that type. Clients that support the CAPTCHA
type MUST be able to play or render the specified MIME-types (see table below). They MAY
also support other formats. 2

**The hope is that the extra CPU usage will often be noticed by the owners of the zombie machines, who will be
more likely to fix them.

»Secure Hash Standard: Federal Information Processing Standards Publication 180-2 <http://csrc.nist.gov/p
ublications/fips/fips180-2/fips186-2withchangenotice.pdf>.

* Audio CAPTCHAs typically require challengers to provide at least the "audio/x-wav’ MIME-type (with the PCM
codec) because more efficient patent-free formats are often not supported by constrained clients. It is RECOM-
MENDED that challengers provide more compact formats (like Ogg Speex or MP3) too.

14

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

\J 7 QUESTION AND ANSWER FOR LEGACY CLIENTS

The ’type’ attribute of the <field/> element SHOULD be ’text-single’, "text-private’, or "text-
multi’ (if no 'type’ is specified, the default is text-single’). 2 The response MUST be provided
in the language specified by the 'xml:lang’ attribute of the challenge stanza.

'var’ Name Media type MIME-type Suggested
generic instruc-
tions *
audio_recog Audio Recogni- audio audio/x-wav Describe the
tion sound you hear
ocr ** Optical Charac- image image/jpeg Enter the text
ter Recognition you see
picture_q Picture Ques- image image/jpeg Answer the
tion question you
see
picture_recog Picture Recogni- image image/jpeg Identify the pic-
tion ture
qa Text Question - - -
and Answer
speech_q Speech Question audio audio/x-wav Answer the
question you
hear
speech_recog Speech Recogni- audio audio/x-wav Enter the words
tion you hear
video_q Video Question video video/mpeg Answer the
question in the
video
video_recog ~ Video Recogni- video video/mpeg Identify the
tion video

* See the Internationalization Considerations section of this document.

* The image portrays random characters that humans can read but OCR software cannot.
28 To pass the challenge, the sender must simply type the characters. The correct answer
SHOULD NOT depend on the language specified by the "xml:lang’ attribute of the challenge
stanza.

7 Question and Answer for Legacy Clients

A challenger MAY provide a text question in the <body/> element of a challenge stanza for
clients that do not support CAPTCHA forms. Entities that cannot serve Out-of-Band Data URLs

“The "boolean’ and "list-single’ field types would make it trivial for a robot to provide a correct response at least
some of the time.
See PWNtcha <http://sam.zoy.org/pwntcha/> for some example OCR CAPTCHA images.

15

http://sam.zoy.org/pwntcha/

\J 7 QUESTION AND ANSWER FOR LEGACY CLIENTS

MAY use this option to challenge legacy clients.

Note: Robots always attempt the easiest challenge they are offered. So the question MUST be
at least as difficult for a robot as the CAPTCHA form.

Note: Even if it provides a text question in the <body/> element, a challenger MUST always
provide a CAPTCHA form.

Listing 15: Challenger Includes a Legacy Challenge

<message from=’innocent@victim.com/pda’
to="robot@abuser.com/zombie’
xml:lang="en’
id="F3A6292C’>
<body>Your messages to me are being blocked. To unblock them,
reply with the color of a stop light followed by ’*F3A6292C’.</body
>
<captcha xmlns=’urn:xmpp:captcha’>
<x xmlns=’jabber:x:data’ type=’form’>
<field type=’hidden’ var=’FORM_TYPE’>
<value>urn:xmpp:captcha</value>
</field>
<field type=’hidden’ var=’from’><value>innocent@victim.com</
value></field>
<field type=’hidden’ var=’challenge’><value>F3A6292C</value></
field>
<field type=’hidden’ var=’sid’><value>spaml</value></field>
<field label=’Type._.the_color_of_a_stop_.light’ type=’text-single’
var=’qa’/>
<field label=’93C7A’ type=’text-single’ var=’SHA-256"/>
</ x>
</captcha>
</message>

Legacy clients respond to the challenger using a <message/> stanza (not an <iq/>).

Listing 16: Legacy Sender Responds

<message from=’robot@abuser.com/zombie’ to=’innocent@victim.com/pda’>
<body>red F3A6292C</body>
</message>

The challenger SHOULD treat the stanza as a normal message (instead of as a response to its
challenge) if the legacy client either takes too long to submit it or has already responded to
the challenge. The challenger MAY treat the response as a normal message even in cases
where the challenge became unnecessary while the challenger was waiting for the response.
Otherwise the challenger MUST report the result of the challenge to the legacy client using a
<message/> stanza (not an <iq/>).

16

/'8 DISCONTINUATION POLICY

Listing 17: Challenger Tells Legacy Sender it Passed

<message from=’innocent@victim.com/pda’ to=’robot@abuser.com/zombie’>
<body>Your message was delivered. Your messages
to me are no longer being blocked.</body>
</message>

Listing 18: Challenger Tells Legacy Sender it Failed

<message type=’error’
from="innocent@victim.com/pda’
to="robot@abuser.com/zombie’>
<error type=’cancel’>
<not-acceptable xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/>
<text xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’>
Your message to me was not delivered.
</text>
</error>
</message>

8 Discontinuation Policy

It is RECOMMENDED that entities employ other techniques to combat abusive stanzas in
addition to those described in this document (e.g., see Abuse Reporting (XEP-0161) % and Best
Practices to Discourage Denial of Service Attacks (XEP-0205) *°).

It is expected that this protocol will be an important and successful tool for discouraging
abusive traffic. However, much of its success is dependent on the quality of the CAPTCHAs
and other puzzles employed by a particular implementation.

The administrator of an application that functions as a challenger SHOULD discontinue the
use of CAPTCHA forms under the following circumstances:

« Ifherealises that the challenger’s challenges are largely ineffective in combating abusive
traffic, and that the reduction in abuse does not compensate for the inconvenience to
humans of responding to the challenger’s challenges.

« If other, more transparent, techniques being employed by the challenger are so successful
that challenges are offering only negligible additional protection against abusive traffic.

« If the challenger needs no protection at all because it receives only a negligible amount
of abusive traffic.

¥XEP-0161: Abuse Reporting <https://xmpp.org/extensions/xep-0161.html>,
SOXEP-0205: Best Practices to Discourage Denial of Service Attacks <https://xmpp.org/extensions/xep-0205.h
tml>,

17

https://xmpp.org/extensions/xep-0161.html
https://xmpp.org/extensions/xep-0205.html
https://xmpp.org/extensions/xep-0205.html
https://xmpp.org/extensions/xep-0161.html
https://xmpp.org/extensions/xep-0205.html
https://xmpp.org/extensions/xep-0205.html

\/ 12 XMPP REGISTRAR CONSIDERATIONS

9 Internationalization Considerations

Each form field SHOULD include a "label’ attribute. If the sender did not include an 'xml:lang’
attribute, then the challenger may not know the correct language for the labels. Therefore,
depending on user preferences, the client that receives a challenge MAY present generic but
localized text instead of label text that would not be understood by the user. Suggested generic
text (to be suitably localized) is provided by Table 1 in the CAPTCHASs section of this document.

10 Security Considerations

The use of CAPTCHAs is not a panacea, and should be combined with other anti-abuse
mechanisms, such as those described in Abuse Reporting (XEP-0161) 3! and XEP-0205. For
example, the task of finding solutions to CAPTCHAs and other computational puzzles is
becoming easier for computer programs, and in any case can be farmed out to third parties.
Therefore challengers should limit the number of triggering stanzas (e.g., registration at-
tempts, subscription requests, or chatroom joins) allowed per JabberID or IP address during
any given time period, and may simply refuse repeated stanzas by terminating an XML
stream with a <policy-violation/> stream error or returning a <not-acceptable/> stanza error
as appropriate. In addition, a challenger should feel free to deploy additional anti-abuse
mechanisms as needed.

11 IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
32

12 XMPP Registrar Considerations

12.1 Protocol Namespaces

The XMPP Registrar 3* includes "urn:xmpp:captcha” in its registry of protocol namespaces
(see <https://xmpp.org/registrar/namespaces.html>).

*IXEP-0161: Abuse Reporting <https://xmpp.org/extensions/xep-0161.html>.

*>The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

»The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

18

https://xmpp.org/extensions/xep-0161.html
http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/registrar/namespaces.html
https://xmpp.org/extensions/xep-0161.html
http://www.iana.org/
https://xmpp.org/registrar/

\/ 12 XMPP REGISTRAR CONSIDERATIONS

12.2 Field Standardization
12.2.1 CAPTCHA FORM_TYPE

The XMPP Registrar registers following FORM_TYPE. Additional fields might be defined in
future submissions.

<form_type>
<name>urn:xmpp:captcha</name>
<doc>XEP-0158</doc>
<desc>Forms enabling the use of CAPTCHAs.</desc>
<field
var=’answers’
type="hidden’
label="number_of_answers_required’/>
<field
var="audio_recog’
type=’text-single’
label="text_associated_with_a_sound’/>
<field
var="challenge’
type="hidden’
label="challenge_ID’/>
<field
var=’from’
type="hidden’
label="to_attribute_of_stanza_that_triggered_challenge’/>
<field
var=’ocr’
type=’text-single’
label="code_appearing_in_an_image’/>
<field
var="picture_q’
type=’text-single’
label="answer_associated_with_a_picture’/>
<field
var=’picture_recog’
type=’text-single’
label="text_associated_with_a_picture’/>
<field
var='qa’
type=’text-single’
label="answer_to._a_question’/>
<field
var=’SHA-256"
type=’text-single’
label="1least._significant_bits_of_SHA-256_hash_of_text_should.
equal _hexadecimal_label’/>
<field

19

\/ 12 XMPP REGISTRAR CONSIDERATIONS

var="sid’

type=’hidden’

label="stanza_ID’/>
<field

var='speech_q’

type=’text-single’

label="answer_associated_with_speech’/>
<field

var='speech_recog’

type=’text-single’

label="text_associated_with_speech’/>
<field

var=’video_q’

type=’text-single’

label="answer_associated_with_a_video’/>
<field

var='video_recog’

type=’text-single’

label="text_associated_with_a_video’/>

</form_type>

12.2.2 jabber:iq:register FORM_TYPE

The XMPP Registrar registers the following fields for the existing jabber:iq:register FORM_-
TYPE. Additional fields might be defined in future submissions.

<form_type>

<name>jabber:iq:register</name>
<doc>XEP-0077</doc>
<field

var=’answers’

type="hidden’

label="number_of_answers_required’/>
<field

var="audio_recog’

type=’text-single’

label="text_associated_with_a_sound’/>
<field

var="challenge’

type="hidden’

label="challenge_ID’/>
<field

var=’ocr’

type=’text-single’

label="code_appearing_in_an_image’/>
<field

var=’picture_q’

type='text-single’

20

\/ 13 XML SCHEMA

label="answer_associated_with_a_picture’/>
<field

var=’picture_recog’

type=’text-single’

label="text_associated_with_a_picture’/>
<field

var='qa’

type=’text-single’

label="answer_to_a_question’/>
<field

var=’SHA-256"

type=’text-single’

label="1least_significant_bits_of_SHA-256_hash_of_text_should.

equal_hexadecimal_label’/>

<field

var="sid’

type="hidden’

label="stanza_ID’/>
<field

var='speech_q’

type=’text-single’

label="answer_associated_with_speech’/>
<field

var=’speech_recog’

type='text-single’

label="text_associated_with_speech’/>
<field

var=’video_q’

type=’text-single’

label="answer_associated_with_a_video’/>
<field

var='video_recog’

type="text-single’

label="text_associated_with_a_video’/>

</form_type>

13 XML Schema

<?xml version=’1.0’ encoding=’UTF-8’7?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="urn:xmpp:captcha’
xmlns=’urn:xmpp:captcha’
elementFormDefault="qualified’>

<xs:annotation>

21

\J 14 OPEN ISSUES

<xs:documentation>
The protocol documented by this schema is defined in
XEP-0158: http://xmpp.org/extensions/xep-0158. html
</xs:documentation>
</xs:annotation>

<xs:import namespace=’jabber:x:data’
schemalocation="http://xmpp.org/schemas/x-data.xsd’/>

<xs:element name=’captcha’>
<xs:complexType>
<xs:sequence xmlns:xdata=’jabber:x:data’>
<xs:element ref=’xdata:x’ minOccurs=’1’ maxOccurs=’1’/>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

14 Open Issues

Another protocol could allow users to edit the challenges their server will make on their
behalf. For example, the number of SHA-256 bits, a personal or original question and answer,
a picture, a video, or a sound recording. Of course Aunt Tillie would typically use this feature
only if she was plagued by abusive traffic.

22

	Introduction
	Requirements
	Extensibility
	Variety

	Protocol
	Simple Challenge
	Triggering Stanza
	Challenge Stanza
	Response Stanza
	Result Stanza

	Multiple Challenges

	Extended In-Band Registration
	Multi-User Chat
	Challenge Types
	Introduction
	SHA-256 Hashcash
	CAPTCHAs

	Question and Answer for Legacy Clients
	Discontinuation Policy
	Internationalization Considerations
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	Field Standardization
	CAPTCHA FORM_TYPE
	jabber:iq:register FORM_TYPE

	XML Schema
	Open Issues

