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1 Introduction

For secure client-to-client (C2C) communication the clients can use Link-Local Messaging
(XEP-0174) ! or Jingle XML Streams (XEP-0247) % to open a connection between the two clients.
To open an XMPP connection End-to-End XML Streams (XEP-0246) * defines a stream setup
similar to the setup used by client-server communications. To secure the communication the
extension defines the use of Transport Layer Security as defined in RFC 5246 * for encryption
and authentication. XEP-0246 suggest to use the OpenPGP TLS extension but does not specify
how to negotiate if both peers support the extension and if they are able to verify the OpenPGP
key. It makes no sense to use OpenPGP instead of X.509 certificates if there is also no trust
on OpenPGP level. This document describes how to negotiate how to use TLS to exchange
possible extensions and key fingerprints before the actual TLS handshake.

After the TLS handshake both communication partners MUST be sure that they are commu-
nicating with the correct person without a man-in-the-middle.

2 Supported TLS Handshake Mechanisms

A client requires support for X.509 certificates or one or more TLS extension that can be used
to verify the end-to-end character of the stream. The following list defines authentication
mechanisms a client MAY support. The list depends on TLS extensions defined by the
Transport Layer Security working group of the IETF. A future version of the document may
include additional extension like Short Authentication String (SAS) or Kerberos. A client
MUST ignore XML stanzas defining an authentication method it does not understand.

2.1 X.509 Certificate

The classic usage of TLS is done with X.509 certificates. The certificate is the end of a certificate
chain. A certificate should be either signed by another certificate from a third party or a well
known certification authority installed on the client machine. In an enterprise scenario all
client would be signed by a certificate from the company making it possible for all clients to
verify the identity of the other.

Getting a signed certificate is a complex and expensive task unsuitable for normal users. It
also raises the question why a client should trust a CA its user does not know. Instead they
create a self-signed certificate. The certificate is signed by itself and can not be verified
through a certificate chain. To use these certificates in a real scenario the user must know
the fingerprint of the peer certificate to verify it. But comparing fingerprints is not very
userfriendly and the user may not have the fingerprint before starting the communication.

'XEP-0174: Link-Local Messaging <https: //xmpp.org/extensions/xep-0174.html>,

*XEP-0247: Jingle XML Streams <https://xmpp.org/extensions/xep-0247.html>.

3XEP-0246: End-to-End XML Streams <https: //xmpp.org/extensions/xep-0246.html>,

“RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2 <http://tools.ietf.org/html/rfc5246>,


https://xmpp.org/extensions/xep-0174.html
https://xmpp.org/extensions/xep-0174.html
https://xmpp.org/extensions/xep-0247.html
https://xmpp.org/extensions/xep-0246.html
http://tools.ietf.org/html/rfc5246
https://xmpp.org/extensions/xep-0174.html
https://xmpp.org/extensions/xep-0247.html
https://xmpp.org/extensions/xep-0246.html
http://tools.ietf.org/html/rfc5246
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2.2 OpenPGP Key

Instead of relying on a certificate chain the users may rely on a web-of-trust as defined by RFC
4880 °. The TLS extension "OpenPGP Keys for Transport Layer Security” (RFC 5081 ©) describes
how to use OpenPGP keys in the TLS handshake. If users share a trusted friend who has signed
both their keys they can open a secure connection based on that trust. If there is no trust
relationship between the two peers, OpenPGP is as useless as self-signed certificates. The
users can verify the fingerprint and communicate that fingerprint over a different medium
(e.g. a real-life meeting), but the same problem that occurs with X.509 certificates exists:
comparing fingerprints is far away from being userfriendly.

2.3 Shared Secret

A third way to verify the identify of the peer is a shared secret. This secret could be exchanged
on a personal meeting or could be described as riddle only the other person can answer before
opening the c2c link. It is up to the user and a good user interface to make the secret exchange
as painless as possible.

This document uses the Secure Remote Password (SRP) extension from RFC 5054 7 when
dealing with shared secrets and not the Pre-Shared Key Ciphersuites as defined in RFC4279.
SRP allows the users to choose a much smaller password and it still verifies both clients to
the other. The password (shared secret) is required by both to calculate the premaster secret
which means both will notice if the peer is not who it should be. SRP requires a user name;
since it is transmitted in plain text between client and server it has no value in this context.
Both clients must use the same username for the calculations. For the TLS handshake using
SRP both clients MUST use the bare JID of the initiator as username.

3 Protocol

3.1 Extension Negotiation

The main problem is what TLS extension to choose. It makes no sense to use OpenPGP if the
clients have no trust-relationship or SRP if the users did not exchange a secret. To resolve this
problem a client describes its extension in an offer to the peer. The offer lists all supported
authentication methods including additional parameter like the certificate that will be used.
Public Key Publishing (XEP-0189) 8 can be used to look-up the keys or the client can look
in its OpenPGP keyring. A client could also know a certificate or password from an earlier
connection. The following example contains the X.509 certificate and the OpenPGP key from

°RFC 4880: OpenPGP Message Format <http://tools.ietf.org/html/rfc4880>.

SRFC 5081: Using OpenPGP Keys for Transport Layer Security (TLS) Authentication <http://tools.ietf.org/h
tml/rfc5081>.

RFC 5054: Using the Secure Remote Password (SRP) Protocol for TLS Authentication <http://tools.ietf.org
/html/rfc5054>,

8XEP-0189: Public Key Publishing <https://xmpp.org/extensions/xep-0189.html>,


http://tools.ietf.org/html/rfc4880
http://tools.ietf.org/html/rfc4880
http://tools.ietf.org/html/rfc5081
http://tools.ietf.org/html/rfc5054
https://xmpp.org/extensions/xep-0189.html
http://tools.ietf.org/html/rfc4880
http://tools.ietf.org/html/rfc5081
http://tools.ietf.org/html/rfc5081
http://tools.ietf.org/html/rfc5054
http://tools.ietf.org/html/rfc5054
https://xmpp.org/extensions/xep-0189.html
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the examples in XEP-0189.

Listing 1: Client Offer Supporting X.509, OpenPGP and SRP

<offer xmlns=’urn:xmpp:tmp:c2ctls’>
<keyinfo xmlns=’urn:xmpp:tmp:pubkey’>
<name>428b1358a286430f628da23fb33ddaf6e474f5c5</name>
</keyinfo>
<keyinfo xmlns=’urn:xmpp:tmp:pubkey’>
<name>89d099a3428481ccb63fe3fadd4e7df2d002b4dcedd</name>
</keyinfo>
<srp/>
</offer>

Note: the keyinfo only contains the name and not the public key itself. If the peer does not
know the key, it can not determine if it is an X.509 certificate or OpenPGP key. This does not
matter because if the client does not know the key, it can not use it for secure communication.
If both clients know the offer of the other, they can determine what method to use to
complete the TLS handshake without an error. Note: this information will be exchanged over
an insecure communication channel and may be forged. If the information is altered it will be
detected when doing the TLS handshake.

3.2 Extension Probing

I client MAY want to know the supported extensions of the peer before opening the
client-to-client stream. For serverless messaging this is not possible but for server based
communication a client can exchange offers with the peer without using Jingle to open a
client-to-client stream. The methods the peer supports depend on additional information
from the client. Depending on the X.509 certificate of the client the peer may not support
this extension because it can not verify the certificate. To receive the offer from the peer the
client sends an IQ stanza with its own offer.

Listing 2: Client Sends Extension Probing IQ

<ig type=’get’

from=’romeo@montague.net/b345687ba7607d3ddf401a0257464843a0a1c0b7’

to="juliet@capulet.com/da39a3ee5e6b4b0d3255bfef95601890afd80709"’

id="info’>

<offer xmlns=’urn:xmpp:tmp:c2ctls’>

<keyinfo xmlns=’urn:xmpp:tmp:pubkey’>
<name>RomeoX509CertificateHash</name>

</keyinfo>

<keyinfo xmlns=’urn:xmpp:tmp:pubkey’>
<name>RomeoOpenPGPFingerprint</name>

</keyinfo>

<srp/>
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</offer>
</iqg>

The receiver sends its offer back to the client. It MUST only send the keyinfo elements that
match a keyinfo of the offer. E.g. if the responder does not find an X.509 certificate it can
verify in the offer it MUST NOT send its own X.509 certificate. In the following example the
receiver supports SRP and X.509. OpenPGP is either not supported or skipped because the key
can not be verified.

Listing 3: Peer Sends Extension Probing Result

<iq type=’'result’
from="juliet@capulet.com/da39a3ee5e6b4b0d3255bfef95601890afd80709"’
to="romeo@montague.net/b345687ba7607d3ddf401a0257464843a0al1c0b7’
id="info’>
<offer xmlns=’urn:xmpp:tmp:c2ctls’>
<keyinfo xmlns=’urn:xmpp:tmp:pubkey’>
<name>JulietX509CertificateHash</name>
</keyinfo>
<srp/>
</offer>
</iqg>

A client MAY support X.509 certificates it can not verify to be verified later. In that case it
adds the authentication method <insecure>. In the following example the receiver supports
SRP and X.509, but can not verify the certificate from the offer.

Listing 4: Peer Sends Extension Probing Result

<iq type=’'result’
from=’juliet@capulet.com/da39%9a3ee5e6b4b0d3255bfef95601890afd80709"’
to="romeo@montague.net/b345687ba7607d3ddf401a0257464843a0al1c0ob7’
id="info’>
<offer xmlns=’urn:xmpp:tmp:c2ctls’>
<insecure/>
<srp/>
</offer>
</ig>

3.3 STARTTLS Enhancements

The offer information described above will be embedded into the XML based part of the
STARTTLS handshake described in the XMPP core.
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3.3.1 TLS Stream Feature

The recipient in the role of the XMPP server is the first one active in the XMPP TLS handshake.
It offers the STARTTLS feature to the client. Instead of just offering the feature, it also SHOULD
describe what TLS extensions it supports and what keys to expect. In the following example
the recipient supports all possible identification mechanisms describe before.

Listing 5: Recipient Sends Stream Features

<stream:features>
<starttls xmlns=’urn:ietf:params:xml:ns:xmpp-tls’>
<required/>
<offer xmlns=’urn:xmpp:tmp:c2ctls’>
<keyinfo xmlns=’urn:xmpp:tmp:pubkey’>
<name>RecipientX509CertificateHash</name>
</keyinfo>
<keyinfo xmlns=’urn:xmpp:tmp:pubkey’>
<name>RecipientOpenPGPFingerprint</name>
</keyinfo>
<srp/>
</offer>
</starttls>
</stream:features>

If the recipient does not supply this additional information it is assumed that it does not
support this extension and the TLS handshake continues as described in the XMPP core. If
and how the users trust each other in that case is out of the scope of this document.

3.3.2 Choosing the STARTTLS Feature

When the initiator starts the TLS feature it also enhances the STARTTLS with its supported
extensions and additional key information based on the recipient’s offer. In the following
example the initiator can only verify one keyinfo. It also supports SRP.

Listing 6: Initiator Starts TLS Feature

<starttls xmlns=’urn:ietf:params:xml:ns:xmpp-tls’>
<offer xmlns=’urn:xmpp:tmp:c2ctls’>
<keyinfo xmlns=’urn:xmpp:tmp:pubkey’>
<name>InitiatorX509CertificateHash</name>
</keyinfo>
<srp/>
</offer>
</starttls>

Similar to the feature announcement, if the initiator does not add an offer the recipient
MUST assume the initiator does not support this XMPP extension and continue normal TLS
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handshake and hope it will work.

3.3.3 Accepting STARTTLS

The next step for an recipient is to send an proceed message so the initiator can start with
the TLS handshake. At this point the recipient knows what certificates or OpenPGP keys to
expect from the peer and what the peer supports. The method that the initiator SHOULD use
is added to the proceed.

Listing 7: Recipient Accepts TLS

<proceed xmlns=’urn:ietf:params:xml:ns:xmpp-tls’>
<offer xmlns=’urn:xmpp:tmp:c2ctls’>
<srp/>
</offer>
</proceed>

The initiator now starts the TLS handshake.

If only SRP is possible the client should ask the user if they exchanged a shared secret. If this
is not the case no suitable methods are left and the recipient MUST sends a failure and close
the stream.

Listing 8: Recipient Aborts TLS

<failure xmlns=’urn:ietf:params:xml:ns:xmpp-tls’/>
</stream:stream>

4 Bootstrapping Trust

After the c2c connection is secure the clients MAY use this secure and trusted connection to
update their information on each other. Using XEP-0189 "Requesting Public Keys Directly
From Another Entity” or "Sending Public Keys Directly To Another Entity” they can bootstrap
a different mechanisms for the next time. A SRP-based connection can bootstrap the trust of
a self-signed certificate which will used the next time these two clients connect to each other.
It can also be used to automatically sign an OpenPGP key with a minimum level of trust.

5 Usability Considerations

Usability Considerations will be provided in a future version of this document.
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6 Implementation Notes

It is RECOMMENDED to always create a self-signed X.509 certificate for a client. It is of less
value than an OpenPGP key also used by other applications and connected to a web-of-trust.
It MAY also be stored on the users PC unencrypted like the XMPP password. This makes
it possible to open secure communications without entering the OpenPGP password or the
shared secret. Of cause, storing the X.509 certificate in plain text reduces the security. It all
depends on how much the user trusts the PC.

7 Security Considerations

Additional security considerations will be provided in a later version of this document.

8 IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
9

9 XMPP Registrar Considerations

XMPP Registrar considerations will be provided in a later version of this document.
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11 XML Schema

The XML schema will be provided in a later version of this document.

°The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.


http://www.iana.org/
http://www.iana.org/
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