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"Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
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lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

## NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https: //xmpp.org/about/xsf/ipr-policy>
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1 Introduction

Jingle (XEP-0166) ! defines a framework for negotiating and managing data sessions over
XMPP. In order to provide a flexible framework, the base Jingle specification defines neither
data transport methods nor application formats, leaving that up to separate specifications.
The current document defines a transport method for establishing and managing data
exchanges between XMPP entities using the existing SOCKS5 Bytestreams (S5B) protocol
specified in SOCKS5 Bytestreams (XEP-0065) 2. This "jingle-s5b” method results in a streaming
transport method suitable for use in Jingle application types where packet loss cannot be
tolerated (e.g., file transfer). Jingle-S5B reuses the protocol flow from SOCKS5 Bytestreams
(XEP-0065) 3 for the communication with a SOCKS5 streamhost; the communication between
two clients to negotiate the possible candidates differs from XEP-0065 and shares similarities
with Jingle ICE-UDP Transport Method (XEP-0176) *

2 Protocol

The basic flow is as follows.

Initiator Responder

| I
| session-initiate |
| (with S5B candidates) |

| mmmmmm s >|
| ack |
| <o |
| session-accept |
| (with S5B candidates) |
| o= |
| ack |
| = >
| candidate-used transport-info |
| Smmmm e mmmmmmsssoooooooooos |
| ack |
| mmm o mmmmmme oo >
| candidate-used transport-info |
| == >|
| ack |
e |

| session-terminate |

'XEP-0166: Jingle <https://xmpp.org/extensions/xep-0166.html>,

ZXEP-0065: SOCKS5 Bytestreams <https://xmpp.org/extensions/xep-0065.html>.

SXEP-0065: SOCKS5 Bytestreams <https://xmpp.org/extensions/xep-0065.html>.

*XEP-0176: Jingle ICE-UDP Transport Method <https://xmpp.org/extensions/xep-0176.html>,



https://xmpp.org/extensions/xep-0166.html
https://xmpp.org/extensions/xep-0065.html
https://xmpp.org/extensions/xep-0065.html
https://xmpp.org/extensions/xep-0065.html
https://xmpp.org/extensions/xep-0176.html
https://xmpp.org/extensions/xep-0166.html
https://xmpp.org/extensions/xep-0065.html
https://xmpp.org/extensions/xep-0065.html
https://xmpp.org/extensions/xep-0176.html
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This flow is illustrated in the following examples (to simplify the presentation these use an
“example” application instead of a real application type).

2.1 Selecting Candidates

It is RECOMMENDED that a client will offer as many <candidate/> elements as possible with
itself as the host (i.e., non-proxy candidates). Such candidates might be found using the
following methods:

« Opening the TCP port on all available interfaces the user wants to use (e.g., maybe not an
expensive UMTS link), including the IPv4 and IPv6 addresses of that interface (if avail-
able).

« Using the client’s external IP address as discovered through an assisting NAT protocol
or other means.

If the client knows it is behind a NAT and the router announces UPnP IGD or NAT-PMP
support, the client SHOULD map the open port to the external interface of the router and
include the public IP address and port information in the <candidate/> offers. To increase the
chance of success without using a proxy, this specification encourages the responder to also
send offers, effectively equivalent to the "fast-mode” for SOCKS5 Bytestreams as previously
described at <http://delta.affinix.com/specs/stream.html>.

2.2 Exchanging Candidates

Once the initiator has a set of candidates, it sends a Jingle session-initiate request that contains
one or more transport candidates which are a mixture of SOCKS5 Bytestreams (XEP-0065) °
streamhosts and ICE candidates used in XEP-0176.

Just as with the <query/> element from SOCKS5 Bytestreams (XEP-0065) ©, here the <trans-
port/> element contains the candidates. The following rules apply to the defined attributes of
the <transport/> element when sent by the initiator in a Jingle session-initate message:

1. The ’sid” attribute MUST be included. This attribute specifies the Stream ID for this
bytestream.

>XEP-0065: SOCKS5 Bytestreams <https://xmpp.org/extensions/xep-0065.html>.
eXEP-0065: SOCKS5 Bytestreams <https://xmpp.org/extensions/xep-0065.html>.


https://web.archive.org/web/20161019171450/http://delta.affinix.com/specs/stream.html
https://xmpp.org/extensions/xep-0065.html
https://xmpp.org/extensions/xep-0065.html
https://xmpp.org/extensions/xep-0065.html
https://xmpp.org/extensions/xep-0065.html
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2. The ’dstaddr’ attribute SHOULD be included if the initiator includes at least one candi-
date of the "proxy” type. This attribute enables the initiator to communicate the value it
has calculated for the SOCKS5 DST.ADDR field (see Section 5.3.2 and Section 7 of SOCKS5
Bytestreams (XEP-0065) 7) so that the responder can provide an accurate value to the
proxy during SOCKS5 negotiation. Here the value is calculated as SHA1(SID + Initiator
JID + Responder JID) since the initiator will be the entity that activates the bytestream
at the proxy. 8

3. The 'mode’ attribute MAY be included. This attribute specifies whether the underlying
transport for the bytestream will be TCP (a value of "tcp”, which is the default) or UDP
(a value of "udp”, see Section 8 of SOCKS5 Bytestreams (XEP-0065) °).

In the following example, Romeo’s client has two interfaces, one on port 5086 and the
other on port 5087. The provided candidates are the IPv4 address of one interface, the
IPv4 address of the second interface, and a proxy address at streamer.shakespeare.lit.
Because Romeo’s client has included a proxy candidate, it includes its computed value
for the DST.ADDR field in the ’dstaddr’ attribute (here computed as the SHA-1 hash of
"vj3hs98yromeo@montague.lit/orchardjuliet@capulet.lit/balcony”).

Listing 1: Initiator sends session-initiate

<ig from=’romeo@montague.lit/orchard’
id="xn28s7gk”’
to=’juliet@capulet.lit/balcony’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-initiate’
initiator="romeo@montague.lit/orchard’
sid="a73sjjvkla37jfea’>
<content creator=’initiator’ name=’ex’>
<description xmlns=’urn:xmpp:example’/>
<transport xmlns=’urn:xmpp:jingle:transports:s5b:1’
dstaddr="972b7bf47291cab609517f67f86b5081086052dad’
mode="tcp’
sid="vj3hs98y’>
<candidate cid=’hft54dqy’
host=7192.168.4.1"
jid=’romeo@montague.lit/orchard’
port="5086"

7XEP0065:SOCKSSByteﬁremns<https://xmpporg/extensions/xep—0@65htm1z

8In XEP-0065, the DST.ADDR is always calculated as SHA1(SID + Requester JID + Target JID); in XEP-0260 the Jin-
gle ”initiator” is the SOCKS5 Bytestreams "requester” and the Jingle "responder” is the SOCKS5 Bytestreams
“target”, so for proxy candidates sent from the initiator/requester to the responder/target the DST.ADDR is
calculated as SHA1(SID + Initiator JID + Responder JID). Note well that the calcuation for proxy candidates sent
from the responder/target to the initiator/requester is SHA1(SID + Responder JID + Initiator JID); this scenario
is not covered by XEP-0065 since in that specification only the SOCKS5 Bytestreams “requester” provides can-
didates.

9XEP-—OO65:SOCKSSBy’testreams<https://xmpp.org/extensions/xep—0065.htm1>.
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priority=’8257636"
type='direct’/>

<candidate cid=’hutr46fe’
host="24.24.24.1"
jid=’romeo@montague.lit/orchard’
port="5087"
priority=’8258636"
type=’direct’/>

<candidate cid=’xmdh4b7i’
host="123.456.7.8"
jid=’streamer.shakespeare.lit’
port=’7625"
priority=’7878787"’
type=’proxy’/>

</transport>
</content>
</jingle>
</iqg>

The responder immediately acknowledges receipt.

Listing 2: Responder acknowledges session-initiate

<ig from=’juliet@capulet.lit/balcony’
id=’"xn28s7gk’
to="romeo@montague.lit/orchard’
type=’result’/>

Depending on the application type, a user agent controlled by a human user might need to
wait for the user to affirm a desire to proceed with the session before continuing. When the
user agent has received such affirmation (or if the user agent can automatically proceed for
any reason, e.g. because no human intervention is expected or because a human user has
configured the user agent to automatically accept sessions with a given entity), it returns a
Jingle session-accept message.

This message MUST contain a <transport/> element qualified by the
‘urn:xmpp:jingle:transports:s5b:1’ namespace, which SHOULD in turn contain one <can-
didate/> element for each SOCKS5 Bytestreams candidate generated by or known to the
responder, but MAY instead be empty if the responder does not wish to offer any candidates
or wishes to send each candidate as the payload of a transport-info message. If the responder
sends candidates in the session-accept, the chances of a successful connection are increased.
For example, the initiator might be behind a NAT or might have no access to an S5B proxy,
whereas the responder might have a public IP address, might know about a proxy, or might
have NAT penetration support like NAT-PMP in a router. However, the responder MUST NOT
offer as a candidate any host/port combination that has already been offered by the initiator;
this helps to prevent failure of negotiation with S5B proxies.

The following rules apply to the defined attributes of the <transport/> element when sent by
the responder in a Jingle session-accept message:
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. The ’sid’ attribute MUST be included and MUST be the same Stream ID communicated
by the initiator in the Jingle session-initiate message.

. The ’dstaddr’ attribute SHOULD be included if the responder includes at least one can-
didate of the "proxy” type. This attribute enables the responder to communicate the
value it has calculated for the SOCKS5 DST.ADDR field (see Section 5.3.2 and Section 7 of
SOCKS5 Bytestreams (XEP-0065) 1) so that the initiator can provide an accurate value to
the proxy during SOCKS5 negotiation. Here the value is calculated as SHA1(SID + Respon-
der JID +Initiator JID) since the responder will be the entity that activates the bytestream
at the proxy. M

. The 'mode’ attribute MUST NOT be included since the underlying transport for the
bytestream is determined by the initiator.

In the following example, Juliet’s client opens one port. The provided candidates are the
(private) 1Pv4 address of the interface, a (public) IPv6 address, the public IPv4 address
created by mapping the private IP address/port using NAT-PMP, and a proxy address.
Because Juliet’s client has included a proxy candidate, it includes its computed value
for the DST.ADDR field in the ’dstaddr’ attribute (here computed as the SHA-1 hash of
"vj3hs98yjuliet@capulet.lit/balconyromeo@montague.lit/orchard”).

Listing 3: Responder sends session-accept with candidates

<ig from=’juliet@capulet.lit/balcony’

id="hwd987h’
to=’romeo@montague.lit/orchard’
type=’"set’>

<jingle xmlns=’urn:xmpp:jingle:1’

action=’session-accept’
responder="juliet@capulet.lit/balcony’
sid=’a73sjjvkla37jfea’>
<content creator=’initiator’ name=’ex’>
<description xmlns=’urn:xmpp:example’/>
<transport xmlns=’urn:xmpp:jingle:transports:s5b:1’
dstaddr="1a12fb7bc625e55f3ed5b29a53dbee4aa7d80ba’
sid="vj3hs98y’>
<candidate cid="ht567dq’
host=7192.169.1.10"°
jid=’juliet@capulet.lit/balcony’
port="6539"
priority=’8257636"
type=’direct’/>

]nXEP—0065:SOCKSSByteﬁremns<https://xmpporg/extensions/xep—0065.htm1a

"As noted, the calculation for proxy candidates sent from the responder/target to the initiator/requester is
SHA1(SID + Responder JID + Initiator JID); this scenario is not covered by XEP-0065 since in that specification
only the SOCKS5 Bytestreams "requester” provides candidates.



https://xmpp.org/extensions/xep-0065.html
https://xmpp.org/extensions/xep-0065.html
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<candidate cid=’grt654q2’
host="2001:638:708:30c9:219:d1ff:fead4:al17d’
jid=’juliet@capulet.lit/balcony’
port="6539"’
priority=’8257606"
type=’direct’/>

<candidate cid=’hr65dqyd’
host="134.102.201.180"
jid=’juliet@capulet.lit/balcony’
port=’16453"
priority=’7929856"
type=’assisted’/>

<candidate cid=’pzv14s74’
host=’234.567.8.9"
jid=’proxy.marlowe.lit’
port="7676"
priority=’7788877"’
type=’proxy’/>

</transport>
</content>
</jingle>
</iqg>

The initiator acknowledges receipt and tries to connect to the offered candidates.

Listing 4: Initiator acknowledges session-accept

<ig from=’romeo@montague.lit/orchard’
id="hwd987h’
to=’juliet@capulet.lit/balcony’
type=’result’/>

A client SHOULD check the offered candidates in order of their priority, starting with the
highest value. How the priority is calculated depends on the actual available interfaces. An
implementation SHOULD use the following formula:

priority = (2*16)*(type preference) + (local preference)

The type preference is an integer value between 0 and 127. The following types and their
suggested preference values are defined.

Type Description Preference Value
direct  Direct connection using the given in- 126
terface

assisted Direct connection using NAT assisting 120
technologies like NAT-PMP or UPnP-
IGD
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Type Description Preference Value
tunnel  Tunnel protocols such as Teredo 110
proxy  SOCKS5 Relay 10

The local preference is used to rate different candidates of the same type, e.g. a DSL link
might be preferred over a VPN connection. The value of the local preference SHOULD be
between 0 and 65535. The proposed values are only guidelines. If a client wants to increase or
decrease the value of a specific candidate it is free to do so. For instance, a client might have
an expensive UMTS link as a last resort and might rate this link lower than all SOCKS5 relays.

2.3 Connecting to Candidates

After receiving its peer’s candidates, a client start to connect to them in order of the priority.
A detailed description of the protocol can be found in SOCKS5 Bytestreams (XEP-0065) 12,
Once one client has successfully created a connection, it sends the <candidate-used/> element
to the peer inside a Jingle transport-info message. If a client receives a candidate-used
notification it SHOULD continue trying to connect to candidates sent by its peer if it has not
tried all candidates with a higher priority than the one successfully used by the peer.

Listing 5: Initiator sends candidate-used in Jingle transport-info

<ig from=’romeo@montague.lit/orchard’
id="hjdi8’
to=’juliet@capulet.lit/balcony’
type=’"set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’transport-info’
initiator="romeo@montague.lit/orchard’
sid=’a73sjjvkla37jfea’>
<content creator="initiator’ name=’ex’>
<transport xmlns=’urn:xmpp:jingle:transports:s5b:1’
sid="vj3hs98y’>
<candidate-used cid=’hr65dqyd’/>
</transport>
</content>
</jingle>
</ig>

The peer immediately acknowledges receipt.

Listing 6: Responder acknowledges candidate-used message

]2XEP—0065:SOCKSSByteﬁremns<https://xmpporg/extensions/xep—0065.htm1a
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<ig from=’juliet@capulet.lit/balcony’
id="hjdi8’
to=’romeo@montague.lit/orchard’
type=’result’/>

If a client is unable to connect to any candidate sent by its peer, or if it stopped trying to
connect because its peer sent a candidate-used notification with a priority higher than its
remaining candidate(s), it sends a candidate-error Jingle transport-info message (this is
equivalent to the IQ-error with code="500" from the "fast-mode” extension).

Listing 7: Responder sends candidate-error in Jingle transport-info

<ig from=’juliet@capulet.lit/balcony’
id="gft65ewd’
to=’romeo@montague.lit/orchard’
type=’"set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’transport-info’
initiator=’romeo@montague.lit/orchard’
sid=’a73sjjvkla37jfea’>
<content creator="initiator’ name=’ex’>
<transport xmlns=’urn:xmpp:jingle:transports:s5b:1’
sid="vj3hs98y’>
<candidate-error/>
</transport>
</content>
</jingle>
</ig>

The peer immediately acknowledges receipt.

Listing 8: Responder acknowledges candidate-error message

<ig from=’romeo@montague.lit/orchard’
id="gft65ewd’
to=’juliet@capulet.lit/balcony’
type='result’/>

2.4 Completing the Negotiation

The transport negotiation is completed in one of the following ways:

1. Ifboth parties send a candidate-error notification then the SOCKS5 negotiation has failed
and the parties need to fall back to some other transport method, typically (but not
necessarily) IBB; see the Fallback Methods section of this document for details.
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2. If one of the parties sends a candidate-error notification and the other party sends a
candidate-used notification, then the candidate-used shall be considered the nominated
candidate.

3. If both parties send a candidate-used notification but the candidates have a different
priority, then the candidate with the higher priority shall be considered the nominated
candidate.

4. 1f both parties send a candidate-used notification with candidates having the same pri-
ority, then the candidate chosen by the initiator shall be considered the nominated can-
didate (this is consistent with the rules in Jingle (XEP-0166) 3).

The parties shall use the nominated candidate for the data transfer. However, if the nomi-
nated candidate is of the "proxy” type, then the peer has no way to know when it can send
data. Therefore the party that offered the nominated candidate MUST do two things...

First, it activates the bytestream, as described in SOCKS5 Bytestreams (XEP-0065) **:

Listing 9: Responder activates the bytestream at proxy

<ig from=’juliet@capulet.lit/balcony’
id=’vyl1fa63k’
to=’streamer.shakespeare.lit’
type=’'set’>
<query xmlns=’http://jabber.org/protocol/bytestreams’
sid=’a73sjjvkla37jfea’>
<activate>romeo@montague.lit/orchard</activate>
</query>
</iqg>

Listing 10: Proxy informs responder of activation

<iq from=’streamer.shakespeare.lit’
id=’vyl1fa63k’
to=’juliet@capulet.lit/balcony’
type=’result’/>

Second, it sends an activated notification to the peer; it does so by sending a transport-info
message containing an <activated/> element:

Listing 11: Responder informs initiator that bytestream has been activated

<ig from=’juliet@capulet.lit/balcony’
id="bv73bs91”’
to=’romeo@montague.lit/orchard’
type=’'set’>
<jingle xmlns=’urn:xmpp:jingle:1’

BXEP-0166: Jingle <https: //xmpp.org/extensions/xep-0166.html>,
14XEP-—OO65:SOCKSSBy’testreams<https://xmpp.org/extensions/xep—0065.htm1>.
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action=’transport-info’
initiator=’romeo@montague.lit/orchard’
sid=’a73sjjvkla37jfea’>
<content creator=’initiator’ name=’ex’>
<transport xmlns=’urn:xmpp:jingle:transports:s5b:1’
sid="vj3hs98y’>
<activated cid=’xmdh4b7i’/>
</transport>
</content>
</jingle>
</iqg>

If the nominated candidate is of the proxy type and either party cannot connect to the proxy
(for example because of a restrictive firewall), the failing party shall send a transport-info
message containing an <proxy-error/> element.

Listing 12: Responder informs initiator of inability to connect to the proxy

<ig from=’juliet@capulet.lit/balcony’
id="bv73bs91’
to=’romeo@montague.lit/orchard’
type=’'set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’transport-info’
initiator=’"romeo@montague.lit/orchard’
sid="a73sjjvkla37jfea’>
<content creator=’initiator’ name='ex’>
<transport xmlns=’urn:xmpp:jingle:transports:s5b:1’
sid="vj3hs98y’>
<proxy-error/>
</transport>
</content>
</jingle>
</ig>

The parties shall then consider the bytestream unsuccessful and SHOULD attempt to fall back
to another transport as described in Fallback Methods.

2.5 Exchanging Data

Once the parties have chosen (and if necessary activated) a streamhost, they can exchange
data as defined in SOCKS5 Bytestreams (XEP-0065) °.

15XEP-—0065:SOCKSSBytestreams<https://xmpporg/extensions/xep—0065.htm1>.

10
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2.6 Closing the Bytestream

Once the parties have finished using the bytestream (e.g., because a complete file has been
sent), either party can send a Jingle session-terminate action.

Listing 13: Initiator terminates the session

<ig from=’romeo@montague.lit/orchard’
id="hz81vf48’
to=’juliet@capulet.lit/balcony’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-terminate’
initiator="romeo@montague.lit/orchard’
sid="a73sjjvkla37jfea’>
<reason><success/></reason>
</jingle>
</iqg>

The other party then acknowledges the session-terminate and the Jingle session is finished.

Listing 14: Responder acknowledges session-terminate
<ig from=’juliet@capulet.lit/balcony’
id="hz81vf48’
to=’romeo@montague.lit/orchard’
type=’result’/>

3 Fallback Methods

If the SOCKS5 Bytestreams negotiation fails, the parties might want to "fall back” to an-
other transport. Currently the transport of last resort for a streaming exchange is In-Band
Bytestreams (XEP-0047) !¢ as described for Jingle in Jingle In-Band Bytestreams Transport
Method (XEP-0261) 7, however if other transport methods are defined in the future (e.g. RFC
6544 8) then clients could fall back to those methods instead of IBB. The protocol flow for
fallback from S5B to IBB is as follows.

Romeo Juliet
| |
| session-initiate
|  (with S5B info)

1$XEP-0047: In-Band Bytestreams <https://xmpp.org/extensions/xep-0047.html>,
7 XEP-0261: Jingle In-Band Bytestreams Transport Method <https://xmpp.org/extensions/xep-0261.html>.

RFC 6544: TCP Candidates with Interactive Connectivity Establishment (ICE) <http: //tools.ietf.org/html/rf
c6544>,
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| session-accept
| (with S5B info)

| = mm e mmmmmmeeoe oo >
| ack |
| Smmmmmmmmmmmmmmsssooooo oo |
| transport-accept (IBB)

| mmmm s mmmmmmsooooooooo oo |
| ack |
ittt >
| IBB ”SESSION” |
| terminate |
| Smmmm s mmmmmsmoooooooooos |
| ack |
| mmmmm e >

First the initiator sends a Jingle session-initiate, in this case with a transport of SOCKS5
Bytestreams. The protocol flow is exactly the same as described above. If both parties are
unable to connect to a candidate provided by the peer, they send candidate-error messages to
indicate that SOCKS5 has failed. The initiator MUST either terminate the Jingle session with
a Jingle reason of <connectivity-error/> or replace the transport with something else using
the transport-replace action. Typically the fallback option is IBB (see, for example, Jingle File
Transfer (XEP-0234) '?). Therefore the initiator sends a transport-replace action including a
transport of IBB.

Listing 15: Initiator replaces transport with IBB

<ig from=’romeo@montague.lit/orchard’
id="hs92n57’
to=’juliet@capulet.lit/balcony’
type=’'set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’transport-replace’
initiator="romeo@montague.lit/orchard’
sid="a73sjjvkla37jfea’>
<content creator=’initiator’ name=’ex’>
<transport xmlns=’urn:xmpp:jingle:transports:ibb:1’
block-size=’4096"
sid=’ch3d9s71’/>

XEP-0234: Jingle File Transfer <https://xmpp.org/extensions/xep-0234.html>,
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</content>
</jingle>
</ig>

The responder then acknowledges the transport-replace action.

Listing 16: Responder acknowledges transport-replace

<ig from=’juliet@capulet.lit/balcony’
id="hs92n57’
to="romeo@montague.lit/orchard’
type='result’/>

If the transport replacement is acceptable, the responder then sends a transport-accept action
to the initiator (if not, the responder sends a transport-reject action). If the responder wishes
to use a smaller block size than the one specified in the transport-replace offer, this can be
done by specifying a block-size attribute in the transport-accept action.

Listing 17: Responder sends transport-accept

<ig from=’juliet@capulet.lit/balcony’
id="1s71ns63’
to=’romeo@montague.lit/orchard’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’transport-accept’
initiator=’romeo@montague.lit/orchard’
sid="a73sjjvkla37jfea’>
<content creator=’initiator’ name=’ex’>
<transport xmlns=’urn:xmpp:jingle:transports:ibb:1’
block-size=’2048"
sid="ch3d9s71’/>
</content>
</jingle>
</iqg>

The initiator acknowledges the Jingle transport-accept action.

Listing 18: Initiator acknowledges transport-accept

<ig from=’juliet@capulet.lit/balcony’
id="1s71ns63"’
to=’romeo@montague.lit/orchard’
type=’result’/>

Now the parties can send data using In-Band Bytestreams as defined in Jingle In-Band
Bytestreams Transport Method (XEP-0261) ?° and XEP-0047.

2XEP-0261: Jingle In-Band Bytestreams Transport Method <https: //xmpp.org/extensions/xep-0261.html>,
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4 Processing Rules and Usage Guidelines

The same processing rules and usage guidelines defined in SOCKS5 Bytestreams (XEP-0065) !
apply to the Jingle S5B Transport Method. This document adds the following implementation
suggestions in the context of Jingle:

1. Try the offered candidates in the order of their priority, from highest to lowest.

2. Stagger the connection attempts (e.g., initiate communications with the highest-
priority candidate, then wait 200ms before initiating communications with the second-
highest-priority candidate).

3. To increase the potential for using a direct connection, consider waiting a bit longer
than 200ms to initiate communications with proxy candidates.

5 Determining Support

To advertise its support for the Jingle SOCKS5 Bytestreams Transport Method, when replying
to Service Discovery (XEP-0030) ?? information requests an entity MUST return URNs for any
version of this protocol that the entity supports -- e.g., "urn:xmpp:jingle:transports:s5b:1” for
this version (see Namespace Versioning regarding the possibility of incrementing the version
number).

Listing 19: Service discovery information request

<iq from=’romeo@montague.lit/orchard’
id="uw72g176’
to=’juliet@capulet.lit/balcony’
type=’get’>
<query xmlns=’http://jabber.org/protocol/disco#info’/>
</iqg>

Listing 20: Service discovery information response

<ig from=’juliet@capulet.lit/balcony’
id="uw72g176"’
to="romeo@montague.lit/orchard’
type='result’>
<query xmlns=’http://jabber.org/protocol/disco#info’>
<feature var=’urn:xmpp:jingle:1’/>
<feature var=’urn:xmpp:jingle:transports:s5b:1’/>
</query>
</ig>

21XEP—OOGS:SOCKSSBytestreams<https://xmpp.org/extensions/xep—@065.htm1>.
2XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>,
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In order for an application to determine whether an entity supports this protocol, where
possible it SHOULD use the dynamic, presence-based profile of service discovery defined
in Entity Capabilities (XEP-0115) **. However, if an application has not received entity
capabilities information from an entity, it SHOULD use explicit service discovery instead.

6 Security Considerations

6.1 Sharing IP Addresses

The exchange of candidates might result in exposure of the sender’s IP addresses, which
comprise a form of personally identifying information. A Jingle client MUST enable a user to
control which entities will be allowed to receive such information. If a human user explicitly
accepts a session request, then the client can consider that action to imply approval of IP
address sharing.

6.2 Encryption of Media

This specification, like SOCKS5 Bytestreams (XEP-0065) 4 before it, does not directly support
end-to-end encryption of the media sent over the transport.

7 IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (TANA)
25

8 XMPP Registrar Considerations

8.1 Protocol Namespaces

The XMPP Registrar % includes "urn:xmpp;jingle:transports:s5b:1” in its registry of protocol
namespaces at <https://xmpp.org/registrar/namespaces.html>, as described in Section 4
of XMPP Registrar Function (XEP-0053) %7,

P XEP-0115: Entity Capabilities <https: //xmpp.org/extensions/xep-0115.html>,

2XEP-0065: SOCKS5 Bytestreams <https://xmpp.org/extensions/xep-0065.html>.

»The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

*The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

#"XEP-0053: XMPP Registrar Function <https://xmpp.org/extensions/xep-0053.html>.
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8.2 Protocol Versioning

If the protocol defined in this specification undergoes a revision that is not fully backwards-
compatible with an older version, the XMPP Registrar shall increment the protocol version
number found at the end of the XML namespaces defined herein, as described in Section 4 of
XEP-0053.

8.3 Jingle Transport Methods

The XMPP Registrar 2 includes “jingle-s5b” in its registry of Jingle transport methods at
<https://xmpp.org/registrar/jingle-transports.html> The registry submission is as
follows:

<transport>
<name>sbb</name>
<desc>
A method for negotiating data exchange over SOCKS5 Bytestreams.
</desc>
<type>streaming</type>
<doc>XEP-0260</doc>
</transport>

9 Schema

<?xml version=’1.0’ encoding=’UTF-8’7?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="urn:xmpp:jingle:transports:s5b:1’
xmlns="urn:xmpp:jingle:transports:sbb:1’
elementFormDefault="qualified’>

<xs:annotation>
<xs:documentation>
The protocol documented by this schema is defined in
XEP-0260: http://www.xmpp.org/extensions/xep-0260.html
</xs:documentation>
</xs:annotation>

*The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.
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<xs:element name=’transport’>
<xs:complexType>
<xs:choice>
<xs:element ref=’activated’
minOccurs=’0’ maxOccurs=’1"/>
<xs:element ref=’candidate’

minOccurs=’0’ maxOccurs=’unbounded’/>

<xs:element name=’candidate-error’

minOccurs=’0’ maxOccurs=’1’ type=’empty’/>

<xs:element ref=’candidate-used’
minOccurs=’0’ maxOccurs=’1’/>
<xs:element name=’proxy-error’

minOccurs=’0’ maxOccurs=’1’ type=’empty’/>

</xs:choice>
<xs:attribute name=’dstaddr’ use=’optional’

type=’xs:string’/>

<xs:attribute name=’mode’ use=’optional’ default="tcp’>

<xs:simpleType>
<xs:restriction base=’xs:NCName’>
<xs:enumeration value=’tcp’/>
<xs:enumeration value=’udp’/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>

<xs:attribute name=’sid’ type=’xs:string’ use=’required’/>

</xs:complexType>
</xs:element>

<xs:element name=’candidate’>
<xs:complexType>
<xs:simpleContent>
<xs:extension base=’empty’>
<xs:attribute name=’cid’
type=’xs:string’ use=’requ
<xs:attribute name=’host’
type=’xs:string’ use=’requ
<xs:attribute name=’jid’
type=’xs:string’ use=’requ
<xs:attribute name=’port’
type=’xs:positivelnteger’
<xs:attribute name=’priority’
type=’xs:positivelnteger’
<xs:attribute name=’type’
use=’optional’ default=’di
<xs:simpleType>
<xs:restriction base=’xs:NCName’>
<xs:enumeration value=’assisted’/>
<xs:enumeration value='direct’/>
<xs:enumeration value=’proxy’/>
<xs:enumeration value=’tunnel’/>

17
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ired’/>
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</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

<xs:element name=’candidate-used’>
<xs:complexType>
<xs:simpleContent>
<xs:extension base="empty’>
<xs:attribute name=’cid’ type=’xs:string’ use=’required’/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

<xs:element name=’activated’>
<xs:complexType>
<xs:simpleContent>
<xs:extension base="empty’>
<xs:attribute name=’cid’ type=’xs:string’ use=’required’/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

<xs:simpleType name=’empty’>
<xs:restriction base=’xs:string’>
<xs:enumeration value='’/>
</xs:restriction>
</xs:simpleType>

</xs:schema>
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