
XEP-0284: Shared XML Editing

Joonas Govenius
mailto:joonas@uwc.net
xmpp:joonas@jabber.org

Peter Saint-Andre
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org

https://stpeter.im/

Tom Pusateri
mailto:pusateri@bangj.com

2021-03-04
Version 0.1.3

Status Type Short Name
Deferred Standards Track NOT YET ASSIGNED

This specification defines a protocol that enables two ormore endpoints to collaboratively edit an XML
object. The protocol is intended for use mainly over the Extensible Messaging and Presence Protocol
(XMPP), either by existing instant messaging clients or by specialized editing clients. However, the pro-
tocol could also be used over a direct TCP connection rather than over XMPP.

mailto:joonas@uwc.net
xmpp:joonas@jabber.org
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/
mailto:pusateri@bangj.com

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Requirements 1

3 Glossary 1

4 Session Management 1
4.1 Initiation . 2
4.2 Session Acceptance . 3
4.3 Session Refusal . 3

5 Determining the features of the Host 4

6 Advertising a Session 5

7 Connecting to a Session 5

8 Initial State Synchronization 6
8.1 Making a State Offer . 6
8.2 Accepting a State Offer . 6
8.3 Refusing a State Offer . 7
8.4 Sending the State of the Document . 7

9 Subsequent State Changes 10

10 Formal Definition 11
10.1 SXE Element . 11
10.2 XML Document Requirements . 12
10.3 Mapping the Records to the DOM Document . 12
10.4 Commutative and Non-commutative Edits . 14

10.4.1 Requirements for the Server Component 15
10.5 Commutative Edits . 15

10.5.1 Creating New Nodes . 15
10.5.2 Removing Nodes . 16

10.6 Non-commutative Edits . 17
10.6.1 The set Element . 17
10.6.2 Processing a set Element . 18

11 Implementation Notes 18
11.1 MUC Roles . 18

12 Security Considerations 19

13 IANA Considerations 19

14 XMPP Registrar Considerations 19
14.1 Protocol Namespaces . 19
14.2 Service Discovery Identities . 19
14.3 Jingle Transport Methods . 20

15 XML Schema 20

16 Acknowledgements 20

4 SESSION MANAGEMENT

1 Introduction
This specification defines a protocol for collaboratively editing XML data. Essentially, this
protocol provides a simple way of synchronizing an unordered set of records across several
endpoints. Additionally, this protocol defines a mapping between such a set of records and
the Document Object Model (DOM).
A special feature of this protocol compared to most other collaborative editing tools is that no
central or server entity is required. A Multi-User Chat (XEP-0045) 1 component or specialized
editing component can be used for sessions that have a large number of participants, that
need to be persistent, or that require more granular access control. However, the client
implementation is minimally different whether such a specialized component is used or
whether the session is one-to-one or multi-user.

2 Requirements
Requirements for shared editing are provided in Requirements for Shared Editing (XEP-0228) 2.

3 Glossary
GUID: a Globally Unique Indentifier, used as the identifier for a shared editing session.
Host: The JID to which the SXEmessages are sent for relaying to othermembers of the session;
this can be the initiator of the session (e.g., in a one-to-one session or small multi-user session)
or a multi-user chat room or specialized shared editing component.
RID: the Record ID given to a record when it is created.
State: In the context of a new user joining, the state refers to the set of records that describes
the edited object, including all previous versions of each record. All entities involved in the
session are REQUIRED to keep this state unless a specialized component handles user joins.
Weight: Primarily, the weight of a node is represented by the ’primary-weight’ field of the
corresponding record. Secondarily, if the values of the ’primary-weight’ of two records are
equal, the first differing characters of the rids are compared by their Unicode values. The
higher the character the higher the weight of the node is.

4 Session Management
When used in the context of XMPP, Shared XML Editing relies on Jingle (XEP-0166) 3 for overall
session management. In Jingle terms, SXE defines a ”transport method” that can be used for

1XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>.
2XEP-0228: Requirements for Shared Editing <https://xmpp.org/extensions/xep-0228.html>.
3XEP-0166: Jingle <https://xmpp.org/extensions/xep-0166.html>.

1

https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0228.html
https://xmpp.org/extensions/xep-0166.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0228.html
https://xmpp.org/extensions/xep-0166.html

4 SESSION MANAGEMENT

multiple ”application types” such as XHTML documents, SVG whiteboards, Collaborative Data
Objects (XEP-0204) 4, or any other XML data format.

4.1 Initiation
In order to initiate a shared editing session, one party sends a Jingle session-initiate request
to another party. Here the <transport/> element indicates support for exchanging SXE
information over XMPP and the <description/> element indicates support for editing of
XHTML documents (this application type has not been defined yet and is used here only as an
example). The <transport/> element MUST include at least one <host/> element that specifies
the entity that serves as the host for the session. The host can be the initiator of the session
(and must be for a one-to-one session) or a multi-user chat room or specialized reflector
where the session is hosted.

Listing 1: Initiator sends session-initiate
<iq from=’kingclaudius@shakespeare.lit/castle ’

id=’jingle1 ’
to=’laertes@shakespeare.lit/castle ’
type=’set’>

<jingle xmlns=’urn:xmpp:jingle:1 ’
action=’session -initiate ’
initiator=’kingclaudius@shakespeare.lit/castle ’
sid=’851 ba2’>

<content creator=’initiator ’ name=’this -is -the -editing -content ’>
<description xmlns=’urn:xmpp:jingle:apps:xhtml ’/>
<transport xmlns=’urn:xmpp:jingle:transports:sxe ’>

<host>kingclaudius@shakespeare.lit</host>
</transport >

</content >
</jingle >

</iq>

The responder immediately acknowledges receipt of the session-initiate.

Listing 2: Responder acknowledges session-initiate
<iq from=’laertes@shakespeare.lit/castle ’

id=’jingle1 ’
to=’kingclaudius@shakespeare.lit/castle ’
type=’result ’/>

4XEP-0204: Collaborative Data Objects <https://xmpp.org/extensions/xep-0204.html>.

2

https://xmpp.org/extensions/xep-0204.html
https://xmpp.org/extensions/xep-0204.html
https://xmpp.org/extensions/xep-0204.html

4 SESSION MANAGEMENT

4.2 Session Acceptance
In order to definitively accept the session, the responder sends a session-accept to the initiator.

Listing 3: Responder sends session-accept
<iq from=’laertes@shakespeare.lit/castle ’

id=’jingle2 ’
to=’kingclaudius@shakespeare.lit/castle ’
type=’set’>

<jingle xmlns=’urn:xmpp:jingle:1 ’
action=’session -accept ’
initiator=’kingclaudius@shakespeare.lit/castle ’
sid=’851 ba2’>

<content creator=’initiator ’ name=’this -is -the -editing -content ’>
<description xmlns=’urn:xmpp:jingle:apps:xhtml ’/>
<transport xmlns=’urn:xmpp:jingle:transports:sxe ’>

<host>kingclaudius@shakespeare.lit</host>
</transport >

</content >
</jingle >

</iq>

The initiator immediately acknowledges receipt of the session-accept.

Listing 4: Initiator acknowledges session-accept
<iq from=’kingclaudius@shakespeare.lit/castle ’

id=’jingle2 ’
to=’laertes@shakespeare.lit/castle ’
type=’result ’/>

4.3 Session Refusal
In order to decline the session, the responder sends a session-terminate to the initiator.

Listing 5: Responder sends session-terminate
<iq from=’laertes@shakespeare.lit/castle ’

id=’jingle3 ’
to=’kingclaudius@shakespeare.lit/castle ’
type=’set’>

<jingle xmlns=’urn:xmpp:jingle:1 ’
action=’session -terminate ’
host=’chamber@conference.shakespeare.lit’
initiator=’kingclaudius@shakespeare.lit/castle ’
sid=’851 ba2’>

<reason >

3

5 DETERMINING THE FEATURES OF THE HOST

<unsupported -applications/>
</reason >

</jingle >
</iq>

The responder indiciates the reason for refusing the session by including a ”reason” element.
The following reasons are suggested (see also Jingle (XEP-0166) 5):

• alternative-session -- the responder already has an active session with the initiator and
wishes to use that session instead.

• decline -- the responder formally declines the session.

• unsupported-applications -- the responder supports none of the offered the application
types.

The initiator immediately acknowledges receipt of the session-terminate.

Listing 6: Initiator acknowledges session-terminate
<iq from=’kingclaudius@shakespeare.lit/castle ’

id=’jingle3 ’
to=’laertes@shakespeare.lit/castle ’
type=’result ’/>

5 Determining the features of the Host
Before connecting to a session, a party MUST determine the Service Discovery (XEP-0030) 6

identity and supported features of the host. In many situations the party already knows this
information (e.g., if the host is the initiator of the Jingle session). In other situations the party
will need to send a service discovery information request to the host.

Listing 7: Service Discovery Request
<iq from=’laertes@shakespeare.lit/castle ’

to=’kingclaudius@shakespeare.lit/castle ’
id=’disco1 ’>
type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

If the host supports Shared XML Editing over XMPP, it MUST return features of
”urn:xmpp:sxe:0” and ”urn:xmpp:jingle:transports:sxe” (see Protocol Namespaces regarding

5XEP-0166: Jingle <https://xmpp.org/extensions/xep-0166.html>.
6XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

4

https://xmpp.org/extensions/xep-0166.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0166.html
https://xmpp.org/extensions/xep-0030.html

7 CONNECTING TO A SESSION

issuance of one or more permanent namespaces):

Listing 8: Service discovery response
<iq from=’laertes@shakespeare.lit/castle ’ to=’kingclaudius@shakespeare

.lit/castle ’ type=’result ’ id=’disco1 ’>
<query xmlns=’http: // jabber.org/protocol/disco#info’>

<identity category=’client ’ type=’pc’/>
...
<feature var=’urn:xmpp:sxe:0 ’/>
<feature var=’urn:xmpp:jingle:transports:sxe ’/>
...

</query >
</iq>

6 Advertising a Session
An entity that is engaged in a session can advertise that fact by including the session id and
descriptive name in its XMPP presence.

Listing 9: Advertising a session
<presence from=’laertes@shakespeare.lit/castle ’>

<sxe xmlns=’urn:xmpp:sxe:0 ’ session=’851 ba2’ name=’Marketing␣
Materials ’/>

</presence >

Such presence can be broadcast or can be sent in the context of a multi-user chat room (see
Multi-User Chat (XEP-0045) 7).
However, presence is not sent when operating in a serverless messaging environment (see
Link-Local Messaging (XEP-0174) 8). Instead, DNS TXT records are published. Two new
key-value pairs are used to advertise a session id (”sxe_id”) and session name (”sxe_name”)
when using serverless messaging.

7 Connecting to a Session
In order to synchronize its local state with the existing state of the edited object, an entity
sends a connection request to the host. The identity learned through service discovery
determines what kind of message the joining party sends (e.g., type=’groupchat’ if the host is
a MUC room).
To connect to a session, the joiner MUST send an SXE <connect/> element to the host.

7XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>.
8XEP-0174: Link-Local Messaging <https://xmpp.org/extensions/xep-0174.html>.

5

https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0174.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0174.html

8 INITIAL STATE SYNCHRONIZATION

Listing 10: Connecting to a session
<message

from=’laertes@shakespeare.lit/castle ’
to=’kingclaudius@shakespeare.lit/castle ’>

<sxe xmlns=’urn:xmpp:sxe:0 ’ id=’e’ session=’851 ba2’>
<connect/>

</sxe>
</message >

8 Initial State Synchronization
8.1 Making a State Offer
When a joining user sends a connect request, the joiner must retrieve the state of the session
from an existing participant. The following ruules apply:

1. In a one-to-one session, the initiator MUST offer to send the state.

2. In a multi-user session, both the host and the invitor (initiator) MUST offer to send the
state. However, other participants MAY offer to send the state. The joiner SHOULD
prefer to receive the state from the host or initiator.

The state offer MUST contain the <description/> element or elements that were included in
the Jingle session-initiate request.

Listing 11: A state offer
<message

from=’kingclaudius@shakespeare.lit/castle ’
to=’laertes@shakespeare.lit/castle ’>
<sxe xmlns=’urn:xmpp:sxe:0 ’

session=’851 ba2’
id=’f’>

<state -offer>
<description xmlns=’urn:xmpp:jingle:apps:xhtml ’/>

</state -offer>
</sxe>

</message >

8.2 Accepting a State Offer
The joiner accepts a state offer by sending an <accept-state/> element to one of the entities
that offer to send the state. The joiner MUST store all the <sxe/> elements it receives after the
<state-offer/> element it decides to accept. It MUST also abort the negotiation with the other
users that offered to send the state.

6

8 INITIAL STATE SYNCHRONIZATION

Once the other entity receives the <accept-state/> element it MUST proceed sending the state
as described in the next section.

Listing 12: Accepting a state offer
<message

from=’laertes@shakespeare.lit/castle ’
to=’kingclaudius@shakespeare.lit/castle ’>

<sxe xmlns=’urn:xmpp:sxe:0 ’
session=’851 ba2’
id=’g’>

<accept -state/>
</sxe>

</message >

8.3 Refusing a State Offer
If a multiple state offers were received, one should be accepted and the others should be
refused by sending a <refuse-state/> element.

Listing 13: Refusing a state offer
<message

from=’laertes@shakespeare.lit/castle ’
to=’kingclaudius@shakespeare.lit/castle ’>

<sxe xmlns=’urn:xmpp:sxe:0 ’
session=’851 ba2’
id=’g’>

<refuse -state/>
</sxe>

</message >

8.4 Sending the State of the Document
The process of sending the state is following:

1. The sender sends a <document-begin/> element and simultaneously takes a ”snapshot”
of the document’s state. The <document-begin/> element SHOULD have a ’prolog’ at-
tribute. The ’prolog’ attribute should contain the XML prolog of the document encoded
using the data: URI scheme (RFC 2397).

2. The sender sends the state as it was at the time of sending <document-begin/>.

3. The sender sends a <document-end/> element.

7

8 INITIAL STATE SYNCHRONIZATION

The state can be sent in any number of <sxe/> elements but the user sending the state MUST
NOT send any new <sxe/> elements between sending the <document-begin/> (i.e. taking the
snapshot) and the <document-end/> element.
The state SHOULD include a version of each element that was synchronized, and hence won’t
be undone, as well as all the later versions. In practice this can often be impossible to know in
a session without a specialized MUC component so it may be safest to send version 0 and all
the later edits to each element. Version 0 is implied if the version element is missing.

Listing 14: Sending the state of a blank document (only prolog)
<message

from=’kingclaudius@shakespeare.lit/castle ’
to=’laertes@shakespeare.lit/castle ’>
<sxe xmlns=’urn:xmpp:sxe:0 ’

session=’851 ba2’
id=’b’>

<state >
<document -begin

prolog=’data:text/xml ,%3C%3Fxml %20 version %3D%271.\
0%27%20 standalone %3D%27no %27%3F%3E%0A%3C%21 DOCTYPE %20 svg%\
20 PUBLIC %20%27 -%2F%2FW3C%2F%2FDTD %20 SVG %201.1%2F%2FEN %27%\
20%27 http%3A%2F%2Fwww.w3.org%2 FGraphics %2FSVG%2F1.1%2 FDTD\
%2 Fsvg11.dtd %27%3E%0A’/>

<document -end last -sender=’{}’ last -id=’{}’ />
</state >

</sxe>
</message >

If the session is already in progress, the entity sends the snapshot.

Listing 15: Sending the state of an existing document
<message

from=’kingclaudius@shakespeare.lit/castle ’
to=’laertes@shakespeare.lit/castle ’>
<sxe xmlns=’urn:xmpp:sxe:0 ’

session=’851 ba2’
id=’bxyz’>

<state >
<document -begin

prolog=’data:text/xml ,%3C!DOCTYPE %20 html%0D%0 APUBLIC %20%22 -\
␣␣%2F%2FW3C%2F%2FDTD %20 XHTML %201.0%20 Strict %2F%2FEN %22%0D%0A%22 htt\
␣␣p%3A%2F%2Fwww.w3.org%2FTR%2 Fxhtml1 %2FDTD%2Fxhtml1 -strict.dtd %223\
␣␣E%0D%0A’/>

<new type=’processinginstruction ’
pitarget=’xml -stylesheet ’
pidata=’href=” style.xsl”␣type=”text/xsl”’
rid=’GUID0 ’

8

8 INITIAL STATE SYNCHRONIZATION

primary -weight=’0.4’ />
<new type=’element ’

ns=’http: //www.w3.org /1999/ xhtml ’
name=’html’
rid=’GUID1 ’
primary -weight=’3’ />

<new type=’attr’
ns=’xml’
name=’lang’
chdata=’fi’
parent=’GUID1 ’
rid=’GUID2 ’ />

<set target=’GUID2 ’
version=’1’
chdata=’en’ />

<new type=’element ’
name=’head’
parent=’GUID1 ’
rid=’GUID3 ’ />

<new type=’element ’
name=’title ’
parent=’GUID3 ’
rid=’GUID4 ’ />

<new type=’text’
chdata=’Royal␣Musings ’
rid=’GUID5 ’
parent=’GUID4 ’
primary -weight=’0’/>

<new type=’comment ’
chdata=’The␣title␣of␣the␣document␣goes␣here.’
rid=’GUID6 ’
parent=’GUID4 ’
primary -weight=’ -2.43’/>

<new type=’element ’
name=’body’
parent=’GUID1 ’
rid=’GUID7 ’
primary -weight=’23’ />

<document -end
last -sender=’jid3’
last -id=’abc’/>

</state >
</sxe>

</message >

9

9 SUBSEQUENT STATE CHANGES

9 Subsequent State Changes
Once a participant has received initial state, he can participate in the editing session.

Listing 16: An edit
<message

to=’laertes@shakespeare.lit/castle ’
from=’kingclaudius@shakespeare.lit/castle ’>

<sxe xmlns=’urn:xmpp:sxe:0 ’
session=’851 ba2’
id=’4’>

<state >
<new type=’element ’

name=’p’
parent=’GUID7 ’
rid=’GUID8 ’ />

<new type=’text’
chdata=’It's␣good␣to␣be␣the␣king!’
parent=’GUID8 ’
rid=’GUID9 ’/>

<set target=’GUID5 ’
version=’1’
chdata=’It's␣good␣to␣be␣the␣king!’/>

</state >
</sxe>

</message >

Here is another edit in the session.

Listing 17: Another edit
<message

from=’kingclaudius@shakespeare.lit/castle ’
to=’laertes@shakespeare.lit/castle ’>

<sxe xmlns=’urn:xmpp:sxe:0 ’
session=’851 ba2’
id=’4’>

<state >
<new type=’element ’

name=’p’
parent=’GUID7 ’
rid=’GUID10 ’ />

<new type=’text’
chdata=’It␣certainly␣is!’
parent=’GUID10 ’
rid=’GUID11 ’ />

<set target=’GUID5 ’
version=’1’

10

10 FORMAL DEFINITION

chdata=’It␣certainly␣is’ />
<set target=’GUID6 ’

version=’1’
replacefrom=’9’
replacen=’16’
chdata=’{}’ />

<set target=’GUID6 ’
version=’2’
replacefrom=’3’
replacen=’0’
chdata=’document ’/>

</state >
</sxe>

</message >

This basic editing session results in the following XML.

Listing 18: Resulting XHTML document (with additional whitespace nodes for clarity)
<!DOCTYPE html
PUBLIC ” -//W3C//DTD␣XHTML␣1.0␣Strict //EN”
”http: //www.w3.org/TR/xhtml1/DTD/xhtml1 -strict.dtd”>
<?xml -stylesheet href=”style.xsl” type=”text/xsl”?>
<html>

<head>
<!-{}-The document title goes here.-{}->
<title >Royal Musings </title >

</head>
<body>

<p>It's good to be the king!</p>
<p>It certainly is!</p>

</body>
</html>

10 Formal Definition
10.1 SXE Element
All SXE elements MUST be contained in a <sxe/> element. This element MUST posess the
following attributes:

Attribute Description
xmlns REQUIRED and MUST be ”urn:xmpp:sxe:0”
session REQUIRED and MUST be a GUID of the session.
id REQUIRED and MUST be unique within the set of <sxe/> elements sent by the

user to the session.

11

10 FORMAL DEFINITION

10.2 XML Document Requirements
The prolog of the XML document cannot be edited after the session has been established.
If an XML Schema Definition is specified for the document and the processing of an <sxe/>
element results in a noncompliant document, the receiving client SHOULD reply with edits
that effectively undo the offending edits. TODO: the offending client should probably be
notified.

10.3 Mapping the Records to the DOM Document
A record contains the following fields and corresponds to a single DOM node:

Field Name Mutable Applies to nodes of
type

Description

rid no all The GUID of the
record.

type no all The type of DOM node
(element, attr, etc.).

version Indirectly all The current version of
the record.

parent yes all The record id of the
record corresponding
to the parent node.

primary-weight yes all The primary weight
used to determine the
order of sibling nodes
corresponding to the
records.

ns yes (TODO: is this rea-
sonable?)

element, attr The namespace of the
element or attribute

name yes (TODO: is this rea-
sonable?)

element, attr The name of the ele-
ment or attribute.

chdata yes text, attr, comment The content of a text
node or a comment or
the value of the at-
tribute.

pitarget yes (TODO: is this rea-
sonable?)

proccessinginstruction The target of the pro-
cessing instruction.

pidata yes proccessinginstruction The data of the pro-
cessing instruction.

12

10 FORMAL DEFINITION

Whenever a record is added, modified, or removed, the client MUST ensure that the DOM
nodes corresponding to the records meet the following criteria:

1. The parent of each DOM node MUST be the node corresponding to the record specified
by the ’record id’ field of the record of the node. If no such record exists, the ”orphan”
record MUST be deleted. If the ’parent’ field is empty, the node corresponding to the
record MUST be a child of the DOM document itself. If two root nodes exist, the record
with lower secondary weight MUST be removed.

2. Each node MUST be located after the child node that has the greatest weight less than
the weight of the node.

3. The namespace of each DOM element and attribute MUST be equal to the ’name’ field of
the corresponding record.

4. The name of each DOM element and attribute MUST be equal to the ’name’ field of the
corresponding record. If two records for attribute nodes specify the same ’name’ and
’parent’, the record with lower secondary weight MUST be removed.

5. The value of each DOM attribute node MUST be equal to the ’chdata’ field of the corre-
sponding record.

6. The content of each DOM text node MUST be equal to the ’chdata’ field of the corre-
sponding record.

7. The content of each DOM comment node MUST be equal to the ’chdata’ field of the cor-
responding record.

8. The target of each DOM processing instruction MUST be equal to the ’pitarget’ field of
the corresponding record.

9. The data of each DOM processing instruction MUST be equal to the ’pidata’ field of the
corresponding record.

10. The DOM nodes do not offend the XML Schema. If they do, the client SHOULD send edits
to correct the situation.

rid type version parent primary-
weight

ns name chdata pitarget pidata

GUID0 element 0 0 http://www.w3.org/2000/svgsvg N/A N/A N/A
GUID1 element 0 GUID0 0 path N/A N/A N/A
GUID2 attr 0 GUID1 0 d M10

10L20
20L20
10Z

N/A N/A

GUID9 element 0 GUID0 3.4 g N/A N/A N/A

13

10 FORMAL DEFINITION

rid type version parent primary-
weight

ns name chdata pitarget pidata

GUID5 element 0 GUID0 3.4 circle N/A N/A N/A
GUID6 attr 3 GUID5 0 cx 10 N/A N/A
GUID7 attr 1 GUID5 1 cy 20 N/A N/A
GUID8 attr 0 GUID5 2 r 5 N/A N/A

Listing 19: Corresponding XML document (without the XML prolog)
<svg xmlns=’http: //www.w3.org /2000/ svg’>

<path d=’M10␣10L20␣20L20␣10Z’ />
<circle cx=’10’ cy=’20’ r=’5’ />
<g />

</svg>

10.4 Commutative and Non-commutative Edits
Changes to the records can be divided into two categories: commutative andnon-commutative
edits.
Commutative edits are commutative with all edits and are never ”undone” so keeping a
history of them is NOT REQUIRED. Edits that add or remove records are commutative.
An edit that changes an existing record is called non-commutative because it may not be
commutative with edits that change the same record. Hence these changes may need to be
undone so keeping a history of the changes caused by such edits is REQUIRED. The breadth
of this required history depends on the role of the entity and on whether the session works
through a server component:

By server By client
Server exists All non-commutative edits,

that have not been undone to
records that have not been re-
moved; must store the creator
and last modifier of each node
(to be included as ’creator’ and
’last-modified-by’ attributes
in <new/> elements sent to
joining clients).

Non-commutative edits sent
by the client itself. May be
removed once a further non-
commutative edits to the same
record from another entity is
received.

Server does not exists --- All non-commutative edits,
that have not been undone,
to records that have not been
removed.

14

10 FORMAL DEFINITION

10.4.1 Requirements for the Server Component

The server MUST apply commutatative edits to its local copy like a client and pass on the edits
without changes.
The server component intercepts and modifies non-commutative edits in order to reduce the
history requirements of the clients as indicated above. Once it receives a non-commutative
edit, it MUST take the following action depending on whether the version number of the edit
is ”in-order” (one higher than the current version) or ”out-of-order”:

1. The server receives an in-order non-commutative edit: the server does not modify the
edit, applies it locally, and passes it on normally.

2. The server receives an out-of-order non-commutative edit: it processes the edit like a
client would in order to locally undo conflicting edits; then, instead of passing on the
out-of-order edit, the server replaces the edit by an in-order non-commutative edit that
results in a record identical to what the server has locally after the (possible) undos.
Note that this edit may be a ”no-op” that merely increases the version of the target.

10.5 Commutative Edits
10.5.1 Creating New Nodes

A client can add a new node to the document by adding a record with the <new/> element.

Attribute Description
rid REQUIRED. MUST be a GUID.
version OPTIONAL. MUST be a non-negative integer. Assumed to be 0 if not

present.
parent REQUIRED (Except at top level.)
primary-weight OPTIONAL. MUST be a float. Assumed to be 0 if not present.
type REQUIRED.MUST be ’element’, ’attr’, ’text’, ’comment’, or ’processingin-

struction’
ns OPTIONAL if ’type’ is ’element’ or ’attr’. Not allowed otherwise.
name REQUIRED if ’type’ is ’element’ or ’attr’. Not allowed otherwise.
chdata REQUIRED if ’type’ is ’attr’, ’text’, or ’comment’. Not allowed otherwise.
pitarget REQUIRED if ’type’ is ’processinginstruction’. Not allowed otherwise.
pidata REQUIRED if ’type’ is ’processinginstruction’. Not allowed otherwise.
creator OPTIONAL. MUST be the JID or room nick of the creator of the node.
last-modified-by OPTIONAL. MUST be the JID or room nick of the user who last modified

the node.

15

10 FORMAL DEFINITION

Listing 20: Sending new nodes
<message

from=’kingclaudius@shakespeare.lit/castle ’
to=’laertes@shakespeare.lit/castle ’>
<sxe xmlns=’urn:xmpp:sxe:0 ’

session=’851 ba2’
id=’11’>

<new type=’element ’
name=’path’
parent=’GUID1 ’
rid=’GUID4 ’ />

<new type=’attr’
name=’d’
parent=’GUID4 ’
rid=’GUID5 ’
chdata=’M10␣10L30␣50L50␣10Z’ />

</sxe>
</message >

To process a <new/> element the client MUST create a new record with the values of the
attributes stored in the corresponding fields.

10.5.2 Removing Nodes

A client can remove any node in the document by removing the corresponding record with
the <remove/> element.

Attribute Description
target REQUIRED and MUST be the record id of the node to be removed.

A client MUST NOT send a <remove/> element that removes a node that has child nodes
without explicitly removing the records of those nodes first.

Listing 21: Removing an existing nodes.
<message

from=’kingclaudius@shakespeare.lit/castle ’
to=’laertes@shakespeare.lit/castle ’>
<sxe xmlns=’urn:xmpp:sxe:0 ’

session=’851 ba2’
id=’13’>

<remove target=’GUID5 ’/>
<remove target=’GUID4 ’/>

16

10 FORMAL DEFINITION

</sxe>
</message >

To processes a <remove/> element the client MUST remove the record specified by the ’target’
attribute.
If the node corresponding to the target record has child nodes, the receiver MUST send
<remove/> elements for each of them as described above.

10.6 Non-commutative Edits
10.6.1 The set Element

The <set/> element is used to modify an existing record.

Attribute Description
target REQUIRED and MUST be the record id of the node being modified.
version REQUIRED and MUST be the current version of the node incremented by

one.
parent OPTIONAL.
primary-weight OPTIONAL.
ns OPTIONAL but only allowed if the target record is of type ’element’ or

’attr’.
name OPTIONAL but only allowed if the target record is of type ’element’ or

’attr’.
chdata OPTIONAL but only allowed if the target node is of type ’attr’, ’text’, or

’comment’.
pitarget OPTIONAL but only allowed if the target record is of type ’processingin-

struction’.
pidata OPTIONAL but only allowed if the target record is of type ’processingin-

struction’.
replacefrom replace from position. OPTIONAL but only allowed if ’chdata’ and ’repla-

cen’ attributes are also included. MUST be a non-negative integer.
replacen replace n characters. OPTIONAL but only allowed if ’chdata’ and ’replace-

from’ attributes are also included. MUST be a non-negative integer.

Listing 22: set elements.
<message

from=’kingclaudius@shakespeare.lit/castle ’
to=’laertes@shakespeare.lit/castle ’>
<sxe xmlns=’urn:xmpp:sxe:0 ’

session=’851 ba2’
id=’14’>

17

11 IMPLEMENTATION NOTES

<set target=’GUID14 ’
version=’1’
chdata=’10’ />

<set target=’GUID8 ’
version=’1’
parent=’GUID1 ’
primary -weight=’8’ />

</sxe>
</message >

10.6.2 Processing a set Element

To processes a <set/> element the client MUST follow the following steps:

1. If the record specified by the ’target’ attribute doesn’t exist, the <set/> element MUST
be ignored.

2. If the client is receiving history, (i.e. edits sent between the <document-begin/> and
<document-end/> elements), it MUST set the version of the target record to the value of
the ’version’ attribute. Otherwise, the client MUST increment the version of the target
recordrecord by one

3. If the version of of the target record is now equal to the ’version’ attribute of the <set/>
element, the client MUST store the values of the attributes of the <set/> element as
updated values of the corresponding fields in the record. The only exception occurs
when ’chdata’, ’replacefrom’, and ’replacen’ are specified: in that case, n characters
starting from the f’th character of the existing ’chdata’ field MUST be replaced by c,
where n, f, and c are the values of the ’replacen’, ’replacefrom’, and ’chdata’ attributes
respectively.
Otherwise all fields of the record, except for the ’version’ field, must be reverted to
version (v - 1), where v is the value of the ’version’ attribute of the received <set/>
element.

11 Implementation Notes
11.1 MUC Roles
It should be noted that given the MUC specification and the requirement of this protocol to
send a connect request message to all room members in order to join an existing session, you
effectively can not use the visitor role of MUC with a regular MUC server component. How-
ever, the specialized MUC component, if used, MUST accept and respond to the connection

18

14 XMPP REGISTRAR CONSIDERATIONS

requests even if they come from users who do not have voice in the room.

12 Security Considerations
To follow.

13 IANA Considerations
This XEP requires no interaction with the Internet Assigned Numbers Authority (IANA) 9.

14 XMPP Registrar Considerations
14.1 Protocol Namespaces
Until this specification advances to a status of Draft, its associated namespaces shall be:

• urn:xmpp:sxe:0

• urn:xmpp:jingle:transports:sxe

Upon advancement of this specification, the XMPP Registrar 10 shall issue permanent
namespaces in accordance with the process defined in Section 4 of XMPP Registrar Function
(XEP-0053) 11.
The following namespaces are requested, and are thought to be unique per the XMPP Regis-
trar’s requirements:

• urn:xmpp:sxe

• urn:xmpp:jingle:transport:sxe

14.2 Service Discovery Identities
The ®ISTRAR; shall add the type of ”sxe” to the ”collaboration” category in its registry of
service discovery identities.

9The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

10The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

11XEP-0053: XMPP Registrar Function <https://xmpp.org/extensions/xep-0053.html>.

19

http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/extensions/xep-0053.html
https://xmpp.org/extensions/xep-0053.html
http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/extensions/xep-0053.html

16 ACKNOWLEDGEMENTS

14.3 Jingle Transport Methods
The XMPP Registrar shall include ”sxe” in its registry of Jingle transport methods. The
registry submission is as follows:

<transport >
<name>sxe</name>
<desc>A method for exchanging Shared XML Editing data over XMPP.</

desc>
<type>reliable </type>
<doc>XEP -xxxx</doc>

</transport >

15 XML Schema
To follow.

16 Acknowledgements
The theory behind the synchronization of an individual entity (a record) was put forward by
Mats Bengtsson (http://coccinella.sourceforge.net/docs/MemoSyncSVG-XMPP.txt). He also
provided other input that helped form this XEP. Thanks to Dmitriy Chervov for his feedback
based on implementation experience.

20

	Introduction
	Requirements
	Glossary
	Session Management
	Initiation
	Session Acceptance
	Session Refusal

	Determining the features of the Host
	Advertising a Session
	Connecting to a Session
	Initial State Synchronization
	Making a State Offer
	Accepting a State Offer
	Refusing a State Offer
	Sending the State of the Document

	Subsequent State Changes
	Formal Definition
	SXE Element
	XML Document Requirements
	Mapping the Records to the DOM Document
	Commutative and Non-commutative Edits
	Requirements for the Server Component

	Commutative Edits
	Creating New Nodes
	Removing Nodes

	Non-commutative Edits
	The set Element
	Processing a set Element

	Implementation Notes
	MUC Roles

	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	Service Discovery Identities
	Jingle Transport Methods

	XML Schema
	Acknowledgements

