XVIPP

XEP-0217: Simplified Encrypted Session Negotiation

lan Paterson
mailto:ian.paterson@clientside.co.uk
Xmpp: ian@zoofy.com

2007-05-30
Version 0.1

Status Type Short Name
Deferred Standards Track TO BE ASSIGNED

This document specifies a minimal subset of the Encrypted Session Negotiation protocol sufficent for
negotiating an end-to-end encrypted session.

mailto:ian.paterson@clientside.co.uk
xmpp:ian@zoofy.com

Legal

Copyright

This XMPP Extension Protocol is copyright © 1999 - 2024 by the XMPP Standards Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
"Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https: //xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents

1

Introduction 1
Dramatis Personae 1
Discovering Support 2
Online ESession Negotiation 3
4,1 ESessionRequest (Alice) i v i i 3
4.2 ESessionRejection (Bob) 6
4,3 ESessionResponse (Bob) 7
4.3.1 Diffie-Hellman Preparation (Bob) 7
4.3.2 ResponseForm 7
4.4 ESession Accept (Alice) 9
4.4.1 Diffie-Hellman Preparation (Alice) 9
4.4.2 Generating SessionKeys 000, 9
4.4.3 Hiding Alice’sIdentity 10
444 SendingAlice’sIdentity, 11
4,5 ESession Accept (Bob) 12
4.5.1 Generating Provisory Session Keys (Bob) 12
45.2 Verifying Alice’sIdentity 12
45.3 Short Authentication String 13
454 Generating Bob’s Final SessionKeys 13
455 SendingBob’sldentity 14
4.6 FinalSteps (Alice) e 15
4.6.1 Generating Alice’s Final SessionKeys 15
4.6.2 VerifyingBob’sIdentity 16
ESession Termination 16
Implementation Notes 17
6.1 Multiple-PrecisionIntegers v v v v v vt i 17
6.2 XMLNormalization 18
Security Considerations 18
71 RandomNumbers 18
7.2 Replay Attacks 18
7.3 Unverified SAS 19
7.4 BackDoOrs 19
7.5 Extra Responsabilities of Implementors 19
Mandatory to Implement Technologies 20

The sas28x5 SAS Algorithm 20

10 IANA Considerations

11 XMPP Registrar Considerations

20

21

/2 DRAMATIS PERSONAE

1 Introduction

Encrypted Session Negotiation (XEP-0116) ! is a fully-fledged protocol that supports multiple
different end-to-end encryption functionalities and scenarios. The protocol is as simple as
possible given its feature set. However, the work involved to implement it may be reduced
by removing support for several of the optional features, including alternative algorithms,
3-message exchange, public keys, repudiation and key re-exchange.

The minimal subset of the protocol defined in this document is designed to be relatively simple
to implement while offering full compatibility with implementations of the fully-fledged
protocol. The existence of this subset enables developers to produce working code before
they have finished implementing the full protocol.

The requirements and the consequent cryptographic design that underpin this protocol are
described in Requirements for Encrypted Sessions (XEP-0210) ? and Cryptographic Design of
Encrypted Sessions (XEP-0188) 3. The basic concept is that of an encrypted session which acts
as a secure tunnel between two endpoints. The protocol specified in Stanza Session Negotia-
tion (XEP-0155) 4 and in this document is used to negotiate the encryption keys and establish
the tunnel. Thereafter the content of each one-to-one XML stanza exchanged between the
endpoints during the session will be encrypted and transmitted within a "wrapper” stanza
using Stanza Encryption (XEP-0200) °.

The cut-down protocol described here is a 4-message key exchange (see useful summary
of 4-message negotiation) with short-authentication-string (SAS), hash commitment and
optional retained secrets. It avoids using public keys - thus protecting the identity of both
participants against active attacks from third parties.

Note: This protocol requires that both entities are online. An entity MAY use the protocol
specified in Offline Encrypted Sessions (XEP-0187) ¢ if it believes the other entity is offline.

2 Dramatis Personae

This document introduces two characters to help the reader follow the necessary exchanges:

1. ”Alice” is the name of the initiator of the ESession. Within the scope of this document,
we stipulate that her fully-qualified JID is: <alice@example.org/pda>.

2. "Bob” is the name of the other participant in the ESession started by Alice. Within the
scope of this document, his fully-qualified JID is: <bob@example.com/laptop>.

'XEP-0116: Encrypted Session Negotiation <https://xmpp.org/extensions/xep-0116.html>.

XEP-0210: Requirements for Encrypted Sessions <https://xmpp.org/extensions/xep-0210.html>,
XEP-0188: Cryptographic Design of Encrypted Sessions <https://xmpp.org/extensions/xep-0188.html>.
*XEP-0155: Stanza Session Negotiation <https://xmpp.org/extensions/xep-0155.html>.

SXEP-0200: Stanza Encryption <https://xmpp.org/extensions/xep-0200.html>.

®XEP-0187: Offline Encrypted Sessions <https://xmpp.org/extensions/xep-0187.html>.

https://xmpp.org/extensions/xep-0116.html
https://xmpp.org/extensions/xep-0210.html
https://xmpp.org/extensions/xep-0188.html
https://xmpp.org/extensions/xep-0188.html
https://xmpp.org/extensions/xep-0155.html
https://xmpp.org/extensions/xep-0155.html
https://xmpp.org/extensions/xep-0200.html
http://www.xmpp.org/extensions/xep-0188.html#design-online-r
http://www.xmpp.org/extensions/xep-0188.html#design-online-r
https://xmpp.org/extensions/xep-0187.html
https://xmpp.org/extensions/xep-0116.html
https://xmpp.org/extensions/xep-0210.html
https://xmpp.org/extensions/xep-0188.html
https://xmpp.org/extensions/xep-0155.html
https://xmpp.org/extensions/xep-0200.html
https://xmpp.org/extensions/xep-0187.html

/3 DISCOVERING SUPPORT

3. "Aunt Tillie” the archetypal typical user (i.e. non-technical, with only very limited
knowledge of how to use a computer, and averse to performing any procedures that
are not familiar).

While Alice and Bob are introduced as “end users”, they are simply meant to be examples of
XMPP entities. Any directly addressable XMPP entity may participate in an ESession.

3 Discovering Support

Before attempting to engage in an ESession with Bob, Alice MAY discover whether he supports
this protocol, using either Service Discovery (XEP-0030) 7 or the presence-based profile of
Service Discovery (XEP-0030) & specified in Entity Capabilities (XEP-0115) °.

The disco#info request sent from Alice to Bob might look as follows:

Listing 1: Alice Queries Bob for ESession Support via Disco

<ig type=’get’
from="alice@example.org/pda’
to=’bob@example.com/laptop’
id="discol’>
<query xmlns=’http://jabber.org/protocol/disco#info’/>
</iqg>

If Bob sends a disco#info reply and he supports the protocol defined herein, then he MUST
include a service discovery feature variable of “http://www.xmpp.org/extensions/xep-
0116.html#ns”.

Listing 2: Bob Returns disco#info Data

<ig type=’result’
from=’bob@example.com/laptop’
to="alice@example.org/pda’
id="discol’>
<query xmlns=’http://jabber.org/protocol/disco#info’>
<identity category=’client’ type=’pc’/>

<feature var=’http://www.xmpp.org/extensions/xep-0116.html#ns’/>
</query>
</iqg>

7XEP—OOSO:ServiceDiscovery<https://xmpp.org/extensions/xep—@030.html>.
8XEP—0030:ServiceDiscovery<https://xmpp.org/extensions/xep—0030.htm1>.
*XEP-0115: Entity Capabilities <https: //xmpp.org/extensions/xep-0115.html>,

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0115.html

/4 ONLINE ESESSION NEGOTIATION

4 Online ESession Negotiation

4.1 ESession Request (Alice)

” » ” »

In addition to the "accept”, “security”, “otr” and "disclosure” fields (see Back Doors) specified
in Stanza Session Negotiation, Alice MUST send to Bob each of the ESession options (see list
below) that she is willing to use.

« The list of Modular Exponential (MODP) group numbers (as specified in RFC 2409 '° or
RFC 3526 ') that MAY be used for Diffie-Hellman key exchange in a "modp” field (valid
group numbers include 1,2,3,4,5,14,15,16,17 and 18) 12

« The list of stanza types that MAY be encrypted and decrypted in a ’stanzas” field
(message, presence, iq)

« The different versions of the Encrypted Session Negotiation protocol that are supported
ina "ver” field

Each MODP group has at least two well known constants: a large prime number p, and a
generator g for a subgroup of GF(p). For each MODP group that Alice specifies she MUST
perform the following computations to calculate her Diffie-Hellman keys (where n is 128 - i.e.
the number of bits per cipher block for the AES-128 block cipher algorithm):

1. Generate: a secret random number x (where 22"~ <x<p-1)
2. Calculate: e = g” mod p
3. Calculate: He = SHA256(e) (see SHA 13)

Alice MUST send all her calculated values of "He’ to Bob (in a "dhhashes” field in the same
order as the associated MODP groups are being sent) Base64 encoded (in accordance with
Section 4 of RFC 4648 14). She MUST also specify a randomly generated Base64 encoded value
of NA (her ESession ID in a "my_nonce” field).

°RFC 2409: The Internet Key Exchange (IKE) <http://tools.ietf.org/html/rfc2409>.

"'RFC 3526: More Modular Exponential (MODP) Diffie-Hellman Groups <http: //tools.ietf.org/html/rfc3526>.

2Entities SHOULD offer even the lowest MODP groups since some entities are CPU-constrained, and security ex-
perts tend to agree that "longer keys do not protect against the most realistic security threats”.

BSecure Hash Standard: Federal Information Processing Standards Publication 180-2 <http://csrc.nist.gov/p
ublications/fips/fips180-2/fips186-2withchangenotice.pdf>.

“RFC 4648: The Base16, Base32, and Base64 Data Encodings <http://tools.ietf.org/html/rfc4648>,

http://tools.ietf.org/html/rfc2409
http://tools.ietf.org/html/rfc3526
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc2409
http://tools.ietf.org/html/rfc3526
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://tools.ietf.org/html/rfc4648

/4 ONLINE ESESSION NEGOTIATION

The form SHOULD NOT include a "sign_algs” field. However, to ensure compatibility with
entities that support the full Encrypted Session Negotiation protocol, the form SHOULD
include the following fixed values in hidden fields:

Field Value
crypt_algs "aes128-ctr”
hash_algs ”sha256”
compress “none”
init_pubkey "none”
resp_pubkey "none”
rekey_freq 74294967295”
sas_algs ’sas28x5”

The options in each field MUST appear in Alice’s order of preference.

Listing 3: Initiates a 4-message ESession Negotiation

<message from=’alice@example.org/pda’ to=’bob@example.com’>
<thread>ffd7076498744578d10edabfe7f4a866</thread>
<feature xmlns="http://jabber.org/protocol/feature-neg’>
<x type=’form’ xmlns=’jabber:x:data’>

<field type=’hidden’ var=’FORM_TYPE’>
<value>urn:xmpp:ssn</value>

</field>

<field type=’boolean’ var=’accept’>
<value>1</value>
<required/>

</field>

<field type=’list-single’ var=’otr’>
<option><value>false</value></option>
<option><value>true</value></option>
<required/>

</field>

<field type=’list-single’ var=’disclosure’>
<option><value>never</value></option>
<required/>

</field>

<field type=’list-single’ var=’security’>
<option><value>e2e</value></option>
<option><value>c2s</value></option>
<required/>

</field>

<field type=’list-single’ var='modp’>
<option><value>5</value></option>

/4 ONLINE ESESSION NEGOTIATION

<option><value>14</value></option>
<option><value>2</value></option>
<option><value>1</value></option>
</field>
<field type=’hidden’ var=’crypt_algs’>
<value>aes128-ctr</value>
</field>
<field type=’hidden’ var=’hash_algs’>
<value>sha256</value>
</field>
<field type=’hidden’ var=’compress’>
<value>none</value>
</field>
<field type=’list-multi’ var=’stanzas’>
<option><value>message</value></option>
<option><value>iq</value></option>
<option><value>presence</value></option>
</field>
<field type=’hidden’ var=’init_pubkey’>
<value>none</value>
</field>
<field type=’hidden’ var=’resp_pubkey’>
<value>none</value>
</field>
<field type=’list-single’ var=’ver’>
<option><value>1.3</value></option>
<option><value>1.2</value></option>
</field>
<field type=’hidden’ var=’rekey_freq’>
<value>4294967295</value>
</field>
<field type=’hidden’ var=’my_nonce’>
<value> ** Alice’s._Base64_encoded_ESession_ID_**_</value>
uuuuuu </field>
uuuuuu <field_type=’hidden’_var=’sas_algs’>
uuuuuuuu <value>sas28x5</value>

HHHHHH <field_type=’hidden’_var=’dhhashes’>

uuuuuuuu <value>_**_Baseb4_encoded_value_of_He5_**x_</value>
uuuuuuuu <value>_%**_Base64_encoded_value_of_Hel4_x*_</value>
uuuuuuuu <value>_x**_Base64_encoded_value_of_He2_**x_</value>
uuuuuuuu <value>_x**_Base64_encoded_value_of_Hel_**x_</value>
HHHHHH </field>

ceno </ x>

_.</feature>
_.<amp_xmlns=’http://jabber.org/protocol/amp’_per-hop=’true’>
wooo<rule_action=’drop’_condition="deliver’_value=’stored’/>
~.</amp>

</message>

/4 ONLINE ESESSION NEGOTIATION

4.2 ESession Rejection (Bob)

If Bob does not want to reveal presence to Alice for whatever reason then Bob SHOULD return
no response or error.

If Bob finds that one or more of the fields (other than the "rekey_freq” field) listed in the
Fixed Parameters table (see ESession Request) does not include the value included in the table
(or an <option/> element containing the value), or if Bob supports none of the options for one

or more of the negotiable ESession fields ("modp”, "stanzas”, "ver”), then he SHOULD also
return a <not-acceptable/> error specifying the field(s) with unsupported options:

Listing 4: Bob Informs Alice that Her Options are Not Supported

<message type=’error’
from=’bob@example.com/laptop’
to="alice@example.org/pda’>
<thread>ffd7076498744578d10edabfe7f4a866</thread>
<feature xmlns=’http://jabber.org/protocol/feature-neg’>

</feature>
<error type=’cancel’>
<not-acceptable xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/>
<feature xmlns=’"http://jabber.org/protocol/feature-neg’>
<field var="modp’/>
<field var=’ver’/>
</feature>
</error>
</message>

Either Bob or Alice MAY attempt to initiate a new ESession after any error during the nego-
tiation process. However, both MUST consider the previous negotiation to have failed and
MUST discard any information learned through the previous negotiation.

If Bob is unwilling to start an ESession, but he is ready to initiate a one-to-one stanza session
with Alice (see Stanza Session Negotiation), and if Alice included an option for the "security”
tield with the value "none” or ”c2s”, then Bob SHOULD accept the stanza session and terminate
the ESession negotiation by specifying "none” or "c2s” for the value of the "security” field in
his response.

Listing 5: Bob Accepts Stanza Session

<message from=’bob@example.com/laptop’ to=’alice@example.org/pda’>
<thread>ffd7076498744578d10edabfe7f4a866</thread>
<feature xmlns=’http://jabber.org/protocol/feature-neg’>
<x type=’submit’ xmlns=’jabber:x:data’>
<field var=’FORM_TYPE’>
<value>urn:xmpp:ssn</value>
</field>
<field var=’accept’><value>1</value></field>
<field var=’otr’><value>true</value></field>

/4 ONLINE ESESSION NEGOTIATION

<field var=’disclosure’><value>never</value></field>
<field var=’security’><value>c2s</value></field>
</ x>
</feature>
</message>

4.3 ESession Response (Bob)
4.3.1 Diffie-Hellman Preparation (Bob)

If Bob supports one or more of each of Alice’s ESession options and is willing to start an ESes-
sion with Alice, then he MUST select one of the options from each of the negotiable ESession
fields ("modp”, "stanzas”, "ver”) he received from Alice, including one of the MODP groups
and Alice’s corresponding value of 'He’. Note: MODP group 14, with its 2048-bit modulus,
could be considered a good match for AES-128, however CPU-constrained implementations
MAY select a smaller group.

Note: Each MODP group has at least two well known constants: a large prime number p, and a
generator g for a subgroup of GF(p).

Bob MUST then perform the following computations (where n is 128, the number of bits per

cipher block for AES-128):
1. Generate a random number NB (his ESession ID)

2. Generate an n-bit random number CA (the block cipher counter for stanzas sent from
Alice to Bob)

3. Set CB = CA XOR 2"~ ! (where CB is the block counter for stanzas sent from Bob to Alice)
4. Generate a secret random number y (where 22"~ <y <p-1)

5. Calculate d = g¥ mod p

4.3.2 Response Form

Bob SHOULD generate the form that he will send back to Alice, including his responses for
all the fields Alice sent him except that he MUST NOT include a ’dhhashes’ field. The form
SHOULD include the fields and associated values listed in the Fixed Parameters table (see
ESession Request).

He MUST place his Base64 encoded values of NB and d in the 'my_nonce’ and 'dhkeys’ fields.
Note: Bob MUST NOT return Alice’s value of NA in the 'my_nonce’ field.

/4 ONLINE ESESSION NEGOTIATION

Bob MUST encapsulate the Base64 encoded values of CA and Alice’s NA in two new "counter’
and 'nonce’ fields and append them to the form.
Bob SHOULD respond to Alice by sending her the form (formB).

Listing 6: Bob Responds to Alice

<message from=’bob@example.com/laptop’ to=’alice@example.org/pda’>
<thread>ffd7076498744578d10edabfe7f4a866</thread>
<feature xmlns=’http://jabber.org/protocol/feature-neg’>
<x type=’submit’ xmlns=’jabber:x:data’>
<field var=’FORM_TYPE’>
<value>urn:xmpp:ssn</value>
</field>
<field var=’accept’><value>1</value></field>
<field var=’otr’><value>true</value></field>
<field var=’disclosure’><value>never</value></field>
<field var=’security’><value>e2e</value></field>
<field var=’modp’><value>5</value></field>
<field var=’crypt_algs’><value>aes128-ctr</value></field>
<field var=’hash_algs’><value>sha256</value></field>
<field var=’compress’><value>none</value></field>
<field var=’stanzas’><value>message</value></field>
<field var=’init_pubkey’><value>none</value></field>
<field var=’resp_pubkey’><value>none</value></field>
<field var=’ver’><value>1.3</value></field>
<field var=’rekey_freq’><value>4294967295</value></field>
<field var=’my_nonce’>
<value> ** Bob’s_Base64_encoded_ESession_ID_*x*_</value>
uuuuuu </field>
uuuuuu <field_.var=’sas_algs’><value>sas28x5</value></field>
uuuuuu <field_var=’dhkeys’>
HHHHHHHH <value>_**_Base64_encoded_value_of_d_*x_</value>
uuuuuu </field>
uuuuuu <field_var=’nonce’>
uuuuuuuu <value>_*x*_Alice’s Base64 encoded ESession ID ** </value>
</field>
<field var=’counter’>
<value> ** Base64 encoded block counter *x </value>
</field>
</ x>
</feature>
</message>

/4 ONLINE ESESSION NEGOTIATION

4.4 ESession Accept (Alice)
4.4.1 Diffie-Hellman Preparation (Alice)

After Alice receives Bob’s response, she MUST use the value of d and the ESession options
specified in Bob’s response to perform the following steps (where p and g are the constants
associated with the selected MODP group, and n is 128 - the number of bits per cipher block):

1. Verify that the ESession options selected by Bob are acceptable
2. Return a <not-acceptable/> error to Bob unless: 1<d <p-1
3. Set CB = CA XOR 2"~ ! (where CB is the block counter for stanzas sent from Bob to Alice)

4. Select her values of x and e that correspond to the selected MODP group (from all the
values of x and e she calculated previously - see ESession Request)

5. Calculate K = SHA256(d” mod p) (the shared secret)

6. Generate provisory session keys only for the messages Alice sends to Bob (KCA, KMA,
KSA) - see the next section, Generating Session Keys.

4.4.2 Generating Session Keys

Alice MUST use HMAC with SHA256 and the shared secret ("K”) to generate two sets of three
keys, one set for each direction of the ESession.
For stanzas that Alice will send to Bob, the keys are calculated as:

1. Encryption key KCA = HMAC(SHA256, K, "Initiator Cipher Key”)
2. Integrity key KMA = HMAC(SHA256, K, "Initiator MAC Key”)
3. SIGMA key KSA = HMAC(SHA256, K, "Initiator SIGMA Key”)

For stanzas that Bob will send to Alice the keys are calculated as:

/4 ONLINE ESESSION NEGOTIATION

1. Encryption key KCB = HMAC(SHA256, K, "Responder Cipher Key”)

2. Integrity key KMB = HMAC(SHA256, K, "Responder MAC Key”)

3. SIGMA key KSB = HMAC(SHA256, K, "Responder SIGMA Key”)

Note: Only the 128 least significant bits of the HMAC output must be used for each key.
Once the sets of keys have been calculated the value of K MUST be securely destroyed, unless
it will be used later to generate the final shared secret (see Generating Bob’s Final Session Keys).

4.4.3 Hiding Alice’s Identity

Alice MUST perform the following steps before she can prove her identity to Bob while
protecting it from third parties.

1. Set formA to be the full Normalized content of the ESession Request data form that Alice
sent to Bob at the start of the negotiation.

2. Set formA2 to be the full Normalized content of Alice’s session negotiation completion
form excluding the "identity’ and 'mac’ fields (see Sending Alice’s Identity below).

3. Concatenate Bob’s ESession ID, Alice’s ESession ID, e, formA and formA2, and calculate
the HMAC of the resulting byte string using SHA256 and the key KSA.

macA = HMAC(SHA256, KSA, {NB, NA, e, formA, formA2})

4. Encrypt the HMAC result with AES-128 in counter mode (see Recommendation for Block
Cipher Modes of Operation °), using the encryption key KCA and block counter CA.
Note: CA MUST be incremented by 1 for each encrypted block or partial block (i.e. CA =
(CA + 1) mod 2™, where n is 128 - the number of bits per cipher block).

IDA = CIPHER(KCA, CA, macA)

5. Calculate the HMAC of the encrypted identity (IDA) and the value of Bob’s block cipher
counter CA before the encryption above using SHA256 and the integrity key KMA.

>Recommendation for Block Cipher Modes of Operation: Federal Information Processing Standards Publication
800-38a <http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf>.

10

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

/4 ONLINE ESESSION NEGOTIATION

MA = HMAC (SHA256, KMA, CA, IDA)

4.4.4 Sending Alice’s Identity

Alice MUST send the Base64 encoded values of NB (wrapped in a 'nonce’ field), IDA (wrapped
in an ’identity’ field) and MA (wrapped in a 'mac’ field) to Bob in her session negotiation
completion message.

Alice MUST also include in the data form her Base64 encoded values of e (wrapped in a
"dhkeys’ field) and the Base64 encoded HMAC (using SHA256 and the key NA ©) of each secret
(if any) that Alice has retained from her previous session with each of Bob’s clients (wrapped
in a 'rshashes’ field) - see Sending Bob’s Identity. Note: Alice MUST also append a few random
numbers to the 'rshashes’ field to make it difficult for an active attacker to discover if she has
communicated with Bob before or how many clients Bob has used to communicate with her.

Listing 7: Alice Sends Bob Her Identity

<message from=’alice@example.org/pda’ to=’bob@example.com/laptop’>
<thread>ffd7076498744578d10edabfe7f4a866</thread>
<feature xmlns=’http://jabber.org/protocol/feature-neg’>
<x type=’result’ xmlns=’jabber:x:data’>
<field var=’FORM_TYPE’><value>urn:xmpp:ssn</value></field>
<field var=’accept’><value>1</value></field>
<field var=’nonce’><value> *x Bob’s._.Base64_encoded_ESession_ID.
*%_</value></field>
uuuuuu <field_type=’hidden’_var=’dhkeys’>
uuuuuuuu <value>_x**_Base64_encoded_value_of_e5_%*x_</value>
uuuuuu </field>
HHHHHH <field_type=’hidden’_var=’rshashes’>
uuuuuuuu <value>_**_Base64_encoded_hash_of_retained_secret_**x_</value>
uuuuuuuu <value>_%**_Base64_encoded_hash_of_retained_secret_*x_</value>
uuuuuuuu <value>_x**_Base64_encoded_random_value_**x_</value>
uuuuuuuu <value>_x**_Base64_encoded_random_value_**x_</value>
HHHHHH </field>
HHHHHH <field_var=’identity’><value>_**_Encrypted_identity_**x_</value
></field>
uuuuuu <field_var=’mac’><value>_*x_Integrity_of_identity_*x_</value></
field>
oo </ x>
.</feature>
</message>

16The HMACs of the retained secrets are generated using Alice’s unique session nonce to prevent her being iden-
tified by her retained secrets (only one secret changes each session, and some might not change very often).

11

/4 ONLINE ESESSION NEGOTIATION

4.5 ESession Accept (Bob)
4.5.1 Generating Provisory Session Keys (Bob)

Bob MUST perform the following four steps:

1. Return a <feature-not-implemented/> error unless SHA256(e) equals "He’, the value he
received from Alice in her original session request.

2. Return a <feature-not-implemented/> error unless: 1<e<p-1

3. Use the value of e he received from Alice, his secret value of y and their agreed value of
p to calculate the value of the Diffie-Hellman shared secret: K = SHA256(e¥ mod p)

4, Generate Alice’s provisory session keys (KCA, KMA, KSA) in exactly the same way as
specified in the Generating Session Keys section.

4.5.2 Verifying Alice’s Identity

Bob MUST also perform the following steps:

1. Calculate the HMAC of the encrypted identity (IDA) and the value of Alice’s block cipher
counter using SHA256 and the integrity key KMA.

MA = HMAC(SHA256, KMA, CA, IDA)

2. Return a <feature-not-implemented/> error to Alice unless the value of MA he calcu-
lated matches the one he received in the 'mac’ field

3. Obtain macB by decrypting IDA with the AES-128 symmetric block cipher algorithm
("DECIPHER”) in counter mode, using the encryption key KCA and block counter CA.
Note: CA MUST be incremented by 1 for each encrypted block or partial block (i.e. CA =
(CA + 1) mod 2™, where n is 128 - the number of bits per cipher block).

macA = DECIPHER(KCA, CA, IDA)

4. Set the value of formA to be the full Normalized content of the ESession Request data
form that Alice sent to Bob at the start of the negotiation.

12

/4 ONLINE ESESSION NEGOTIATION

5. Set the value of formA2 to be the full Normalized content of Alice’s session negotiation
completion form excluding the ’identity’ and 'mac’ fields (see Sending Alice’s Identity).

6. Concatenate Bob’s ESession ID, Alice’s ESession ID, e, formA and formA?2, and calculate
the HMAC of the resulting byte string using SHA256 and the key KSA.

macA = HMAC (SHA256, KSA, {NB, NA, e, formA, formA2})

7. Return a <feature-not-implemented/> error to Alice if the two values of macA he
calculated in the steps above do not match.

4.5.3 Short Authentication String

Bob and Alice MAY confirm out-of-band that the Short Authentication Strings (SAS) their
clients generate for them (using the SAS generation algorithm that they agreed on) are the
same. This out-of-band step MAY be performed at any time. However, they SHOULD confirm
out-of-band that their SAS match as soon as they realise that the two clients have no retained
secret in common (see Generating Bob’s Final Session Keys below, or Generating Alice’s
Final Session Keys). However, if it is inconvenient for Bob and Alice to confirm the match
immediately, both clients MAY remember (in a secure way) that a SAS match has not yet been
confirmed and remind Bob and Alice at the start of each ESession that they should confirm the
SAS match (even if they have a retained secret in common). Their clients should continue to
remind them until they either confirm a SAS match, or indicate that security is not important
enough for them to bother.

4.5.4 Generating Bob’s Final Session Keys

Bob MUST identify the shared retained secret (SRS) by selecting from his client’s list of
the secrets it retained (if any) from previous sessions with Alice’s clients (i.e., secrets from
sessions where the bare]ID was the same as the one Alice is currently using). Note: The list
contains the most recent shared secret for each of Alice’s clients that she has previously used
to negotiate ESessions with the client Bob is currently using.

Bob does this by calculating the HMAC (using SHA256 and the key NA) of each secret in the
list in turn and comparing it with each of the values in the rshashes’ field he received from
Alice (see Sending Alice’s Identity). Once he finds a match, and has confirmed that the secret
has not expired (because it is older than an implementation-defined period of time), then he
has found the SRS.

If Bob cannot find a match, then he SHOULD search through all the retained secrets that
have not expired (if any) for all the other JIDs his client has communicated with to try to
find a match with one of the values in the 'rshashes’ field he received from Alice (since she
may simply be using a different JID, perhaps in order to protect her identity from third

13

/4 ONLINE ESESSION NEGOTIATION

parties). Once he finds a match then he has found the SRS. Note: Resource-constrained
implementations MAY make the performance of this second extended search an optional
feature.

Bob MUST calculate the final session key by appending to K (the Diffie-Hellman shared secret)
the SRS (only if one was found) and then the Other Shared Secret (only if one exists) and then
setting K to be the SHA256 result of the concatenated string of bytes:

K = SHA256 (K | SRS | 0SS)

Bob MUST now use the new value of K to generate the new session keys (KCA, KMA, KCB,
KMB and KSB) - see Generating Session Keys. These keys will be used to exchange encrypted
stanzas. Note: Bob will still need the value of K in the next section.

4.5.5 Sending Bob’s Identity

Bob MUST now prove his identity to Alice while protecting it from third parties. He MUST
perform the steps equivalent to those Alice performed above (see Hiding Alice’s Identity for a
more detailed description). Bob’s calculations are summarised below. Note: When calculating
macB pay attention to the order of NA and NB.

Note: formB is the full Normalized content of the reponse data form he generated above
(see Response Form), and formB2 is the full Normalized content of Bob’s session negotiation
completion form excluding the ’identity’ and 'mac’ fields (see below).

macB = HMAC(SHA256, KSB, {NA, NB, d, formB, formB2})

IDB = CIPHER(KCB, CB, macB)

MB = HMAC(SHA256, KMB, CB, IDB)

Bob MUST send Alice the Base64 encoded value of the HMAC (using SHA256 and the key SRS)
of the string "Shared Retained Secret” (wrapped in an ’srshash’ field). If no SRS was found
then he MUST use a random number instead. 7

HMAC (SHA256, SRS, ”Shared._Retained.Secret”)

Bob MUST also include in the data form the Base64 encoded values of NA, and IDB and MB
(that he just calculated). Note: He MAY also send encrypted content (see Stanza Encryption)
in the same stanza.

7Bob always sends a value in the "srshash’ field to prevent an attacker learning that the session is not protected
by a retained secret.

14

/4 ONLINE ESESSION NEGOTIATION

Listing 8: Bob Sends Alice His Identity

<message from=’bob@example.com/laptop’ to=’alice@example.org/pda’>
<thread>ffd7076498744578d10edabfe7f4a866</thread>
<init xmlns=’http://www.xmpp.org/extensions/xep-0@116.html#ns-init’>
<x type='result’ xmlns=’jabber:x:data’>
<field var=’FORM_TYPE’><value>urn:xmpp:ssn</value></field>
<field var=’nonce’><value> #*x Alice’s_Base64_encoded_ESession_ID
*x</value></field>
uuuuuu <field_var=’srshash’><value>_**x_HMAC_with_shared_retained_secret
*x*x</value></field>
uuuuuu <field_var=’identity’><value>_**_Encrypted_identity_**x_</value
></field>
uuuuuu <field_var="mac’><value>_x*x_Integrity_of_identity_*x*x_</value></
field>
oo </ x>
o</init>
o<c_xmlns="http://www.xmpp.org/extensions/xep-0200.html#ns’>
ceoo<data>_x*_Baseb4_encoded_m_final_*x*x_</data>
cooo<mac>_**_Base64_encoded_a_mac._**_</mac>
L.</c>
</message>

Finally, Bob MUST destroy all his copies of the old retained secret (SRS) he was keeping for
Alice’s client, and calculate a new retained secret for this session:

HMAC (SHA256 , K, ”New_Retained_Secret?”)

Bob MUST securely store the new value along with the retained secrets his client shares with
Alice’s other clients.
Bob’s value of K MUST now be securely destroyed.

4.6 Final Steps (Alice)
4.6.1 Generating Alice’s Final Session Keys

Alice MUST identify the shared retained secret (SRS) by selecting from her client’s list of the
secrets it retained from sessions with Bob’s clients (the most recent secret for each of the
clients he has used to negotiate ESessions with Alice’s client).

Alice does this by using each secret in the list in turn as the key to calculate the HMAC (with
SHA256) of the string "Shared Retained Secret”, and comparing the calculated value with
the value in the "srshash’ field she received from Bob (see Sending Bob’s Identity). Once she
finds a match, and has confirmed that the secret has not expired (because it is older than an
implementation-defined period of time), then she has found the SRS.

Alice MUST calculate the final session key by appending to K (the Diffie-Hellman shared
secret) the SRS (only if one was found) and then the Other Shared Secret (only if one exists)

15

/5 [ESESSION TERMINATION

and then setting K to be the SHA256 result of the concatenated string of bytes:

K = SHA256(K | SRS | 0SS)

Alice MUST destroy all her copies of the old retained secret (SRS) she was keeping for Bob’s
client, and calculate a new retained secret for this session:

HMAC (SHA256, K, ”"New_Retained_Secret”)

Alice MUST securely store the new value along with the retained secrets her client shares with
Bob’s other clients.

Alice MUST now use the new value of K to generate the new session keys (KCA, KMA, KCB,
KMB and KSB) in exactly the same way as Bob did (see Generating Session Keys). These keys
will be used to exchange encrypted stanzas.

4.6.2 Verifying Bob’s Identity

Finally, Alice MUST verify the identity she received from Bob. She does this by performing
steps equivalent to those performed by Bob above (see Verifying Alice’s Identity for a more
detailed description).

Alice’s calculations are summarised below. Note: formB is the full Normalized content of the
initial reponse data form Alice received from Bob (see Response Form), and formB2 is the
full Normalized content of the session negotiation completion form she received from Bob
excluding the ’identity’ and 'mac’ fields (see Sending Bob’s Identity). Note: When calculating
macB pay attention to the order of NA and NB.

MB = HMAC(SHA256, KMB, CB, IDB)

macB = DECIPHER(KCB, CB, IDB)

macB = HMAC(SHA256, KSB, {NA, NB, d, formB, formB2})

Note: If Alice discovers an error then she SHOULD ignore any encrypted content she received
in the stanza.

Once ESession negotiation is complete, Alice and Bob MUST exchange only encrypted forms
of the one-to-one stanza types they agreed upon (e.g., <message/> and <iq/> stanzas) within
the session.

5 ESession Termination

Either entity MAY terminate an ESession at any time. Entities MUST terminate all open ESes-
sions before they go offline. To terminate an ESession Alice MUST send an encrypted stanza

16

/6 IMPLEMENTATION NOTES

(see Stanza Encryption) to Bob including within the encrypted XML of the <data/> element
a stanza session negotiation form with a "terminate” field (as specified in the Termination
section of Stanza Session Negotiation). She MUST then securely destroy all keys associated
with the ESession.

Listing 9: Alice Terminates an ESession

<message from=’alice@example.org/pda’ to=’bob@example.com/laptop’>
<thread>ffd7076498744578d10edabfe7f4a866</thread>
<c xmlns="http://www.xmpp.org/extensions/xep-0200.html#ns’>
<data> ** Base64 encoded encrypted terminate form *x* </data>
<mac> ** Base64 encoded a_mac ** </mac>
</c>
</message>

When Bob receives a termination stanza he MUST verify the MAC (to be sure he received
all the stanzas Alice sent him during the ESession) and immediately send an encrypted ter-
mination acknowledgement form (as specified in the Termination section of Stanza Session
Negotiation) back to Alice. He MUST then securely destroy all keys associated with the
ESession.

Listing 10: Bob Acknowledges ESession Termination

<message from=’bob@example.com/laptop’ to="alice@example.org/pda’>
<thread>ffd7076498744578d10edabfe7f4a866</thread>
<c xmlns="http://www.xmpp.org/extensions/xep-0200.html#ns’>
<data> *x Base64 encoded encrypted acknowledgement form x* </data>
<mac> ** Base64 encoded b_mac ** </mac>
</c>
</message>

When Alice receives the stanza she MUST verify the MAC to be sure she received all the stan-
zas Bob sent her during the ESession. Once an entity has sent a termination or termination
acknowledgement stanza it MUST NOT send another stanza within the ESession.

6 Implementation Notes

6.1 Multiple-Precision Integers

Before Base-64 encoding, hashing or HMACing an arbitrary-length integer, the integer MUST
tirst be converted to a "big endian” bitstring. The bitstring MUST then be padded with leading
zero bits so that there are an integral number of octets. Finally, if the integer is not of fixed
bit-length (i.e. not a hash or HMAC result) and the bitstring contains leading octets that are
zero, these MUST be removed (so the high-order octet is non-zero).

17

\J 7 SECURITY CONSIDERATIONS

6.2 XML Normalization

Before the signature or MAC of a block of XML is generated or verified, all character data
between all elements MUST be removed and the XML MUST be converted to canonical form
(see Canonical XML 8).

All the XML this protocol requires to be signed or MACed is very simple, so in this case,
canonicalization SHOULD only require the following changes:

« Set attribute value delimiters to single quotation marks (i.e. simply replace all single
quotes in the serialized XML with double quotes)

« Impose lexicographic order on the attributes of "field” elements (i.e. ensure "type” is
before "var”)

Implementations MAY conceivably also need to make the following changes. Note: Empty
elements and special characters SHOULD NOT appear in the signed or MACed XML specified
in this protocol.

« Ensure there are no character references
« Convert empty elements to start-end tag pairs
* Ensure there is no whitespace except for single spaces before attributes

* Ensure there are no "xmlns” attributes or namespace prefixes.

7 Security Considerations

7.1 Random Numbers

Weak pseudo-random number generators (PRNG) enable successful attacks. Implementors
MUST use a cryptographically strong PRNG to generate all random numbers (see RFC 1750 1°).

7.2 Replay Attacks

Alice and Bob MUST ensure that the value of e or d they provide when negotiating each online
ESession is unique. This prevents complete online ESessions being replayed.

Canonical XML 1.0 <http: //www.w3.org/TR/xml-c14n>,
YRFC 1750: Randomness Recommendations for Security <http://tools.ietf.org/html/rfc1750>.

18

http://www.w3.org/TR/xml-c14n
http://tools.ietf.org/html/rfc1750
http://www.w3.org/TR/xml-c14n
http://tools.ietf.org/html/rfc1750

\J 7 SECURITY CONSIDERATIONS

7.3 Unverified SAS

Since very few people bother to (consistently) verify SAS, entities SHOULD protect against
‘man-in-the-middle’ attacks using retained secrets (and/or other secrets). Entities SHOULD
remember whether or not the whole chain of retained secrets (and the associated sessions)
has ever been validated by the user verifying a SAS.

7.4 Back Doors

The authors and the XSF would like to discourage the deliberate inclusion of "back doors”
in implementations of this protocol. However, we recognize that some organizations must
monitor stanza sessions or record stanza sessions in decryptable form for legal compliance
reasons, or may choose to monitor stanza sessions for quality assurance purposes. In these
cases it is important to inform the other entity of the (potential for) disclosure before starting
the ESession (if only to maintain public confidence in this protocol).

Both implementations MUST immediately and clearly inform their users if the negotiated
value of the "disclose’ field is not 'never’.

Before disclosing any stanza session, an entity SHOULD either negotiate the value of the
"disclose’ field to be ’enabled’ or terminate the negotiation unsuccessfully. It MUST NOT
negotiate the value of the 'disclose’ field to be ’disabled” unless it would be illegal for it to
divulge the disclosure to the other entity.

In any case an implementation MUST NOT negotiate the value of the ’disclose’ field to
be 'never’ unless it implements no feature or mechanism (not even a disabled feature or
mechanism) that could be used directly or indirectly to divulge to any third-party either
the identites of the participants, or the keys, or the content of any ESession (or information
that could be used to recover any of those items). If an implementation deliberately fails to
observe this last point (or fails to correct an accidental back door) then it is not compliant
with this protocol and MUST NOT either claim or imply any compliance with this protocol or
any of the other protocols developed by the authors or the XSF. In this case the authors and
the XSF reserve all rights regarding the names of the protocols.

The expectation is that this legal requirement will persuade many implementors either to tell
the users of their products that a back door exists, or not to implement a back door at all (if,
once informed, the market demands that).

7.5 Extra Responsabilities of Implementors

Cryptography plays only a small part in an entity’s security. Even if it implements this protocol
perfectly it may still be vulnerable to other attacks. For examples, an implementation might
store ESession keys on swap space or save private keys to a file in cleartext! Implementors
MUST take very great care when developing applications with secure technologies.

19

/10 IANA CONSIDERATIONS

8 Mandatory to Implement Technologies

An implementation of this protocol MUST support the following algorithms:

« Diffie-Hellman Key Agreement
+ The block cipher algorithm "aes128-ctr” (see AES *°)
« The hash algorithm ”sha256” (see Secure Hash Standard)

HMAC (see Section 2 of RFC 2104 %)

« The Short Authentication String generation algorithm “sas28x5” (see The sas28x5 SAS
Algorithm)

9 The sas28x5 SAS Algorithm

Given the multi-precision integer MA (a big-endian byte array), the UTF-8 byte string formB
(see Hiding Bob’s Identity) and SHA256, the following steps can be used to calculate a 5-
character SAS with over 16 million possible values that is easy to read and communicate
verbally:

1. Concatenate MA, formB and the UTF-8 byte string "Short Authentication String” into a
string of bytes

2. Calculate the least significant 24-bits of the SHA256 of the string

3. Convert the 24-bit integer into a base-28 ?* 5-character string using the following
"digits”: acdefghikmopqruvwxy123456789 (the digits have values 0-27)

10 TANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
23

»pdvanced Encryption Standard: Federal Information Processing Standards Publication 197 <http://csrc.nis
t.gov/publications/fips/fips197/fips-197.pdf>.

'RFC 2104: HMAC: Keyed-Hashing for Message Authentication <http://tools.ietf.org/html/rfc2104>,

*’Base-28 was used instead of Base-36 because some characters are often confused when communicated verbally
(n,s, b, t, z,j), and because zero is often read as the letter ’0’, and the letter '’ is often read as the number '1’.

“The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

20

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://tools.ietf.org/html/rfc2104
http://www.iana.org/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://tools.ietf.org/html/rfc2104
http://www.iana.org/

\/ 11 XMPP REGISTRAR CONSIDERATIONS

11 XMPP Registrar Considerations

See Encrypted Session Negotiation.

21

	Introduction
	Dramatis Personae
	Discovering Support
	Online ESession Negotiation
	ESession Request (Alice)
	ESession Rejection (Bob)
	ESession Response (Bob)
	Diffie-Hellman Preparation (Bob)
	Response Form

	ESession Accept (Alice)
	Diffie-Hellman Preparation (Alice)
	Generating Session Keys
	Hiding Alice's Identity
	Sending Alice's Identity

	ESession Accept (Bob)
	Generating Provisory Session Keys (Bob)
	Verifying Alice's Identity
	Short Authentication String
	Generating Bob's Final Session Keys
	Sending Bob's Identity

	Final Steps (Alice)
	Generating Alice's Final Session Keys
	Verifying Bob's Identity

	ESession Termination
	Implementation Notes
	Multiple-Precision Integers
	XML Normalization

	Security Considerations
	Random Numbers
	Replay Attacks
	Unverified SAS
	Back Doors
	Extra Responsabilities of Implementors

	Mandatory to Implement Technologies
	The sas28x5 SAS Algorithm
	IANA Considerations
	XMPP Registrar Considerations

