
XEP-0237: Roster Versioning

Peter Saint-Andre
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/

Dave Cridland
mailto:dave@hellopando.com
xmpp:dwd@dave.cridland.net

2012-02-08
Version 1.3

Status Type Short Name
Obsolete Standards Track N/A

This specification defines a proposedmodification to the XMPP roster protocol that enables versioning
of rosters such that the server will not send the roster to the client if the roster has not been modified,
thus saving bandwidth during session establishment.

mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/
mailto:dave@hellopando.com
xmpp:dwd@dave.cridland.net

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Protocol 1
2.1 Stream Feature . 1
2.2 Data Format . 1
2.3 Client Request . 2
2.4 Server Response . 2

3 Examples 4

4 Implementation Guidelines 5
4.1 Syntactic Conformance . 6
4.2 Exact-Match Conformance . 6
4.3 Add-Only Conformance . 6
4.4 Sending Pushes . 7
4.5 Client Implementation Guidelines . 7

5 Security Considerations 7

6 IANA Considerations 7

7 XMPP Registrar Considerations 7
7.1 Protocol Namespaces . 7

8 XML Schemas 8
8.1 jabber:iq:roster . 8
8.2 Stream Feature . 8

9 Acknowledgements 9

2 PROTOCOL

1 Introduction
Although XMPP rosters can become quite large, they tend to change infrequently. Therefore
it can be inefficient for the server to send the roster to the client during session establishment
if the roster has not been modified. This document defines a small modification to the XMPP
roster protocol specified in XMPP IM 1 that enables ”versioning” of roster information.
The basic model is that if the client specifies a version ID when it requests the roster, the
server returns an empty IQ-result. If the roster has been modified, the server sends versioned
roster pushes for each roster item that has been touched in anyway since the version specified
by the client. The client processes each roster push as it normally would, modifying its local
version ID with each roster push it receives. This enables the client to receive only the items
that have been modified, not the entire roster.
Note: The protocol described herein has been incorporated into RFC 6121 2.

2 Protocol
2.1 Stream Feature
If a server supports roster versioning, it MUST inform the connecting entity when returning
stream features during the stream negotiation process (at the latest, when informing a client
that resource binding is required). This is done by including a <ver/> element qualified by the
’urn:xmpp:features:rosterver’ namespace.

Listing 1: Stream features
<stream:features >

<bind xmlns=’urn:ietf:params:xml:ns:xmpp -bind’>
<required/>

</bind>
<ver xmlns=’urn:xmpp:features:rosterver ’/>

</stream:features >

The roster versioning stream feature is merely informative and therefore is never mandatory-
to-negotiate.

2.2 Data Format
This document adds a new ’ver’ attribute to the <query/> element qualified by the ’jab-
ber:iq:roster’ namespace, defined as follows.

1RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc6121>.

2RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc6121>.

1

http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121

2 PROTOCOL

Definition: The ’ver’ attribute is a string that identifies a particular version of the roster
information. The value MUST be generated only by the server and MUST be treated by the
client as opaque. The server can use any appropriate method for generating the version ID,
such as a hash of the roster data or a strictly-increasing sequence number.

2.3 Client Request
If a client supports roster versioning and the server to which it has connected advertises
support for roster versioning as described under Stream Feature, then the client MUST
include the ’ver’ element in its request for the roster. If the server does not advertise support
for roster versioning, the client MUST NOT include the ’ver’ attribute. If the client includes
the ’ver’ attribute in its roster get, it sets the attribute’s value to the version ID associated
with its last cache of the roster.

Listing 2: Roster get with version ID
C: <iq from=’romeo@montague.lit/home’ id=’r1h3vzp7 ’ to=’romeo@montague

.lit’ type=’get’>
<query xmlns=’jabber:iq:roster ’ ver=’ver14 ’/>

</iq>

If the client has not yet cached the roster or the cache is lost or corrupted, but the client
wishes to bootstrap the use of roster versioning, it MUST set the ’ver’ attribute to the empty
string (i.e., ver=””).
Naturally, if the client does not support roster versioning or does not wish to bootstrap the
use of roster versioning, it will behave like an RFC-3921-compliant client by not including the
’ver’ attribute.

2.4 Server Response
Whether or not the roster has been modified since the version ID enumerated by the client,
the server MUST either return the complete roster as described in RFC 3921 (including a ’ver’
attribute that signals the latest version) or return an empty IQ-result (thus indicating that
any roster modifications will be sent via roster pushes, as described below). In general, unless
returning the complete roster would (1) use less bandwidth than sending individual roster
pushes to the client (e.g., if the roster contains only a few items) or (2) the server cannot
associate the version ID with any previous version it has on file, the server SHOULD send an
empty IQ-result and then send the modifications (if any) via roster pushes.

Listing 3: Empty roster result
S: <iq from=’romeo@montague.lit’ id=’r1h3vzp7 ’ to=’romeo@montague.lit/

home’ type=’result ’/>

2

2 PROTOCOL

Note: This empty IQ-result is different from an empty <query/>, thus disambiguating this
usage from an empty roster.
If the roster has not been modified since the version ID enumerated by the client, the server
will simply not send any roster pushes to the client (until and unless some relevant event
triggers a roster push during the lifetime of the client’s session).
If the roster has beenmodified since the version ID enumerated by the client, the serverMUST
then send one roster push to the client for each roster item that has been modified since the
version ID enumerated by the client. (We call a roster push that is sent for purposes of roster
version synchronization an ”interim roster push”.)
Definition: A ”roster modification” is any modification to the roster data that would result
in a roster push to a connected client. Therefore internal states related to roster processing
within the server that would not result in a roster push to a connected client do not necessitate
a change to the version.

Listing 4: Roster pushes
S: <iq from=’romeo@montague.lit’ id=’ah382g67 ’ to=’romeo@montague.lit/

home’ type=’set’>
<query xmlns=’jabber:iq:roster ’ ver=’ver34 ’>

<item jid=’tybalt@shakespeare.lit’ subscription=’remove ’/>
</query >

</iq>

S: <iq from=’romeo@montague.lit’ id=’b2gs90j5 ’ to=’romeo@montague.lit/
home’ type=’set’>
<query xmlns=’jabber:iq:roster ’ ver=’ver42 ’>

<item jid=’bill@shakespeare.lit’ subscription=’both’/>
</query >

</iq>

S: <iq from=’romeo@montague.lit’ id=’c73gs419 ’ to=’romeo@montague.lit/
home’ type=’set’>
<query xmlns=’jabber:iq:roster ’ ver=’ver72 ’>

<item jid=’nurse@shakespeare.lit’ name=’Nurse ’ subscription=’to
’>

<group >Servants </group >
</item>

</query >
</iq>

S: <iq from=’romeo@montague.lit’ id=’dh361f35 ’ to=’romeo@montague.lit/
home’ type=’set’>
<query xmlns=’jabber:iq:roster ’ ver=’ver96 ’>

<item jid=’juliet@shakespeare.lit’ name=’Juliet ’ subscription=’
both’>

<group >VIPs</group >
</item>

</query >

3

3 EXAMPLES

</iq>

These ”interim roster pushes” can be understood as follows:

1. Imagine that the client had an active presence session for the entire time between its
cached roster version (say, ”ver14”) and the new roster version (say, ”ver96”).

2. During that time, the client might have received roster pushes related to various ros-
ter versions. However, some of those roster pushes might have contained intermedi-
ate updates to the same roster item (e.g., modifications to the subscription state for
bill@shakespeare.lit from ”none” to ”to” and from ”to” to ”both”).

3. The interim roster pushes would not include all of the intermediate steps, only the final
result of all modifications applied to each item while the client was in fact offline (say,
”ver34”, ”ver42”, ”ver72”, and ”ver96”).

The client MUST handle an ”interim roster push” in the same way it handles any roster push
(indeed, from the client’s perspective it cannot tell the difference between an ”interim” roster
push and a ”live” roster push). If the client’s session ends before it receives all of the interim
roster pushes, when requesting the roster after reconnection it SHOULD request the version
associated with the last roster push it received during the session that was disconnected, not
the version associated with the roster result it received at the start of the session that was
disconnected.
When roster versioning is enabled, the server MUST include the updated roster version
with each roster push. Roster pushes MUST occur in order of modification and the version
contained in a roster push MUST be unique.

3 Examples
This section provides a detailed scenario that illustrates the use of roster versioning. In this
example the client gets disconnected before the server has had a chance to send all of its
roster pushes, but this is immaterial to the synchronization process.

Listing 5: The roster synchronization process
C: <iq from=’romeo@montague.lit/home’ id=’r1h3vzp7 ’ to=’romeo@montague

.lit’ type=’get’>
<query xmlns=’jabber:iq:roster ’ ver=’ver14 ’/>

</iq>

S: <iq from=’romeo@montague.lit’ id=’r1h3vzp7 ’ to=’romeo@montague.lit/
home’ type=’result ’/>

S: <iq from=’romeo@montague.lit’ id=’ah382g67 ’ to=’romeo@montague.lit/
home’ type=’set’>

4

4 IMPLEMENTATION GUIDELINES

<query xmlns=’jabber:iq:roster ’ ver=’ver34 ’>
<item jid=’tybalt@shakespeare.lit’ subscription=’remove ’/>

</query >
</iq>

S: <iq from=’romeo@montague.lit’ id=’b2gs90j5 ’ to=’romeo@montague.lit/
home’ type=’set’>
<query xmlns=’jabber:iq:roster ’ ver=’ver42 ’>

<item jid=’bill@shakespeare.lit’ subscription=’both’/>
</query >

</iq>

S: </stream:stream >

[reconnection]

C: <iq from=’romeo@montague.lit/home’ id=’r2xa7gf9 ’ to=’romeo@montague
.lit’ type=’get’>

<query xmlns=’jabber:iq:roster ’ ver=’ver42 ’/>
</iq>

S: <iq from=’romeo@montague.lit’ id=’r2xa7gf9 ’ to=’romeo@montague.lit/
home’ type=’result ’/>

S: <iq from=’romeo@montague.lit’ id=’c73gs419 ’ to=’romeo@montague.lit/
home’ type=’set’>
<query xmlns=’jabber:iq:roster ’ ver=’ver72 ’>

<item jid=’nurse@shakespeare.lit’ name=’Nurse ’ subscription=’to
’>

<group >Servants </group >
</item>

</query >
</iq>

S: <iq from=’romeo@montague.lit’ id=’dh361f35 ’ to=’romeo@montague.lit/
home’ type=’set’>
<query xmlns=’jabber:iq:roster ’ ver=’ver96 ’>

<item jid=’juliet@shakespeare.lit’ name=’Juliet ’ subscription=’
both’>

<group >VIPs</group >
</item>

</query >
</iq>

4 Implementation Guidelines
This specification is specifically designed to allow for a wide range of implementation choices.
These range from highly simplistic but inefficient, to very efficient but quite complex.

5

4 IMPLEMENTATION GUIDELINES

This section provides suggestions, rather than instructions, on some lightweight approaches
to conforming with the specification.

4.1 Syntactic Conformance
A server can conform to this specification by accepting and ignoring the ’ver’ attribute in
requests, and providing an empty ’ver’ attribute in each roster push.
This provides no efficiency savings for clients.

4.2 Exact-Match Conformance
Using some digest (hash) of the roster, a server can identify unchanged rosters, and handle
the case where the client sends a ver corresponding to the current roster state.
This will account for the majority of cases, and represents a substantial saving. Server
implementors are advised to canonicalize the form and ordering of roster items prior to
applying the hash function. This hash function need not be cryptographically secure, merely
resistent to collisions, and it is advisable to pick one that is fast to compute.
No additional data need be stored, although storing the current hash will yield some perfor-
mance advantage. This strategy is thought to be relatively safe in the face of data loss on the
server.

4.3 Add-Only Conformance
Using a strictly increasing sequence for the ’ver’ attribute, a server can ”stamp” each roster
item with its last change, and the roster as a whole with its last deletion. The server returns
either the entire roster -- if a deletion has occured since the client’s ver value -- or those
changed items.
Deletions are thought to be rare compared to additions and modifications, and as such this
approach captures almost all changes. The additional storage cost is also low.
Implementors could combine this strategy with the previous one, detecting a sequence of
modifications yielding the same roster as the client has cached already, by constructing a ver
attribute containing both a hash and sequence value. This might provide some resilience in
the case of data loss.
Implementors are advised that a pure timestamp is not suitable for this approach, since under
some circumstances system clocks can go backwards (e.g., because of an adjustment based on
an update triggered by use of the Network Time Protocol as described in RFC 958 3).

3RFC 958: Network Time Protocol (NTP) <http://tools.ietf.org/html/rfc0958>.

6

http://tools.ietf.org/html/rfc0958
http://tools.ietf.org/html/rfc0958

7 XMPP REGISTRAR CONSIDERATIONS

4.4 Sending Pushes
There are two primary approaches to server-side generation of the ’ver’ attribute: complete
roster hashes and strictly increasing sequence numbers. Whether the server will send roster
pushes varies depending on the approach taken. For instance, if a series of roster modifica-
tions result in a roster item that does not differ from the version cached by the client (e.g., a
modification to the item’s ’name’ attribute and then amodification back to the original value),
then a server that implements the ”complete roster hashes” approach would not consider
the item to have been modified for purposes of roster versioning and therefore would not
push the item to the client in an interim roster push; however, a server that implements the
”strictly increasing sequence numbers” approach would send a roster push in this situtation.

4.5 Client Implementation Guidelines
Client implementors are reminded that the value of the ’ver’ attribute is entirely opaque, and
they should behave identically with each strategy described above by simply conforming to
the specification. The only storage requirement for this specification is the last seen ’ver’
attribute.

5 Security Considerations
It is possible that client-side caching of roster information across sessions (rather than holding
them in memory only for the life of a session) could introduce new vulnerabilities, such as
misuse by malware. Implementations are advised to appropriately protect cached roster data.

6 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
4.

7 XMPP Registrar Considerations
7.1 Protocol Namespaces
This specification defines the following XML namespace:

4The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

7

http://www.iana.org/
http://www.iana.org/

8 XML SCHEMAS

• urn:xmpp:features:rosterver

Upon advancement of this specification from a status of Experimental to a status of
Draft, the XMPP Registrar 5 shall add the foregoing namespace to the registry located at
<https://xmpp.org/registrar/stream-features.html>, as described in Section 4 of XMPP
Registrar Function (XEP-0053) 6.

8 XML Schemas
8.1 jabber:iq:roster
This specification proposes addition of the ’ver’ attribute to the schema for the ’jab-
ber:iq:roster’ namespace.

8.2 Stream Feature

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’urn:xmpp:features:rosterver ’
xmlns=’urn:xmpp:features:rosterver ’
elementFormDefault=’qualified ’>

<xs:annotation >
<xs:documentation >

The protocol documented by this schema is defined in
RFC 6121: http://tools.ietf.org/html/rfc6121

</xs:documentation >
</xs:annotation >

<xs:element name=’ver’ type=’empty ’/>

<xs:simpleType name=’empty ’>
<xs:restriction base=’xs:string ’>

<xs:enumeration value=’’/>
</xs:restriction >

</xs:simpleType >

</xs:schema >

5The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

6XEP-0053: XMPP Registrar Function <https://xmpp.org/extensions/xep-0053.html>.

8

https://xmpp.org/registrar/
https://xmpp.org/registrar/stream-features.html
https://xmpp.org/extensions/xep-0053.html
https://xmpp.org/extensions/xep-0053.html
https://xmpp.org/registrar/
https://xmpp.org/extensions/xep-0053.html

9 ACKNOWLEDGEMENTS

9 Acknowledgements
Thanks to Dave Cridland, Richard Dobson, Leonid Evdokimov, Fabio Forno, Alexander Gnauck,
Juha Hartikainen, Joe Hildebrand, Waqas Hussain, Justin Karneges, Sachin Khandelwal, Curtis
King, Jonas Lindberg, Pedro Melo, Matthew Wild, Jiří Zárevúcký, and Florian Zeitz for their
comments.

9

	Introduction
	Protocol
	Stream Feature
	Data Format
	Client Request
	Server Response

	Examples
	Implementation Guidelines
	Syntactic Conformance
	Exact-Match Conformance
	Add-Only Conformance
	Sending Pushes
	Client Implementation Guidelines

	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces

	XML Schemas
	jabber:iq:roster
	Stream Feature

	Acknowledgements

