
XEP-0278: Jingle Relay Nodes

Thiago Camargo
mailto:thiago@xmppjingle.com

xmpp:barata7@gmail.com

2021-03-04
Version 0.4.1

Status Type Short Name
Deferred Standards Track jinglenodes

This documents specifies how Jingle Clients can interact with Jingle Relay Nodes Services and how
XMPP entities can provide, search and list available Jingle Relay Nodes.

mailto:thiago@xmppjingle.com
xmpp:barata7@gmail.com

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Requirements 1

3 Terminology 1
3.1 Glossary . 1
3.2 Conventions . 2

4 Flow Example 2
4.1 Jingle Client Checks for Tracker or Relay Services on its own Server Domain . . 2
4.2 Jingle Client Searches for Services on a Retrieved Tracker Service 3
4.3 Jingle Client Searches for Services on online Roster Entries 3
4.4 Jingle Client Consuming the Relay Service . 4
4.5 Jingle Client Consuming TURN Credentials Service 5

5 Services Definitions 6
5.1 Relay Channel Service . 6
5.2 Tracker Service . 6

5.2.1 Services Types . 6

6 Formal Definition 7
6.1 Channel Element . 7

6.1.1 Host Attribute . 8
6.1.2 Localport Attribute . 8
6.1.3 Remoteport Attribute . 8
6.1.4 Protocol Attribute . 8
6.1.5 Maxkbps Attribute . 8
6.1.6 Expire Attribute . 8

6.2 Services Element . 9
6.3 TURN Credentials Service Element . 9

6.3.1 Ttl Attribute . 10
6.3.2 URI Attribute . 10
6.3.3 Username Attribute . 10
6.3.4 Password Attribute . 10

7 Determining Support 10

8 Recommended Use Cases 11
8.1 Jingle Client with RAW-UDP Transport without any NAT detection mechanism 11
8.2 Jingle Client that uses WebRTC with TURN required 11
8.3 Jingle Client with ICE-UDP Transport with STUN support but no TURN support 12
8.4 Jingle Client with ICE-UDP Transport with STUN and TURN support 12
8.5 XMPP Client or Component in a Public IP . 12

9 Implementation Notes 12

10 Security Considerations 13

11 XML Schema 13

3 TERMINOLOGY

1 Introduction
Jingle Nodes is an XMPP Based Relay Service providing standard UDP/TCP Relay, but ne-
gotiated via XMPP. Jingle Relay Nodes are intend to provide easy to use Jingle Relay Type
Candidates that can be used in ICE-UDP, RAW-UDP, TCP Jingle Sessions. Relay Candidates
can provide NAT Traversal for Jingle users with or without STUN/TURN Support. The main
benefits of Jingle Relay Nodes is the easy to use candidates, Jingle Clients can became a Node
and Jingle Relay Nodes are published via XMPP, meaning every Client or Server can also act
as a tracker of another Nodes and STUN Servers.

2 Requirements
Jingle Relay Nodes MUST be binded directly to a Public IP address without firewall for traffic
on the port range reserved to be used by relay candidates. This is the main and unique
requirement for a peer provide Relay Nodes Service. All signalling, request, response and
publishing is done via XMPP, not requiring any extra stack or protocol in the Client or Server,
for usage and discoveral of Nodes.

3 Terminology
3.1 Glossary
Relay Relays are mainly used to transfer traffic to servers located on a NAT:ed (masqueraded)

network, where the IP addresses on the NAT:ed network cannot be accessed from the
outside. When you use an IP address that is for local use only, you must use NAT and
relays because these IP addresses cannot be accessed in any other way. Relays can also
be used for non-NAT:ed networks.

Jingle Relay Node Is an instance of a Relay Service that is negotiable via XMPP, following the
procedures described on this Extension.

Tracker Is the entity that trackers Jingle Relay Nodes and also publishes the list upon request.
Potentially all Jingle Clients might act as a Node Tracker.

Channel Is the UDP/TCP Relay Channel, provided by the a Jingle Relay Node. The channel act
as a NAT Traversal Channel in order to delivery and receive media.

Requester Is the Jingle Client that makes requests and make use of a Channel. The
Requester receives a relay Transport Candidate that can be used with Jin-
gle ICE-UDP Transport Method (XEP-0176) XEP-0176: Jingle ICE-UDP Trans-
port Method <https://xmpp.org/extensions/xep-0176.html>. or Jingle Raw UDP
Transport Method (XEP-0177) XEP-0177: Jingle Raw UDP Transport Method
<https://xmpp.org/extensions/xep-0177.html>..

1

4 FLOW EXAMPLE

3.2 Conventions
In diagrams, the following conventions are used:

• Single-dashed lines (---) represent Jingle stanzas that are sent via the XMPP signalling
channel.

• Double-dashed lines (===) represent media packets that are sent via the data channel,
which typically is not an XMPP channel (although the Jingle In-Band Bytestreams Trans-
port Method is an exception) but instead is a direct or mediated channel between the
endpoints.

4 Flow Example
After the Jingle Clients gets succesfully connected to the XMPP Server, it MAY want to start
discoverying available Relay Services in order to cache some entries. Having cached Relay
Service Addresses is recommended as it speeds up the session setup time as the Client don’t
need to search for available Relay Services right before a session is started or received.

4.1 Jingle Client Checks for Tracker or Relay Services on its own Server Domain
A Jingle Client MAY start the search for Relay Services by querying his own XMPP Server
Domain.
Note: This is a good implementation practice.

Listing 1: Service List Request
<iq from=’romeo@montague.lit/orchard ’

id=’uw72g176 ’
to=’montague.lit’
type=’get’>

<services xmlns=’http: // jabber.org/protocol/jinglenodes ’/>
</iq>

Listing 2: Tracker Returned Known Public Relay Services
<iq from=’montague.lit’

id=’uw72g176 ’
to=’romeo@montague.lit/orchard ’
type=’result ’>

<services xmlns=’http: // jabber.org/protocol/jinglenodes ’>
<relay policy=’public ’ address=’montague.lit’ protocol=’udp’/>
<tracker policy=’public ’ address=’capulet.lit’ protocol=’udp’/>
<turn policy=’public ’ address=’stun.capulet.lit’ protocol=’udp’/>

2

4 FLOW EXAMPLE

<stun policy=’public ’ address=’200.111.111.111 ’ port=’3857’
protocol=’udp’/>

</services >
</iq>

In this example ’montague.lit’ XMPP Domain a Relay Service and a Tracker Service. The Relay Service
can be contacted in order to retrieve Relay Channels. The Tracker Service can be contacted in order to
retrieve its known services.

4.2 Jingle Client Searches for Services on a Retrieved Tracker Service
A Jingle Client MAY NOT be satisfied with only one Relay Service entry found. So it keeps the
search on the known Tracker Services.

Listing 3: Service List Request
<iq from=’romeo@montague.lit/orchard ’

id=’uw72g177 ’
to=’capulet.lit’
type=’get’>

<services xmlns=’http: // jabber.org/protocol/jinglenodes ’/>
</iq>

Listing 4: Tracker Returned Known Public Relay Services
<iq from=’capulet.lit’

id=’uw72g177 ’
to=’romeo@montague.lit/orchard ’
type=’result ’>

<services xmlns=’http: // jabber.org/protocol/jinglenodes ’/>
</iq>

In this example ’capulet.lit’ returned an empty service list, meaning that it does NOT known ANY Relay
or Tracker Services.

4.3 Jingle Client Searches for Services on online Roster Entries
A Jingle Client MAY NOT be satisfied with only one Relay Service entry found. So it keeps the
search on his Roster Items until find the desired amount of Relay Services, or while it does
NOT exceed a search depth or ANY other Client implementation policy. The Client SHOULD
keep a list of visited Tracker Services in order to avoid searching twice in same Service Entity.

Listing 5: Service List Request
<iq from=’romeo@montague.lit/orchard ’

3

4 FLOW EXAMPLE

id=’uw72g177 ’
to=’juliet@capulet.lit/balcony ’
type=’get’>

<services xmlns=’http: // jabber.org/protocol/jinglenodes ’/>
</iq>

Listing 6: Tracker Returned Known Public Relay Services
<iq from=’juliet@capulet.lit/balcony ’

id=’uw72g177 ’
to=’romeo@montague.lit/orchard ’
type=’result ’>

<services xmlns=’http: // jabber.org/protocol/jinglenodes ’>
<relay policy=’roster ’ address=’juliet@capulet.lit/balcony ’

protocol=’udp’/>
</services >

</iq>

In this example ’juliet@capulet.lit/balcony’ returned a Relay Service entry that is restricted
to its roster. This Service is usable as the requester has ’juliet@capulet.lit/balcony’ on
its roster. Although, services with policy ’roster’ MUST NOT be listed in Tracker Re-
sponses expects in Tracker Responses that comes from the Service Entity itself, in this case
’juliet@capulet.lit/balcony’.
In the presented example ’romeo@montague.lit/orchard’ knows that ’juliet@capulet.lit/balcony’
provides Relay Service, but if another entity requests ’romeo@montague.lit/orchard’ its known services,
it MUST NOT include ’juliet@capulet.lit/balcony’ as it is a roster restricted entry.

4.4 Jingle Client Consuming the Relay Service
A Jingle Client with Internet connectivity wheter with direct access to a public IP or not, can
potentially provide the Relay Service becaming itself a Jingle Relay Node. The service can
intend to provide a public service, or a restricted services based on user preferences, like
buddylist, allow/deny lists, domain, etc...
Note: It is NOT mandatory to became a Jingle Relay Node it is OPTIONAL and SHOULD be done ONLY
under user awareness and concentiment.

Listing 7: UDP Relay Channel request
<iq from=’romeo@montague.lit/orchard ’

id=’uw72g176 ’
to=’juliet@capulet.lit/balcony ’
type=’get’>

<channel xmlns=’http: // jabber.org/protocol/jinglenodes#channel ’
protocol=’udp’/>

</iq>

4

4 FLOW EXAMPLE

Listing 8: Candidate Returned by a Node with channel bandwidth throttle
<iq from=’juliet@capulet.lit/balcony ’

id=’uw72g176 ’
to=’romeo@montague.lit/orchard ’
type=’result ’>

<channel component=’1’
id=’el0747fg11 ’
host=’200.20.2.10 ’
localport=’35800 ’
remoteport=’35802 ’
protocol=’udp’
maxkbps=’120’
expire=’60’/>

</iq>

After receiving the <channel/> the requester MUST send his stream to ’host’ and ’localport’ pair and
send a <candidate/> containing the ’host’ and ’remoteport’ values.

4.5 Jingle Client Consuming TURN Credentials Service
A Jingle Client can request volative TURN credentials, to be used in cases where connectivity
check is a requirement. Like, for example, WebRTC. The concept and mechanism is quite
similar to the RFC draft REST API For Access To TURN Services’.
TURN provides an access control mechanism described in RFC 5389 1, where long-term
credentials are provided as part of the TURN protocol. Therefore the credentials provided in
this Jingle Nodes mechanism are time-limited, but SHOULD be used as long-term credentials,
when authentication against a TURN Server.
Note: There is no need to run TURN server or support within a Jingle Relay. This mechanism allows
decoupled deployment of distributed TURN Servers, without the requirement of database based authen-
tication.

Listing 9: TURN Credentials request
<iq from=’romeo@montague.lit/orchard ’

id=’uw72g176 ’
to=’juliet@capulet.lit/balcony ’
type=’get’>

<turn xmlns=’http: // jabber.org/protocol/jinglenodes#turncredentials ’
protocol=’udp’/>

</iq>

Listing 10: TUNR Credentials Returned by the service
<iq from=’juliet@capulet.lit/balcony ’

id=’uw72g176 ’

1RFC 5389: Session Traversal Utilities for NAT (STUN) <http://tools.ietf.org/html/rfc5389>.

5

https://tools.ietf.org/html/draft-uberti-behave-turn-rest-00
http://tools.ietf.org/html/rfc5389
http://tools.ietf.org/html/rfc5389

5 SERVICES DEFINITIONS

to=’romeo@montague.lit/orchard ’
type=’result ’>

<turn ttl=’60000 ’
uri=’turn:200 .20.2.10 :1984?transport=udp’
username=’1433895918506 :romeocapulet ’
password=’1Dj9XZ5fwvKS6YoQZOoORcFnXaI=’
/>

</iq>

5 Services Definitions
5.1 Relay Channel Service
A Relay Channel Service is responsible for providing the actual Relay Services. It will receive
Channel Requests, allocate the Relay Channel and return the ready to use details. If a Jingle
Client knows the service address of one valid and reliable Relay Service, that is enough for
place and receive Jingle Calls and transmit both ways media streams based on UDP.
Relay Channel Services support can be discovered by searching using Tracker Services. It can
also be discovered by service discovery described in this document.
Note: Jingle Relay Channels can be used with RAW-UDP and ICE-UDP Jingle Transports.

5.2 Tracker Service
A Tracker Service is responsible for providing addresses of known Relay Channel Services and
other Tracker Services as well.

5.2.1 Services Types

Tracker entries MUST contain a ’type’ attribute that represents the usage policy according to
the table below:

Type Definition
public Relays Services that are meant and opened for public usage, SHOULD use the type

’public’. Meaning that every user can make use of its services. This type SHOULD
be published by Tracker Services.

roster Relay Services that only provides Channels for users that are in it own roster,
SHOULD use the type ’roster’. Meaning that only presence subscribed buddies can
make use of its service. Common usage is XMPP Clients with Relay Services Capa-
bilities. This type SHOULD NOT be published by Tracker Services as if it is roster
only, the requester SHOULD have the entity already added to his roster, which also
mean that it SHOULD be discoverable on roster level.

6

6 FORMAL DEFINITION

6 Formal Definition
6.1 Channel Element
The <channel/> element MUST be empty.
The attributes of the <channel/> element are as follows.

Attribute Definition Inclusion
id A random candidate identifier

generated by the Relay Service,
which effectively maps to the cre-
ated Channel; this SHOULD match
the XML Nmtoken production See
<http://www.w3.org/TR/2000/WD-
xml-2e-20000814#NT-Nmtoken> so
that XML character escaping is not
needed for characters such as ’&’. In
some situations the Jingle session
identifier might have security impli-
cations. See RFC 4086 RFC 4086: Ran-
domness Requirements for Security
<http://tools.ietf.org/html/rfc4086>.
regarding requirements for random-
ness.

REQUIRED on response, NOT RECOM-
MENDED on requests

host The IP address or Host address of the
Relay Channel.

REQUIRED on response

localport The port number to be used by the
channel requester.

REQUIRED on response

remoteport The port number to be offered to the
remote party.

REQUIRED on response

protocol The protocol supported by the re-
trieved channel.

REQUIRED on response

maxkbps The maximum bandwidth supported
by the channel.

OPTIONAL on response, NOT RECOM-
MENDED on requests.

expire The maximum amount of seconds
that the channel can stay without re-
ceiving packets, without being deac-
tivated and closed.

REQUIRED

7

6 FORMAL DEFINITION

6.1.1 Host Attribute

The value of the ’host’ attribute MUST be one IP address or a DNS resolvable address. That is
the address to be used on candidate offering and also the IP to be used when sending out the
media traffic.

6.1.2 Localport Attribute

The value of the ’localport’ attribute MUST be a valid IP Port number. This port MUST be used
as the media traffic destination port of the channel requester. Session Initiator and responder
MUST NOT offer this port.
The rule is simple and unique, the requester of the channel MUST send the media streams to
’localport’ and use ’remoteport’ in the ’candidate’ element to be offered in the Jingle Session.
For transparent compatibility with major RTP Proxy Deployments, an RCTP Port is allocated
and defined by default at Localport Attribute Value plus one. (Localport + 1)

6.1.3 Remoteport Attribute

The value of the ’remoteport’ attribute MUST be a valid IP Port number. This port MUST be
used as media traffic destination port of the other party. Channel requester MUST use this
port value in the candidate offer in combination with the ’host’ attribute. Channel requester
MUST NOT send any media stream to this port.
For transparent compatibility with major RTP Proxy Deployments, an RCTP Port is allocated
and defined by default at Remoteport Attribute Value plus one. (Localport + 1)

6.1.4 Protocol Attribute

The value of the ’protocol’ attribute MUST be a valid protocol value: ’udp’ or ’tcp’ as also
defined in the XML Schema

6.1.5 Maxkbps Attribute

The value of the ’maxkbps’ attributeMUST be a valid integer value representing themaximum
kilobits per seconds the channel supports. This attribute is optional and MAY be used in Relay
Channel with bandwidth limitation.

6.1.6 Expire Attribute

The value of the ’expire’ attribute MUST be a valid integer value representing the maximum
seconds that the channel can stay without receiving any traffic without being deactivated and

8

6 FORMAL DEFINITION

closed. This attribute is required and SHOULD be used in all Relay Channels.

6.2 Services Element
The <services/> element MAY be empty or contain <relay/>, <stun/> and/or <tracker/>
elements.
The attributes of the <relay/> and <tracker/> element are as follows.

Attribute Definition Inclusion
policy The policy of the service. If the service

is public, MUST be ’public’ if it is re-
stricted to roster, MUST be ’roster’.

REQUIRED

address For Relay and Tracker Services the JID.
For STUN Service the IP or Host ad-
dress.

REQUIRED

protocol The protocol supported by the re-
trieved service.

REQUIRED

port The port number of the STUN service.
This field is only used in STUN Service
entries.

REQUIRED for STUN entries

6.3 TURN Credentials Service Element
The attributes of the <turn/> element are as follows.

Attribute Definition Inclusion
ttl The duration in seconds for which the

provided credentials are valid.
REQUIRED

uri The TURN Server URI. REQUIRED
username The username to be used on TURN au-

thentication. THe recommended for-
mat is a colon-delimited concatena-
tion of expiration timestamp and the
requester bare JID.

REQUIRED

password The ppassword to be used on TURN
authentication. Is the result of
’base64(hmac(secret_key, user-
name))’. Where ’secret_key’ is shared
between the TURN server and entity
providing the credentials.

REQUIRED

9

7 DETERMINING SUPPORT

6.3.1 Ttl Attribute

The duration in seconds for which the provided credentials are valid. The usual and recom-
mended value is 86400 seconds (one day).

6.3.2 URI Attribute

The TURN Server URI as described in I-D.petithuguenin-behave-turn-uris

6.3.3 Username Attribute

WebRTC’s TURN request uses the ’username’ value for its USERNAME and PASSWORD at-
tributes, for the input to the MESSAGE-INTEGRITY hash.

6.3.4 Password Attribute

Along with ’username’, WebRTC’s TURN request uses the ’password’ value for its USERNAME
and PASSWORD attributes, for the input to the MESSAGE-INTEGRITY hash.

7 Determining Support
To advertise its support for the Jingle Nodes support, when replying to Service Discovery
(XEP-0030) 2 information requests an entityMUST returnURNs for any version of this protocol
that the entity supports -- e.g., ”http://jabber.org/protocol/jinglenodes” for this version(see
Namespace Versioning regarding the possibility of incrementing the version number).
If the entity supports, Jingle Nodes as a Tracker, it MUST reply to Service Discovery (XEP-0030)
3 with ”http://jabber.org/protocol/jinglenodes”. If it also provides the Jingle Nodes Relay
Services, it MUST reply with the URN ”http://jabber.org/protocol/jinglenodes#channel”.
For optimization purpose the Client SHOULD check for Jingle Nodes support based on entity
presence capabilities Entity Capabilities (XEP-0115) 4, which SHOULD contain the keywork
”jn-v0”.

Listing 11: Service discovery information request
<iq from=’romeo@montague.lit/orchard ’

2XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.
3XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.
4XEP-0115: Entity Capabilities <https://xmpp.org/extensions/xep-0115.html>.

10

https://tools.ietf.org/html/draft-petithuguenin-behave-turn-uris-03
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0115.html

8 RECOMMENDED USE CASES

id=’uw72g176 ’
to=’juliet@capulet.lit/balcony ’
type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

Listing 12: Service discovery information response
<iq from=’juliet@capulet.lit/balcony ’

id=’uw72g176 ’
to=’romeo@montague.lit/orchard ’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
<feature var=’http: // jabber.org/protocol/jinglenodes ’/>
<feature var=’http: // jabber.org/protocol/jinglenodes#channel ’/>
<feature var=’http: // jabber.org/protocol/jinglenodes#

turncredentials ’/>
</query >

</iq>

In order for an application to determine whether an entity supports this protocol, where
possible it SHOULD use the dynamic, presence-based profile of service discovery defined in
Entity Capabilities (XEP-0115) 5. However, if an application has not received entity capabilities
information from an entity, it SHOULD use explicit service discovery instead.

8 Recommended Use Cases
8.1 Jingle Client with RAW-UDP Transport without any NAT detection

mechanism
A Jingle Client with only RAW-UDP support and any NAT detection mechanism can make use
of Jingle Nodes. Although the traversal is not guarantee due problem with NAT configuration
or firewalls, this method is fairly efficient as most SIP legacy services still provides their
services in a similar way, meaning that this has the exactly same accertivity and reliability
than regular SIP Services. This method is extremelly useful specially for simple platforms
like mobile and clients in early stage of development that still wants to offer voice and video
support.
Note: This use case is also similar to a Jingle to SIP Interoperability Service.

8.2 Jingle Client that uses WebRTC with TURN required
A Jingle Client that uses WebRTC, therefore requiring a TURN Server and its credentials to
successfully alocate channels. This specification describes a simple way of discovering TURN

5XEP-0115: Entity Capabilities <https://xmpp.org/extensions/xep-0115.html>.

11

https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0115.html

9 IMPLEMENTATION NOTES

Services and retrieving credentials to successfully allocate channels. This also simplifies
deployment and distribution of TURN servers, since its stateless authentication does not
require connectivity to database authoriztion services.

8.3 Jingle Client with ICE-UDP Transport with STUN support but no TURN
support

A Jingle Client with STUN support but no TURN support can use Relay Node Services as the
fallback candidate instead of a TURN candidate. For instance, after a connectivity check
proccess, none of the direct candidates worked. The Client can use the Relay Node Candidate
as the fallback candidate(the lowest priority candidate).

8.4 Jingle Client with ICE-UDP Transport with STUN and TURN support
A Jingle Client with STUN and TURN support still might need a Relay Candidate, specially as
TURN servers are not widely deployed and don’t have any mechanism to publish available
services for users. TURN servers also requires specific UDP traffic in specific port ranges
which can be blocked by users networks. In this case is very useful to have an extra fallback
candidate that can be negotiated via XMPP rather than over UDP.
Note: Jingle Relay Nodes Services are much more likely to be found and be available than TURN servers,
as users can also provide Jingle Relay Nodes services themselves or provide a list of known and available
services, in this last case behaving a tracker. Is very likely that Jingle Relay Nodes will be available and
discovered more easily and often than TURN servers.

8.5 XMPP Client or Component in a Public IP
A XMPP Client or Component with direct access to a public IP can potentially provide the UDP
Relay Service becaming itself a Jingle Relay Node. The service can intend to provide a public
service, or a restricted services based on user preferences, like buddylist, allow/deny lists,
domain, etc...
Note: It is NOT mandatory to became a Jingle Relay Node. This is OPTIONAL and SHOULD be done with
user awareness and concentiment.

9 Implementation Notes
When using a candidate provided by a Jingle Relay Service, the Jingle Client MUST set the
candidate attribute to ’relay’. In order to make sure the other client won’t allocate another
channel as well. Which would lead in audio connectivity issues. In brief, if the caller is using
a Relay Candidate the calle MUST NOT use another Relay Candidate discovered by itself.
If a caller is not using a Relay Candidate(which can be determined by the candidate ’type’

12

11 XML SCHEMA

attribute) the callee MAY use a Relay Candidate in order to ensure communication.

10 Security Considerations
Relay Channels auto expires MUST expire on traffic inactivity. The inactivity timeout recom-
mended is 60 seconds.
It is heavily recommended that the Super Node implements throttle:

• Based on JID, allowing the control of how many concurrent channels an specific JID can
have.

• Based on JID, allowing the control of how many channel requests an specific JID can
request in a time period.

• Based on Bandwidth, allowing the control of how much bandwidth a channel can use.
The maximum bandwidth SHOULD be included on the candidate element provided by a
Super Node on the attribute maxkbps. If no attribute is present, it means that it has no
bandwidth control.

Listing 13: Channel Returned by a Node with bandwidth throttle (stub)
<channel component=’1’

id=’el0747fg11 ’
host=’200.20.2.10 ’
localport=’35800 ’
remoteport=’35802 ’
protocol=’udp’
maxkbps=’120’/>

11 XML Schema

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’http: // jabber.org/protocol/jinglenodes ’
xmlns=’http: // jabber.org/protocol/jinglenodes ’
elementFormDefault=’qualified ’>

<xs:element name=’channel ’>
<xs:attribute name=’id’ type=’xs:string ’ use=’required ’/>
<xs:attribute name=’host’ type=’xs:string ’ use=’required ’/>
<xs:attribute name=’localport ’ type=’xs:string ’ use=’required ’

/>

13

11 XML SCHEMA

<xs:attribute name=’remoteport ’ type=’xs:string ’ use=’required
’/>

<xs:attribute name=’protocol ’ use=’required ’>
<xs:simpleType >

<xs:restriction base=’xs:NCName ’>
<xs:enumeration value=’udp’/>
<xs:enumeration value=’tcp’/>

</xs:restriction >
</xs:simpleType >

</xs:attribute >
<xs:attribute name=’maxkbps ’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’expire ’ type=’xs:string ’ use=’required ’/>

</xs:element >

<xs:element name=’turn’>
<xs:attribute name=’ttl’ type=’xs:string ’ use=’required ’/>
<xs:attribute name=’uri’ type=’xs:string ’ use=’required ’/>
<xs:attribute name=’username ’ type=’xs:string ’ use=’required ’/

>
<xs:attribute name=’password ’ type=’xs:string ’ use=’required ’/

>
</xs:element >

<xs:element name=’services ’>
<xs:complexType >

<xs:sequence >
<xs:element name=’relay ’

type=’serviceElementType ’
minOccurs=’0’
maxOccurs=’unbounded ’/>

<xs:element name=’tracker ’
type=’serviceElementType ’
minOccurs=’0’
maxOccurs=’unbounded ’/>

<xs:element name=’stun’
type=’serviceElementType ’
minOccurs=’0’
maxOccurs=’unbounded ’/>

<xs:element name=’turn’
type=’serviceElementType ’
minOccurs=’0’
maxOccurs=’unbounded ’/>

</xs:sequence >
</xs:complexType >

</xs:element >

<xs:complexType name=’serviceElementType ’>
<xs:simpleContent >

<xs:extension base=’empty ’>

14

11 XML SCHEMA

<xs:attribute name=’address ’ type=’xs:string ’ use=’required ’/>
<xs:attribute name=’port’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’policy ’ use=’required ’>

<xs:simpleType >
<xs:restriction base=’xs:NCName ’>

<xs:enumeration value=’public ’/>
<xs:enumeration value=’roster ’/>

</xs:restriction >
</xs:simpleType >

</xs:attribute >
<xs:attribute name=’protocol ’ use=’required ’>

<xs:simpleType >
<xs:restriction base=’xs:NCName ’>

<xs:enumeration value=’udp’/>
<xs:enumeration value=’tcp’/>

</xs:restriction >
</xs:simpleType >

</xs:attribute >
</xs:extension >

</xs:simpleContent >
</xs:complexType >

<xs:simpleType name=’empty ’>
<xs:restriction base=’xs:string ’>

<xs:enumeration value=’’/>
</xs:restriction >

</xs:simpleType >

</xs:schema >

15

	Introduction
	Requirements
	Terminology
	Glossary
	Conventions

	Flow Example
	Jingle Client Checks for Tracker or Relay Services on its own Server Domain
	Jingle Client Searches for Services on a Retrieved Tracker Service
	Jingle Client Searches for Services on online Roster Entries
	Jingle Client Consuming the Relay Service
	Jingle Client Consuming TURN Credentials Service

	Services Definitions
	Relay Channel Service
	Tracker Service
	Services Types

	Formal Definition
	Channel Element
	Host Attribute
	Localport Attribute
	Remoteport Attribute
	Protocol Attribute
	Maxkbps Attribute
	Expire Attribute

	Services Element
	TURN Credentials Service Element
	Ttl Attribute
	URI Attribute
	Username Attribute
	Password Attribute

	Determining Support
	Recommended Use Cases
	Jingle Client with RAW-UDP Transport without any NAT detection mechanism
	Jingle Client that uses WebRTC with TURN required
	Jingle Client with ICE-UDP Transport with STUN support but no TURN support
	Jingle Client with ICE-UDP Transport with STUN and TURN support
	XMPP Client or Component in a Public IP

	Implementation Notes
	Security Considerations
	XML Schema

