
XEP-0198: Stream Management

Justin Karneges
mailto:justin@karneges.com
xmpp:justin@andbit.net

Peter Saint-Andre
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/

Joe Hildebrand
mailto:jhildebr@cisco.com
xmpp:hildjj@jabber.org

Fabio Forno
mailto:fabio.forno@gmail.com
xmpp:ff@jabber.bluendo.com

Dave Cridland
mailto:dave@hellopando.com
xmpp:dwd@dave.cridland.net

Matthew Wild
mailto:mwild1@gmail.com
xmpp:me@matthewwild.co.uk

Thilo Molitor
mailto:thilo+xmpp@eightysoft.de
xmpp:thilo.molitor@juforum.de

2024-09-24
Version 1.6.2

Status Type Short Name
Draft Standards Track sm

This specification defines an XMPP protocol extension for active management of an XML stream be-
tween two XMPP entities, including features for stanza acknowledgements and stream resumption.

mailto:justin@karneges.com
xmpp:justin@andbit.net
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/
mailto:jhildebr@cisco.com
xmpp:hildjj@jabber.org
mailto:fabio.forno@gmail.com
xmpp:ff@jabber.bluendo.com
mailto:dave@hellopando.com
xmpp:dwd@dave.cridland.net
mailto:mwild1@gmail.com
xmpp:me@matthewwild.co.uk
mailto:thilo+xmpp@eightysoft.de
xmpp:thilo.molitor@juforum.de


Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
## NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy


Contents
1 Introduction 1

2 Stream Feature 1

3 Enabling Stream Management 2

4 Acks 3

5 Resumption 6

6 Error Handling 10

7 Stream Closure 11

8 Scenarios 11
8.1 Basic Acking Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.2 Efficient Acking Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

9 SASL2 And BIND2 Interaction 14
9.1 Enable Stream Management Inline . . . . . . . . . . . . . . . . . . . . . . . . . 15

9.1.1 Failed To Enable Stream Management . . . . . . . . . . . . . . . . . . . 15
9.2 Inline Stream Resumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

9.2.1 Failed Resumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.3 Inlining Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

10 Security Considerations 17

11 IANA Considerations 18

12 XMPP Registrar Considerations 18
12.1 Protocol Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
12.2 Protocol Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
12.3 Stream Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

13 XML Schemas 18

14 Acknowledgements 21



2 STREAM FEATURE

1 Introduction
XMPP Core 1 defines the fundamental streaming XML technology used by XMPP (i.e., stream
establishment and termination including authentication and encryption). However, the core
XMPP specification does not provide tools for actively managing a live XML stream.
The basic concept behind stream management is that the initiating entity (either a client or a
server) and the receiving entity (a server) can exchange ”commands” for active management
of the stream. The following stream management features are of particular interest because
they are expected to improve network reliability and the end-user experience:

• Stanza Acknowledgements -- the ability to know if a stanza or series of stanzas has been
received by one’s peer.

• Stream Resumption -- the ability to quickly resume a stream that has been terminated.

Stream management implements these features using short XML elements at the root stream
level. These elements are not ”stanzas” in the XMPP sense (i.e., not <iq/>, <message/>,
or <presence/> stanzas as defined in RFC 6120 2) and are not counted or acked in stream
management, since they exist for the purpose of managing stanzas themselves.
Stream management is used at the level of an XML stream. To check TCP connectivity un-
derneath a given stream, it is RECOMMENDED to use whitespace keepalives (see RFC 6120 3),
XMPP Ping (XEP-0199) 4, or TCP keepalives. By contrast with stream management, Advanced
Message Processing (XEP-0079) 5 and Message Delivery Receipts (XEP-0184) 6 define acks that
are sent end-to-end over multiple streams; these facilities are useful in special scenarios but
are unnecessary for checking of a direct stream between two XMPP entities.
Note: Stream Management can be used for server-to-server streams as well as for client-
to-server streams. However, for convenience this specification discusses client-to-server
streams only. The same principles apply to server-to-server streams.

2 Stream Feature
The server returns a stream header to the client along with stream features, where the fea-
tures include an <sm/> element qualified by the ’urn:xmpp:sm:3’ namespace (see Namespace
Versioning regarding the possibility of incrementing the version number).
Note: The client cannot negotiate stream management until it has authenticated with the
server and has bound a resource; see below for specific restrictions.

1RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
2RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
3RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
4XEP-0199: XMPP Ping <https://xmpp.org/extensions/xep-0199.html>.
5XEP-0079: Advanced Message Processing <https://xmpp.org/extensions/xep-0079.html>.
6XEP-0184: Message Delivery Receipts <https://xmpp.org/extensions/xep-0184.html>.
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3 ENABLING STREAMMANAGEMENT

Listing 1: Server sends new stream header along with stream features
<stream:stream

from=’example.com’
xmlns=’jabber:client ’
xmlns:stream=’http: // etherx.jabber.org/streams ’
version=’1.0’>

<stream:features >
<bind xmlns=’urn:ietf:params:xml:ns:xmpp -bind’/>
<sm xmlns=’urn:xmpp:sm:3 ’/>

</stream:features >

3 Enabling Stream Management
To enable use of stream management, the client sends an <enable/> command to the server.

Listing 2: Client enables stream management
<enable xmlns=’urn:xmpp:sm:3 ’/>

If the client wants to be allowed to resume the stream, it includes a boolean ’resume’ at-
tribute, which defaults to false 7. For information about resuming a previous session, see the
Resumption section of this document.
The <enable/> element MAY include a ’max’ attribute to specify the client’s preferred maxi-
mum resumption time in seconds.
Upon receiving the enable request, the server MUST reply with an <enabled/> element or
a <failed/> element qualified by the ’urn:xmpp:sm:3’ namespace. The <failed/> element
indicates that there was a problem establishing the stream management ”session”. The
<enabled/> element indicates successful establishment of the stream management session.

Listing 3: Server enables stream management
<enabled xmlns=’urn:xmpp:sm:3 ’/>

The parties can then the use stream management features defined below.
If the server allows session resumption, it MUST include a ’resume’ attribute set to a value of
”true” or ”1” 8.

7In accordance with Section 3.2.2.1 of XML Schema Part 2: Datatypes, the allowable lexical representations for
the xs:boolean datatype are the strings ”0” and ”false” for the concept ’false’ and the strings ”1” and ”true” for
the concept ’true’; implementations MUST support both styles of lexical representation.

8In accordance with Section 3.2.2.1 of XML Schema Part 2: Datatypes, the allowable lexical representations for
the xs:boolean datatype are the strings ”0” and ”false” for the concept ’false’ and the strings ”1” and ”true” for
the concept ’true’; implementations MUST support both styles of lexical representation.
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4 ACKS

Listing 4: Server enables stream management with session resumption
<enabled xmlns=’urn:xmpp:sm:3 ’ id=’some -long -sm -id’ resume=’true’/>

The <enabled/> element MAY include a ’max’ attribute to specify the server’s preferred
maximum resumption time.
The <enabled/> element MAY include a ’location’ attribute to specify the server’s preferred
IP address or hostname (optionally with a port) for reconnection, in the form specified in
Section 4.9.3.19 of RFC 6120 9 (i.e., ”domainpart:port”, where IPv6 addresses are enclosed in
square brackets ”[...]” as described in RFC 5952 10); if reconnection to that location fails, the
standard XMPP connection algorithm specified in RFC 6120 applies.
The client MUST NOT attempt to negotiate stream management until it is authenticated; i.e.,
it MUST NOT send an <enable/> element until after authentication (such as SASL, Non-SASL
Authentication (XEP-0078) 11 or Server Dialback (XEP-0220) 12) has been completed success-
fully.
For client-to-server connections, the client MUST NOT attempt to enable stream manage-
ment until after it has completed Resource Binding unless it is resuming a previous session (see
Resumption).
The server SHALL enforce this order and return a <failed/> element in response if the order is
violated (see Error Handling).

Listing 5: Server returns error if client attempts to enable streammanagement before resource
binding

<failed xmlns=’urn:xmpp:sm:3 ’>
<unexpected -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</failed >

Note that a client SHALL only make at most one attempt to enable stream management. If
a server receives a second <enable/> element it SHOULD respond with a stream error, thus
terminating the client connection.

Listing 6: Server returns error if client attempts to enable streammanagementmore than once
<failed xmlns=’urn:xmpp:sm:3 ’>

<unexpected -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</failed >

4 Acks
After enabling stream management, the client or server can send ack elements at any time
over the stream. An ack element is one of the following:
9RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
10RFC 5952: A Recommendation for IPv6 Address Text Representation <http://tools.ietf.org/html/rfc5952>.
11XEP-0078: Non-SASL Authentication <https://xmpp.org/extensions/xep-0078.html>.
12XEP-0220: Server Dialback <https://xmpp.org/extensions/xep-0220.html>.
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4 ACKS

• The <a/> element is used to answer a request for acknowledgement or to send an unre-
quested ack.

• The <r/> element is used to request acknowledgement of received stanzas.

The following attribute is defined:

• The ’h’ attribute identifies the last handled stanza (i.e., the last stanza that the server
will acknowledge as having received).

An <a/> element MUST possess an ’h’ attribute.
The <r/> element has no defined attributes.
Definition: Acknowledging a previously-received ack element indicates that the stanza(s)
sent since then have been ”handled” by the server. By ”handled” we mean that the server
has accepted responsibility for a stanza or stanzas (e.g., to process the stanza(s) directly,
deliver the stanza(s) to a local entity such as another connected client on the same server, or
route the stanza(s) to a remote entity at a different server); until a stanza has been affirmed
as handled by the server, that stanza is the responsibility of the sender (e.g., to resend it or
generate an error if it is never affirmed as handled by the server).
Receipt of an <r/> element does not imply that new stanzas have been transmitted by the
peer; receipt of an <a/> element only indicates that new stanzas have been processed if the ’h’
attribute has been incremented.
The value of ’h’ starts at zero at the point stream management is enabled or requested to
be enabled (see note below). The value of ’h’ is then incremented to one for the first stanza
handled and incremented by one again with each subsequent stanza handled. In the unlikely
case that the number of stanzas handled during a stream management session exceeds the
number of digits that can be represented by the unsignedInt datatype as specified in XML
Schema Part 2 13 (i.e., 232), the value of ’h’ SHALL be reset from 232-1 back to zero (rather than
being incremented to 232).
Note: Each entity maintains two counters for any given stream: a counter of stanzas it has
sent, and a counter of stanzas it has received and handled (’h’). The counter for an entity’s
own sent stanzas is set to zero and started after sending either <enable/> or <enabled/>. The
counter for the received stanzas (’h’) is set to zero and started after receiving either <enable/>
or <enabled/>.
The following annotated example shows a message sent by the client, a request for acknowl-
edgement, and an ack of the stanza.

Listing 7: Simple stanza acking
<!-{}- Client -{}->
<enable xmlns=’urn:xmpp:sm:3 ’/>

13XML Schema Part 2: Datatypes <http://www.w3.org/TR/xmlschema11-2/>.
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4 ACKS

<!-{}- Client sets outbound count to zero. -{}->

<message from=’laurence@example.net/churchyard ’
to=’juliet@example.com’
xml:lang=’en’>

<body>
I’ll␣send␣a␣friar␣with␣speed ,␣to␣Mantua ,

␣␣␣␣with␣my␣letters␣to␣thy␣lord.
␣␣ </body >
</message >

<!-{}-␣Note␣that␣client␣need␣not␣wait␣for␣a␣response.␣ -{}->

<!-{}-␣Server␣ -{}->
<enabled␣xmlns=’urn:xmpp:sm:3 ’/>

<!-{}-
␣␣␣␣␣Server␣receives␣enable ,␣and␣responds ,
␣␣␣␣␣setting␣both␣inbound␣and␣outbound␣counts
␣␣␣␣␣to␣zero.

␣␣␣␣␣In␣addition ,␣client␣sets␣inbound␣count␣to␣zero.
-{}->

<!-{}-␣Client␣ -{}->
<r␣xmlns=’urn:xmpp:sm:3 ’/>

<!-{}-␣Server␣ -{}->
<a␣xmlns=’urn:xmpp:sm:3 ’␣h=’1’/>

When an <r/> element (”request”) is received, the recipient MUST acknowledge it by sending
an <a/> element to the sender containing a value of ’h’ that is equal to the number of stanzas
handled by the recipient of the <r/> element. The response SHOULD be sent as soon as possible
after receiving the <r/> element, and MUST NOT be withheld for any condition other than a
timeout. For example, a client with a slow connection might want to collect many stanzas
over a period of time before acking, and a server might want to throttle incoming stanzas.
The sender does not need to wait for an ack to continue sending stanzas.
Either partyMAY send an <a/> element at any time (e.g., after it has received a certain number
of stanzas, or after a certain period of time), even if it has not received an <r/> element from
the other party. It is RECOMMENDED that initiating entities (usually clients) send an <a/>
element right before they gracefully close the stream, in order to inform the peer about
received stanzas. Otherwise it can happen that stanzas are re-sent (usually by the server)
although they were actually received.
When a party receives an <a/> element, it SHOULD keep a record of the ’h’ value returned as
the sequence number of the last handled outbound stanza for the current stream (and discard
the previous value).
If a stream ends and it is not resumed within the time specified in the original <enabled/>
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5 RESUMPTION

element, the sequence number and any associated state MAY be discarded by both parties.
Before the session state is discarded, implementations SHOULD take alternative action
regarding any unhandled stanzas (i.e., stanzas sent after the most recent ’h’ value received):

• A server SHOULD treat unacknowledged stanzas in the same way that it would treat
a stanza sent to an unavailable resource, by either returning an error to the sender,
delivery to an alternate resource, or committing the stanza to offline storage. (Note
that servers SHOULD add a delay element with the original (failed) delivery timestamp,
as per Delayed Delivery (XEP-0203) 14).

• A user-oriented client SHOULD try to silently resend the stanzas upon reconnection or
inform the user of the failure via appropriate user-interface elements. Clients SHOULD
also add a delay element with the original (failed) send timestamp, so that the original
send date is preserved. Otherwise receiving clients could only display the reconnection
timestamp of the sending client, which may confuse users.

Because unacknowledged stanzas might have been received by the other party, resending
them might result in duplicates; there is no way to prevent such a result in this protocol,
although use of the XMPP ’id’ attribute on all stanzas can at least assist the intended recipients
in weeding out duplicate stanzas.

5 Resumption
It can happen that an XML stream is terminated unexpectedly (e.g., because of network out-
ages). In this case, it is desirable to quickly resume the former stream rather than complete
the tedious process of stream establishment, roster retrieval, and presence broadcast.
In addition, this protocol exchanges the sequence numbers of the last received stanzas on
the previous connection, allowing entities to establish definitively which stanzas require
retransmission and which do not, eliminating duplication through replay.
To request that the stream will be resumable, when enabling stream management the client
MUST add a ’resume’ attribute to the <enable/> element with a value of ”true” or ”1” 15.

Listing 8: Client enables stream management
<enable xmlns=’urn:xmpp:sm:3 ’ resume=’true’/>

If the server will allow the stream to be resumed, it MUST include a ’resume’ attribute set to
”true” or ”1” on the <enabled/> element and MUST include an ’id’ attribute that specifies an
identifier for the stream.

14XEP-0203: Delayed Delivery <https://xmpp.org/extensions/xep-0203.html>.
15In accordance with Section 3.2.2.1 of XML Schema Part 2: Datatypes, the allowable lexical representations for

the xs:boolean datatype are the strings ”0” and ”false” for the concept ’false’ and the strings ”1” and ”true” for
the concept ’true’; implementations MUST support both styles of lexical representation.

6

https://xmpp.org/extensions/xep-0203.html
https://xmpp.org/extensions/xep-0203.html


5 RESUMPTION

Listing 9: Server allows stream resumption
<enabled xmlns=’urn:xmpp:sm:3 ’ id=’some -long -sm -id’ resume=’true’/>

Listing 10: Alternative response: Server enables stream management without session
resumption

<enabled xmlns=’urn:xmpp:sm:3 ’ id=’some -long -sm -id’/>

Definition: The ’id’ attribute defines a unique identifier for purposes of stream management
(an ”SM-ID”). The SM-ID MUST be generated by the server. The client MUST consider the
SM-ID to be opaque and therefore MUST NOT assign any semantic meaning to the SM-ID.
The server MAY encode any information it deems useful into the SM-ID, such as the full JID
<localpart@domain.tld/resource> of a connected client (e.g., the full JID plus a nonce value).
Any characters allowed in an XML attribute are allowed. The SM-ID MUST NOT be reused for
simultaneous or subsequent sessions (but the server need not ensure that SM-IDs are unique
for all time, only for as long as the server is continuously running). The SM-ID SHOULD NOT
be longer than 4000 bytes.
As noted, the <enabled/> element MAY include a ’location’ attribute that specifies the server’s
preferred location for reconnecting (e.g., a particular connection manager that hold session
state for the connected client).

Listing 11: Server prefers reconnection at a particular location
<enabled xmlns=’urn:xmpp:sm:3 ’

id=’some -long -sm -id’
location=’[2001 :41D0:1:A49b::1]:9222 ’
resume=’true’/>

If the stream is terminated unexpectedly, the client would then open a TCP connection to the
server. The order of events is as follows:

1. After disconnection, the client opens a new TCP connection to the server, preferring the
address specified in the ’location’ attribute (if any).

2. Client sends initial stream header.

3. Server sends response stream header.

4. Server sends stream features.

5. Client sends STARTTLS request.

6. Server informs client to proceed with the TLS negotiation.

7. The parties complete a TLS handshake. (Note: When performing session resumption
and also utilizing TLS, it is RECOMMENDED to take advantage of TLS session resumption
RFC 5077 16 to further optimize the resumption of the XML stream.)

16RFC 5077: Transport Layer Security (TLS) Session Resumption without Server-Side State <http://tools.ietf.o
rg/html/rfc5077>.
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5 RESUMPTION

8. Client sends new initial stream header.

9. Server sends response stream header.

10. Server sends stream features, requiring SASL negotiation and offering appropriate SASL
mechanisms. (Note: If the server considers the information provided during TLS session
resumption to be sufficient authentication, it MAY offer the SASL EXTERNAL mecha-
nism; for details, refer to draft-cridland-sasl-tls-sessions 17.)

11. The parties complete SASL negotiation.

12. Client sends new initial stream header.

13. Server sends response stream header.

14. Server sends stream features, offering the SM feature.

15. Client requests resumption of the former stream.

Note: The order of eventsmight differ from those shown above, depending onwhen the server
offers the SM feature, whether the client chooses STARTTLS, etc. Furthermore, in practice
server-to-server streams often do not complete SASL negotiation or even TLS negotiation.
The foregoing text does not modify any rules about the stream negotiation process specified
in RFC 6120 18. However, since stream management applies to the exchange of stanzas (not
any other XML elements), it makes sense for the server to offer the SM feature when it will
be possible for the other party to start sending stanzas, not before. See also Recommended
Order of Stream Feature Negotiation (XEP-0170) 19.
To request resumption of the former stream, the client sends a <resume/> element qualified
by the ’urn:xmpp:sm:3’ namespace. The <resume/> element MUST include a ’previd’ attribute
whose value is the SM-ID of the former stream andMUST include an ’h’ attribute that identifies
the sequence number of the last handled stanza sent over the former stream from the server
to the client (in the unlikely case that the client never received any stanzas, it would set ’h’ to
zero).

Listing 12: Stream resumption request
<resume xmlns=’urn:xmpp:sm:3 ’

h=’some -sequence -number ’
previd=’some -long -sm -id’/>

If the server can resume the former stream, it MUST return a <resumed/> element, which
MUST include a ’previd’ attribute set to the SM-ID of the former stream andMUST also include
an ’h’ attribute set to the sequence number of the last handled stanza sent over the former
17On the use of TLS Session resumption and SASL EXTERNAL <http://tools.ietf.org/html/draft-cridland-s

asl-tls-sessions>. Work in progress.
18RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
19XEP-0170: Recommended Order of Stream Feature Negotiation <https://xmpp.org/extensions/xep-0170.h

tml>.
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5 RESUMPTION

stream from the client to the server (in the unlikely case that the server never received any
stanzas, it would set ’h’ to zero).

Listing 13: Stream resumed
<resumed xmlns=’urn:xmpp:sm:3 ’

h=’another -sequence -number ’
previd=’some -long -sm -id’/>

If the server does not support session resumption, it MUST return a <failed/> element,
which SHOULD include an error condition of <feature-not-implemented/>. If the server
does not recognize the ’previd’ as an earlier session (e.g., because the former session has
timed out), it MUST return a <failed/> element, which SHOULD include an error condition of
<item-not-found/>. If the server recogizes the ’previd’ as an earlier session that has timed out
the server MAY also include a ’h’ attribute indicating the number of stanzas received before
the timeout. (Note: For this to work the server has to store the SM-ID/sequence number tuple
past the time out of the actual session.)

Listing 14: Stream timed out
<failed xmlns=’urn:xmpp:sm:3 ’

h=’another -sequence -number ’>
<item -not -found xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</failed >

In both of these failure cases, the server SHOULD allow the client to bind a resource at
this point rather than forcing the client to restart the stream negotiation process and re-
authenticate.
If the former stream is resumed and the server still has the stream for the previously-identified
session open at this time, the server SHOULD send a ’conflict’ stream error and close that
stream.

Listing 15: Server closes old stream that was replaced by new
<stream:error >

<conflict xmlns=’urn:ietf:params:xml:ns:xmpp -streams ’/>
</stream:error >
</stream:stream >

When a session is resumed, the parties proceed as follows:

• The sequence values are carried over from the previous session and are not reset for the
new stream.

• Upon receiving a <resume/> or <resumed/> element the client and server use the ’h’
attribute to retransmit any stanzas lost by the disconnection. In effect, it should handle

9
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the element’s ’h’ attribute as it would handle it on an <a/> element (i.e., marking stanzas
in its outgoing queue as handled), except that after processing it MUST re-send to the
peer any stanzas that are still marked as unhandled.

• Both parties SHOULD retransmit any stanzas that were not handled during the previous
session, based on the sequence number reported by the peer.

• A reconnecting client SHOULD NOT request the roster, because any roster changes that
occurred while the client was disconnected will be sent to the client after the stream
management session resumes.

• The client SHOULD NOT resend presence stanzas in an attempt to restore its former
presence state, since this state will have been retained by the server.

• Both parties SHOULD NOT try to re-establish state information (e.g., Service Discovery
(XEP-0030) 20 information).

6 Error Handling
If an error occurs with regard to an <enable/> or <resume/> element, the server MUST return
a <failed/> element. This element SHOULD contain an error condition, which MUST be one of
the stanza error conditions defined in RFC 6120 21.
An example follows.

Listing 16: Server returns error
<failed xmlns=’urn:xmpp:sm:3 ’>

<unexpected -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</failed >

Stream management errors SHOULD be considered recoverable; however, misuse of stream
management MAY result in termination of the stream.
When a remote entity acknowledges that it has handled a number of stanzas that is higher
than the amount of stanzas that it was sent (by sending an ’h’ value that is too high), the
local entity SHOULD generate an undefined-condition stream error that includes a <handled-
count-too-high/> element, and close the stream:

Listing 17: Entity closes stream because peer acknowledges more stanzas than it was sent
<stream:error >

<undefined -condition xmlns=’urn:ietf:params:xml:ns:xmpp -streams ’/>
<handled -count -too -high xmlns=’urn:xmpp:sm:3 ’ h=’10’ send -count=’8’/

>
<text xml:lang=’en’ xmlns=’urn:ietf:params:xml:ns:xmpp -streams ’>

20XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.
21RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
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You acknowledged 10 stanzas , but I only sent you 8 so far.
</text>

</stream:error >
</stream:stream >

7 Stream Closure
A cleanly closed stream differs from an unfinished stream. If a client wishes to cleanly close
its stream and end its session, it MUST send a </stream:stream> so that the server can send
unavailable presence on the client’s behalf.
If the stream is not cleanly closed then the server SHOULD consider the stream to be unfin-
ished (even if the client closes its TCP connection to the server) and SHOULD maintain the
session on behalf of the client for a limited amount of time. The client can send whatever
presence it wishes before leaving the stream in an unfinished state.

8 Scenarios
The following scenarios illustrate several different uses of streammanagement. The examples
are that of a client and a server, but streammanagement can also be used for server-to-server
streams.

8.1 Basic Acking Scenario
The Stream Management protocol can be used to improve reliability using acks without the
ability to resume a session. A basic implementation would do the following:

• As a client, send <enable/> with no attributes, and ignore the attributes on the <en-
abled/> response.

• As a server, ignore the attributes on the <enable/> element received, and respond via
<enabled/> with no attributes.

• When receiving an <r/> element, immediately respond via an <a/> element where the
value of ’h’ returned is the sequence number of the last handled stanza.

• Keep an integer X for this stream session, initially set to zero. When about to send a
stanza, first put the stanza (paired with the current value of X) in an ”unacknowleged”
queue. Then send the stanza over the wire with <r/> to request acknowledgement of
that outbound stanza, and increment X by 1. When receiving an <a/> element with an
’h’ attribute, all stanzas whose paired value (X at the time of queueing) is less than or
equal to the value of ’h’ can be removed from the unacknowledged queue.

11
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This is enough of an implementation to minimally satisfy the peer, and allows basic tracking
of each outbound stanza. If the stream connection is broken, the application has a queue of
unacknowledged stanzas that it can choose to handle appropriately (e.g., warn a human user
or silently send after reconnecting).
The following examples illustrate basic acking (here the client automatically acks each stanza
it has received from the server, without first being prompted via an <r/> element).
First, after authentication and resource binding, the client enables stream management.

Listing 18: Client enables stream management
<enable xmlns=’urn:xmpp:sm:3 ’/>

The server then enables stream management.

Listing 19: Server enables stream management
<enabled xmlns=’urn:xmpp:sm:3 ’/>

The client then retrieves its roster and immediately sends an <r/> element to request ac-
knowledgement.

Listing 20: Client sends a stanza and requests acknowledgement
<iq id=’ls72g593 ’ type=’get’>

<query xmlns=’jabber:iq:roster ’/>
</iq>

<r xmlns=’urn:xmpp:sm:3 ’/>

The server handles the client stanza (here returning the roster) and sends an <a/> element to
acknowledge handling of the stanza.

Listing 21: Server handles client stanza and acknowledges handling of client stanza
<iq id=’ls72g593 ’ type=’result ’>

<query xmlns=’jabber:iq:roster ’>
<item jid=’juliet@capulet.lit’/>
<item jid=’benvolio@montague.lit’/>

</query >
</iq>

<a xmlns=’urn:xmpp:sm:3 ’ h=’1’/>

The client then chooses to acknowledge receipt of the server’s stanza (although here it is
under no obligation to do so, since the server has not requested an ack), sends initial presence,
and immediately sends an <r/> element to request acknowledgement, incrementing by one
its internal representation of how many stanzas have been handled by the server.

12
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Listing 22: Client acks handling of first server stanza, sends a stanza, and requests
acknowledgement

<a xmlns=’urn:xmpp:sm:3 ’ h=’1’/>

<presence/>

<r xmlns=’urn:xmpp:sm:3 ’/>

The server immediately sends an <a/> element to acknowledge handling of the stanza and
then broadcasts the user’s presence (including to the client itself as shown below).

Listing 23: Server acks handling of second client stanza and sends a stanza
<a xmlns=’urn:xmpp:sm:3 ’ h=’2’/>

<presence from=’romeo@montague.lit/orchard ’
to=’romeo@montague.lit/orchard ’/>

The client then acks the server’s second stanza and sends an outbound message followed by
an <r/> element.

Listing 24: Client acks receipt of second server stanza, sends a stanza, and requests
acknowledgement

<a xmlns=’urn:xmpp:sm:3 ’ h=’2’/>

<message to=’juliet@capulet.lit’>
<body>ciao!</body>

</message >

<r xmlns=’urn:xmpp:sm:3 ’/>

The server immediately sends an <a/> element to acknowledge handling of the third client
stanza and then routes the stanza to the remote contact (not shown here because the server
does not send a stanza to the client).

Listing 25: Server acknowledges handling of third client stanza
<a xmlns=’urn:xmpp:sm:3 ’ h=’3’/>

And so on.

8.2 Efficient Acking Scenario
The basic acking scenario is wasteful because the client requested an ack for each stanza. A
more efficient approach is to periodically request acks (e.g., every 5 stanzas). This is shown
schematically in the following pseudo-XML.
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Listing 26: An efficient session
<!-{}- Client -{}->
<enable/>
<!-{}- Server -{}->
<enabled/>
<!-{}- Client -{}->
<message/>
<message/>
<message/>
<message/>
<message/>
<r/>
<!-{}- Server -{}->
<a h=’5’/>
<!-{}- Client -{}->
<message/>
<message/>
<message/>
<message/>
<message/>
<r/>
<!-{}- Server -{}->
<a h=’10’/>

In particular, on mobile networks, it is advisable to only request and/or send acknowledge-
ments when an entity has other data to send, or in lieu of a whitespace keepalive or XMPP
ping (XEP-0199).

9 SASL2 And BIND2 Interaction
This section is about Extensible SASL Profile (XEP-0388) 22 (SASL2) and Bind 2.0 (XEP-0386)
23 (BIND2) interaction. You don’t have to implement this if you don’t implement SASL2 and
BIND2.
Extensible SASL Profile (XEP-0388) 24 (SASL2) describes a way of inlining the stream resump-
tion into the authentication process to reduce the round-trips needed for authentication
and subsequent stream resumption. Similarly Bind 2.0 (XEP-0386) 25 (BIND2) defines a way
of inlining the stream management <enable/> into the resource binding process to reduce
round-trips.

22XEP-0388: Extensible SASL Profile <https://xmpp.org/extensions/xep-0388.html>.
23XEP-0386: Bind 2.0 <https://xmpp.org/extensions/xep-0386.html>.
24XEP-0388: Extensible SASL Profile <https://xmpp.org/extensions/xep-0388.html>.
25XEP-0386: Bind 2.0 <https://xmpp.org/extensions/xep-0386.html>.
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9.1 Enable Stream Management Inline
To indicate support for inlining the activation of StreamManagement into the resource bind-
ing process, the server adds a <feature/> element with var attribute set to ”urn:xmpp:sm:3”
in the <inline/> element of BIND2 which is sent in the stream features.
If the client wishes to begin a new session (i.e. it has no prior session to resume), it simply
includes the <enable/> element defined by this specification in its Bind 2.0 (XEP-0386) 26

<bind/> request which itself is a child of the <authenticate/> element of SASL2.

9.1.1 Failed To Enable Stream Management

In the unexpected case where the server was able to bind a resource for the client, but
unable to enable stream management, it will include a <failed/> element as defined by this
specification within the <bound/> response defined by Bind 2.0 (XEP-0386) 27.

9.2 Inline Stream Resumption
To indicate support for inlining stream resumption into the authentication process, the server
adds a <sm/> element in the namespace ”urn:xmpp:sm:3” to the <inline/> element of SASL2.
If the client wishes to resume an existing session it, it simply includes the <resume/> element
defined by this specification in the SASL2 <authenticate/> element.
Note: If the client included a <resume/> element in its SASL2 <authenticate/> element, that
MUST be processed first by the server. If that resumption is successful, the server MUST skip
resource binding (a resumed session already has a resource bound) and MUST entirely ignore
the <bind/> request that might also be inlined in the <authenticate/> element.
Extensible SASL Profile (XEP-0388) 28 mandates that the <success> element is immeditaly
followed by stream features. If a former stream has been successfully resumed using this
specification, the stream is considered re-established immediately after the <success/>
element instead and stream features MUST NOT be sent in this case.

9.2.1 Failed Resumption

Sometimes resumption might fail - for example, because the session has been disconnected
longer than the server’s resumption timeout. In this case, the server MUST include the
<failed/> element defined by this specification in its SASL2 <success/> response, but also
MUST continue to process the <bind/> in order to establish a new session for the client.
The client can find details about its new session in the <bound/> response (defined by Bind
2.0 (XEP-0386) 29).

26XEP-0386: Bind 2.0 <https://xmpp.org/extensions/xep-0386.html>.
27XEP-0386: Bind 2.0 <https://xmpp.org/extensions/xep-0386.html>.
28XEP-0388: Extensible SASL Profile <https://xmpp.org/extensions/xep-0388.html>.
29XEP-0386: Bind 2.0 <https://xmpp.org/extensions/xep-0386.html>.
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9.3 Inlining Examples

Listing 27: Server announces support for inlining activation of stream management and
stream resumption

<stream:features >
<authentication xmlns=”urn:xmpp:sasl:2”>

<mechanism >SCRAM -SHA -1</mechanism >
<inline >

<sm xmlns=”urn:xmpp:sm:3”/>
<bind xmlns=”urn:xmpp:bind2:1”>

<feature var=’urn:xmpp:sm:3 ’/>
</bind>

</inline >
</authentication >

</stream:features >

Listing 28: Client tries to resume stream and enables stream management inlined in its bind
request

<authenticate xmlns=’urn:xmpp:sasl:2 ’ mechanism=’SCRAM -SHA -1’>
<initial -response >[base64 encoded SASL data]</initial -response >
<resume xmlns=”urn:xmpp:sm:3” h=”some -sequence -number” previd=”some -

long -sm -id”/>
<bind xmlns=”urn:xmpp:bind2:1”>

<tag>AwesomeXMPP </tag>
<enable xmlns=”urn:xmpp:sm:3”/>

</bind>
</authenticate >

Listing 29: Client failed to enable stream management
<success xmlns=’urn:xmpp:sasl:2 ’>

<additional -data>[base64 encoded SASL data]</additional -data>
<authorization -identifier >user@example.com/resource </authorization

-identifier >
<bound xmlns=’urn:xmpp:bind2:1 ’>

<failed xmlns=’urn:xmpp:sm:3 ’>
<internal -server -error xmlns=’urn:ietf:params:xml:ns:xmpp -

stanzas ’/>
</failed >
<latest -id>0312 a1b8</latest -id>

</bound >
</success >

Listing 30: Client failed to resume stream
<success xmlns=’urn:xmpp:sasl:2 ’>
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<additional -data>[base64 encoded SASL data]</additional -data>
<authorization -identifier >user@example.com/resource </authorization

-identifier >
<failed xmlns=’urn:xmpp:sm:3 ’ h=’another -sequence -number ’>

<item -not -found xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</failed >
<bound xmlns=’urn:xmpp:bind2:1 ’>

<latest -id>0312 a1b8</latest -id>
</bound >

</success >

Listing 31: Client failed to resume stream and to enable management of newly bound stream
<success xmlns=’urn:xmpp:sasl:2 ’>

<additional -data>[base64 encoded SASL data]</additional -data>
<authorization -identifier >user@example.com/resource </authorization

-identifier >
<failed xmlns=’urn:xmpp:sm:3 ’ h=’another -sequence -number ’>

<item -not -found xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</failed >
<bound xmlns=’urn:xmpp:bind2:1 ’>

<failed xmlns=’urn:xmpp:sm:3 ’>
<internal -server -error xmlns=’urn:ietf:params:xml:ns:xmpp -

stanzas ’/>
</failed >
<latest -id>0312 a1b8</latest -id>

</bound >
</success >

10 Security Considerations
As noted, a server MUST NOT allow a client to resume a stream management session until
after the client has authenticated (for some value of ”authentication”); this helps to prevent
session hijacking.
If SASL2 is used to inline stream resumption, implementations must adhere to the security
considerations defined in Extensible SASL Profile (XEP-0388) 30 regarding the inclusion of
SASL2 requests and inline feature negotiation in TLS 0-RTT (”early data”) extensions. That is,
these elements MUST NOT be sent or processed if the stream would be resumed solely based
on 0-RTT data, except when appropriate mitigations are in place (which are beyond the scope
of this document, but may be defined by others).

30XEP-0388: Extensible SASL Profile <https://xmpp.org/extensions/xep-0388.html>.
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11 IANA Considerations
This XEP requires no interaction with the Internet Assigned Numbers Authority (IANA) 31.

12 XMPP Registrar Considerations
12.1 Protocol Namespaces
This specification defines the following XML namespace:

• urn:xmpp:sm:3

The XMPP Registrar 32 includes the foregoing namespace in its registry at <https:
//xmpp.org/registrar/namespaces.html>, as described in Section 4 of XMPP Registrar
Function (XEP-0053) 33.

12.2 Protocol Versioning
If the protocol defined in this specification undergoes a revision that is not fully backwards-
compatible with an older version, the XMPP Registrar shall increment the protocol version
number found at the end of the XML namespaces defined herein, as described in Section 4 of
XEP-0053.

12.3 Stream Features
The XMPP Registrar includes ’urn:xmpp:sm:3’ in its registry of stream features at
<https://xmpp.org/registrar/stream-features.html>.

13 XML Schemas

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema

31The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

32The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

33XEP-0053: XMPP Registrar Function <https://xmpp.org/extensions/xep-0053.html>.
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xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’urn:xmpp:sm:3 ’
xmlns=’urn:xmpp:sm:3 ’
elementFormDefault=’qualified ’>

<xs:annotation >
<xs:documentation >

The protocol documented by this schema is defined in
XEP -0198: http://www.xmpp.org/extensions/xep -0198. html

</xs:documentation >
</xs:annotation >

<xs:import namespace=’urn:ietf:params:xml:ns:xmpp -stanzas ’
schemaLocation=’http: //xmpp.org/schemas/stanzaerror.xsd’/

>

<xs:element name=’a’>
<xs:complexType >

<xs:simpleContent >
<xs:extension base=’empty ’>

<xs:attribute name=’h’
type=’xs:unsignedInt ’
use=’required ’/>

</xs:extension >
</xs:simpleContent >

</xs:complexType >
</xs:element >

<xs:element name=’enable ’>
<xs:complexType >

<xs:simpleContent >
<xs:extension base=’empty ’>

<xs:attribute name=’max’
type=’xs:positiveInteger ’
use=’optional ’/>

<xs:attribute name=’resume ’
type=’xs:boolean ’
use=’optional ’
default=’false ’/>

</xs:extension >
</xs:simpleContent >

</xs:complexType >
</xs:element >

<xs:element name=’enabled ’>
<xs:complexType >

<xs:simpleContent >
<xs:extension base=’empty ’>

<xs:attribute name=’id’

19



13 XML SCHEMAS

type=’xs:string ’
use=’optional ’/>

<xs:attribute name=’location ’
type=’xs:string ’
use=’optional ’/>

<xs:attribute name=’max’
type=’xs:positiveInteger ’
use=’optional ’/>

<xs:attribute name=’resume ’
type=’xs:boolean ’
use=’optional ’
default=’false ’/>

</xs:extension >
</xs:simpleContent >

</xs:complexType >
</xs:element >

<xs:element name=’failed ’>
<xs:complexType >

<xs:sequence xmlns:err=’urn:ietf:params:xml:ns:xmpp -stanzas ’
minOccurs=’0’
maxOccurs=’1’>

<xs:group ref=’err:stanzaErrorGroup ’/>
</xs:sequence >
<xs:attribute name=’h’

type=’xs:unsignedInt ’
use=’optional ’/>

</xs:complexType >
</xs:element >

<xs:element name=’r’ type=’empty ’/>

<xs:element name=’resume ’ type=’resumptionElementType ’/>

<xs:element name=’resumed ’ type=’resumptionElementType ’/>

<xs:element name=’sm’>
<xs:complexType >

<xs:choice >
<xs:element name=’optional ’ type=’empty ’/>
<xs:element name=’required ’ type=’empty ’/>

</xs:choice >
</xs:complexType >

</xs:element >

<xs:complexType name=’resumptionElementType ’>
<xs:simpleContent >

<xs:extension base=’empty ’>
<xs:attribute name=’h’
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type=’xs:unsignedInt ’
use=’required ’/>

<xs:attribute name=’previd ’
type=’xs:string ’
use=’required ’/>

</xs:extension >
</xs:simpleContent >

</xs:complexType >

<xs:simpleType name=’empty ’>
<xs:restriction base=’xs:string ’>

<xs:enumeration value=’’/>
</xs:restriction >

</xs:simpleType >

<xs:element name=’handled -count -too -high’>
<xs:complexType >

<xs:attribute name=’send -count ’
type=’xs:unsignedInt ’
use=’optional ’/>

<xs:attribute name=’h’
type=’xs:unsignedInt ’
use=’optional ’/>

</xs:complexType >
</xs:element >

</xs:schema >
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