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3 RESULT SET MANAGEMENT

1 Introduction
Commenting is a popular activity on the Internet. Users leave comments on just about
anything: blog posts, news articles, product reviews, photos, status updates, etc. Existing
commenting solutions often involve proprietary access methods and authentication, and
are silo’d off from other services. This specification proposes an open and federated way
of commenting. A conversation exists as a set of Publish-Subscribe (XEP-0060) 1 nodes,
containing comment items or other activity, and any user with a JID may leave a comment
there (per conversation access rules). The protocol is designed to be modern, social, and
extensible. Additionally, while the protocol is described in XMPP terms, the core concept is
meant to translate easily to the HTTP-based Social Web.

2 Requirements
The following features are required:

• A client MUST be able to efficiently request the most recent portion of a conversation
(as well as ”page” to further portions) without having to fetch every comment.

• A client MUST be able to efficiently receive updates to a conversation as they happen.

• It MUST be possible to nest comments (comments as replies to other comments) for
rendering the conversation as a tree.

• A user MUST be able to mention another user in a comment, and have that user be no-
tified about it.

• A user MUST be able to efficiently track its own history in a conversation using a third-
party service. For example, such a service might maintain a web page of the user’s ac-
tivity, or send an SMS message to the user if a reply is discovered.

• To enable future expansion, consideration must be made for allowing non-comment ac-
tivity in the conversation, even if this specification does not define those activity types.

3 Result Set Management
Publish-Subscribe (XEP-0060) 2 contains an example of how to retrieve items with Result Set
Management (XEP-0059) 3, but the specification is light on details. This section gives a more
complete description of how RSM is used in conjunction with PubSub.
Clients MAY provide an RSM section in the iq request:

1XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.
2XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.
3XEP-0059: Result Set Management <https://xmpp.org/extensions/xep-0059.html>.
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4 HOW IT WORKS

Listing 1: Requesting items with a maximum of 20 in the result set
<iq type=”get” from=”alice@example.com/1” to=”comments.example.com” id

=”1”>
<pubsub xmlns=”http: // jabber.org/protocol/pubsub”>

<items node=”activity”/>
<set xmlns=”http: // jabber.org/protocol/rsm”>

<max>20</max>
</set>

</pubsub >
</iq>

The server MAY provide an RSM section in the response. This is already documented in
XEP-0060. The server can do this regardless of whether or not the client has made the request
with RSM.
Use of RSM implies that there is a natural ordering of the items at a node. The criteria used
for ordering is to be determined by the node.
RSM andmax_items do not mix. If the client provides both, then the server MUST prefer RSM.
If the server does not support RSM, then it may honor max_items and return items ordered
by newest first (which may not necessarily be the same as the ordering used by RSM).

4 How It Works
4.1 Conversation Nodes
A conversation exists across a set of PubSub nodes, some of which are dynamic:

Node Natural Sort Order Description
”info” N/A Singleton node containing in-

formation about the conversa-
tion.

”comments” (dynamic) modified-ascending Contains comment items only.
This node is primarily used
for presenting conversations
to the user. It is essentially a
subset of the activity node.
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Node Natural Sort Order Description
”activity” (dynamic) modified-ascending Contains all activity items in

the conversation, including
comments. This node is pri-
marily used for submitting
comments and receiving men-
tion events. Item persistence
is OPTIONAL. Advanced im-
plementations may choose to
maintain full activity history
of a conversation and expose it
in this node.

The comments and activity nodes share item data. Comments are added to the conversation
by publishing to the activity node, yet the comment will also appear in the comments node as
a result. In fact, since the activity node is not required to offer item persistence, it is possible
that the comment might only be retrievable through the comments node. Implementations
of this protocol will therefore require tight association between the comments and activity
nodes. It is not possible to implement this protocol using a ”generic” PubSub service.
A dynamic node accepts additional parameters by appending the parameters to the node
name using a ”query”-like notation. Parameters and values in the query string MUST be
percent-encoded.

Name Allowed Values Applies To Example
”order” ”-created” (sort items

by created time, de-
scending)

comments Node name
”comments?order=-
created”would present
comments in created-
descending order.

”parent_ids” Comma-separated list
of parent comment IDs
to filter by. An empty
value means to include
top-level comments.

comments Node name
”comments?order=-
created&parent_-
ids=1%2C5a%2Co19g%2C”
(note last value is
empty) would present
items in created-
descending order,
filtered to only in-
clude comments that
have parent ID ”1”,
”5a”, ”o19g”, or are
top-level.
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The ”activity” node is defined as dynamic to allow for future expansion, even though no
dynamic node parameters are defined in this document that apply to it.
Before utilizing additional nodes or parameters not defined in this document, the client
SHOULD first determine support via Service Discovery (XEP-0030) 4 or other discovery
mechanism. If the server does not support or understand a parameter or value, it SHOULD
reject the request. Attempting to service a request by ignoring unsupported parameters will
most likely result in incorrect or undesired behavior.
A conversation is accessible through a JID and optionally a node prefix. The prefix is
prepended to the desired node name, separated by a ’/’ character. For example, if the ”Coffee
Talk” conversation is said to be accessible at the JID ”coffeetalk@comments.example.com”
without a node prefix, then PubSub interactions are made using the node names defined
above (i.e. ”info”, ”comments”, etc). If that conversation is instead said to be accessible at
the JID ”comments.example.com” with node prefix ”coffeetalk”, then PubSub interactions
are made using node names like ”coffeetalk/info”, ”coffeetalk/comments”, etc. This allows
conversations to be provisioned as either one per JID or many per JID.

4.2 Retrieving Information About the Conversation
Information about a conversation can be obtained by requesting the item from the info node.

Listing 2: Retrieve conversation info
<iq type=”get” from=”alice@example.com/1” to=”comments.example.com” id

=”2”>
<pubsub xmlns=”http: // jabber.org/protocol/pubsub”>

<items node=”coffeetalk/info”/>
</pubsub >

</iq>

Listing 3: Server responds
<iq type=”result” from=”comments.example.com” to=”alice@example.com/1”

id=”2”>
<pubsub xmlns=”http: // jabber.org/protocol/pubsub”>

<items node=”coffeetalk/info”>
<item id=”current”>

<entry xmlns=”http: //www.w3.org /2005/ Atom”>
<title >Coffee Talk</title >
<summary >A great place to talk about your day.</summary >
<id>tag:comments.example.com ,2011 :coffeetalk </id>
<published >2011 -07 -01 T10:15:00Z </published >
<updated >2011 -07 -01 T10:15:00Z </updated >

4XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.
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</entry >
</item>

</items >
</pubsub >

</iq>

It is also possible to subscribe to the info node to track changes to the conversation informa-
tion.

4.3 Retrieving Comments in a Conversation
The process for retrieving the first ”page” of a conversation and listening for further updates
can be summarized as follows:

1. Subscribe to the ”comments” node.

2. Retrieve items from the ”comments?order=-created” node. Multiple retrieval requests
may be required depending on the client display needs (parent_ids can be used to reduce
trips, see the Implementation Notes)

3. Updates are pushed via the subscription.

First, the client subscribes to the comments node. A temporary subscription is recommended,
so that it is removed if the client goes offline.

Listing 4: Subscribe to comments node
<iq type=”set” from=”alice@example.com/1” to=”comments.example.com” id

=”1”>
<pubsub xmlns=”http: // jabber.org/protocol/pubsub”>

<subscribe node=”coffeetalk/comments” jid=”alice@example.com/1”/>
<options >

<x xmlns=”jabber:x:data” type=”submit”>
<field var=”FORM_TYPE” type=”hidden”>

<value >http:// jabber.org/protocol/pubsub#subscribe_options </
value >

</field >
<field var=”pubsub#expire”><value >presence </value ></field >

</x>
</options >

</pubsub >
</iq>

Next, the client retrieves past comments. For simplicity, the example below will fetch the 50
most recently created comments. This would be useful for displaying the comments in a flat
list.
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Listing 5: Retrieve the most recent comments
<iq type=”get” from=”alice@example.com/1” to=”comments.example.com” id

=”2”>
<pubsub xmlns=”http: // jabber.org/protocol/pubsub”>

<items node=”coffeetalk/comments?order=-created”/>
<set xmlns=”http: // jabber.org/protocol/rsm”>

<max>50</max>
</set>

</pubsub >
</iq>

Listing 6: Server responds
<iq type=”result” from=”comments.example.com” to=”alice@example.com/1”

id=”2”>
<pubsub xmlns=”http: // jabber.org/protocol/pubsub”>

<items node=”coffeetalk/comments?order=-created”>
<item id=”39267824 -cdc8 -11df -b1a7 -0024 bed71c0a”>

<entry xmlns=”http: //www.w3.org /2005/ Atom” xmlns:activity=”
http: // activitystrea.ms/spec /1.0/”>

<id>1</id>
<title >Bob posted a comment in the Coffee Talk conversation.

</title >
<summary >Bob posted a comment in the Coffee Talk

conversation.</summary >
<published >2011 -07 -01 T12:00:00Z </published >
<updated >2011 -07 -01 T12:00:00Z </updated >
<author >

<name>Bob</name>
<uri>acct:bob@example.com</uri>
<activity:object -type>person </activity:object -type>

</author >
<activity:object >

<id>1</id>
<title >This is a nice comment.</title >
<content type=”text/html”>This is a nice comment.</summary

>
<activity:object -type>comment </activity:object -type>

</activity:object >
</entry >

</item>
...

</items >
<set xmlns=”http: // jabber.org/protocol/rsm”>

<first index=”0”>39267824 -cdc8 -11df-b1a7 -0024 bed71c0a </first >
<last>ac277776 -cdd5 -11df -92c4 -0024 bed71c0a </last>
<count >5</count >

</set>
</pubsub >

6
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</iq>

Comments are stored as Activity Streams items in Atom format.

4.4 Submitting a Comment
Comments are submitted by publishing the comment to the activity node.

Listing 7: Publishing a comment
<iq type=”set” from=”alice@example.com/1” to=”comments.example.com” id

=”3”>
<pubsub xmlns=”http: // jabber.org/protocol/pubsub”>

<publish node=”activity”>
<item>

<entry xmlns=”http: //www.w3.org /2005/ Atom” xmlns:activity=”
http: // activitystrea.ms/spec /1.0/”>

<id>2</id>
<title >Alice posted a comment in the Coffee Talk

conversation.</title >
<summary >Alice posted a comment in the Coffee Talk

conversation.</summary >
<published >2011 -07 -01 T13:00:00Z </published >
<updated >2011 -07 -01 T13:00:00Z </updated >
<activity:object >

<id>2</id>
<title >This is another nice comment.</title >
<content type=”text/html”>This is another nice comment.</

summary >
<activity:object -type>comment </activity:object -type>

</activity:object >
</entry >

</item>
</publish >

</pubsub >
</iq>

Upon receiving the request, the server MUST sanitize the item as necessary before accepting
it. In particular, the author information MUST be confirmed or replaced with the information
of the user that submitted the comment. If the item is not formatted as a valid Activity
Streams Comment, then the request MUST be rejected.

Listing 8: Rejecting invalid comment
<iq type=”error” from=”comments.example.com” to=”alice@example.com/1”

id=”3”>
<error type=”modify”>

7
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<bad -request xmlns=”urn:ietf:params:xml:ns:xmpp -stanzas”/>
</error >

</iq>

Next, the server SHOULD ensure it has the submitter’s user information. This is so when the
comment is served to other clients, name and avatar information can be provided as well.
This is done by requesting the VCard of the submitter’s bare JID using vcard-temp (XEP-0054)
5. If the server skips this step, the author name SHOULD be the bare JID of the submitter.

Listing 9: Server responds with success
<iq type=”result” from=”comments.example.com” to=”alice@example.com/1”

id=”3”>
<pubsub xmlns=”http: // jabber.org/protocol/pubsub”>

<publish node=”activity”>
<item id=”0f72afbe -a9d4 -11e0 -b0bc -0024 bed71c0a”/>

</publish >
</pubsub >

</iq>

Listing 10: Server relays comment to subscribers
<message type=”headline” from=”comments.example.com” to=”alice@example

.com/1”>
<event xmlns=”http: // jabber.org/protocol/pubsub#event”>

<items node=”comments”>
<item id=”0f72afbe -a9d4 -11e0 -b0bc -0024 bed71c0a”>

<entry xmlns=”http: //www.w3.org /2005/ Atom” xmlns:activity=”
http: // activitystrea.ms/spec /1.0/”>

<id>0f72afbe -a9d4 -11e0-b0bc -0024 bed71c0a </id>
<title >Alice posted a comment in the Coffee Talk

conversation.</title >
<summary >Alice posted a comment in the Coffee Talk

conversation.</summary >
<published >2011 -07 -01 T13:00:00Z </published >
<updated >2011 -07 -01 T13:00:00Z </updated >
<author >

<name>Alice </name>
<uri>acct:alice@example.com</uri>
<activity:object -type>person </activity:object -type>

</author >
<activity:object >

<id>0f72afbe -a9d4 -11e0-b0bc -0024 bed71c0a </id>
<title >This is another nice comment.</title >
<content type=”text/html”>This is another nice comment.</

summary >
<activity:object -type>comment </activity:object -type>

5XEP-0054: vcard-temp <https://xmpp.org/extensions/xep-0054.html>.
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</activity:object >
</entry >

</item>
</items >

</event >
</message >

4.5 Other Activity
Conversations MAY support submission of activity items other than comments. A client
SHOULD first determine support for other item types before attempting to submit them. If a
server does not support an item type, it should reject it:

Listing 11: Rejecting unsupported activity type
<iq type=”error” from=”comments.example.com” to=”alice@example.com/1”

id=”3”>
<error type=”modify”>

<bad -request xmlns=”urn:ietf:params:xml:ns:xmpp -stanzas”/>
</error >

</iq>

4.6 Mentions
If the server deems a submitted comment to be relevant to a user who is not subscribed to the
activity node, it SHOULD send an unsolicited event to that user anyway. This way, users can
”tag” or ”mention” users not involved in a conversation, so that they may be notified about it.
A comment is considered relevant to a user if one the following are true:

• The user is the one that submitted the comment. This is to allow a user service to auto-
matically pick up on conversations that the user has commented in, without the user’s
client to have to explicitly inform the user service.

• The comment is a reply to one of the user’s comments, or it affects one of the user’s
comments in some way (for example, modification by an admin).

• The comment body contains an HTML Microdata object of type ”http://data-
vocabulary.org/Person”, where the itemid value is the user’s account URI.

4.7 Deleted Comments
If a comment is deleted, it SHOULD remain in the past items of the node(s), but with its
content cleared out and replaced with bogus author data and no activity:object. This change
should also cause the comment item to be pushed out again to subscribers and relevant users.
This way, entities that are tracking the conversation for changes can be informed of deletes.
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7 IANA CONSIDERATIONS

Even after a network failure, the deleted items can be discovered by retrieving past items.

5 Implementation Notes
In order for the user information that gets saved with comments to not become stale over
time, servers SHOULD have ways of refreshing this information by refetching user vcards.
To load a conversation intended for display with nesting, the following algorithm is RECOM-
MENDED:

1. Let C be the desired number of total comments to display.

2. Request the C newest top-level comments (set parent_ids to an empty value).

3. Request the C newest comments at depth 1, by setting parent_ids to the list of comments
in the previous request that had a reply count greater than 0.

4. Repeat previous step for every depth until the full depth has been traversed.

5. Truncate resulting tree to C items.

6 Security Considerations
As noted when handling comment submission above, the server MUST replace author infor-
mation with that of the user performing the submission. This is essential to prevent author
spoofing.
Care SHOULD be taken to prevent ”mention spam.” If the server determines a user is acting
maliciously, then it MUST NOT send unsolicited events as a result of a submission. If a
user service receives a mention event from a comment author that it has determined to be
malicious, then it MUST NOT process the event further.

7 IANA Considerations
No interaction with the Internet Assigned Numbers Authority (IANA) 6 is required as a result
of this document.

6The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.
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8 XMPP REGISTRAR CONSIDERATIONS

8 XMPP Registrar Considerations
8.1 Protocol Namespaces
This specification defines the following XML namespace:

• urn:xmpp:tmp:comments:0

Upon advancement of this specification from a status of Experimental to a status of
Draft, the XMPP Registrar 7 shall add the foregoing namespace to the registry located at
<https://xmpp.org/registrar/namespaces.html>, as described in Section 4 of XMPP Regis-
trar Function (XEP-0053) 8.

8.2 Namespace Versioning
If the protocol defined in this specification undergoes a revision that is not fully backwards-
compatible with an older version, the XMPP Registrar shall increment the protocol version
number found at the end of the XML namespaces defined herein, as described in Section 4 of
XEP-0053.

7The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

8XEP-0053: XMPP Registrar Function <https://xmpp.org/extensions/xep-0053.html>.

11

https://xmpp.org/registrar/
https://xmpp.org/registrar/namespaces.html
https://xmpp.org/extensions/xep-0053.html
https://xmpp.org/extensions/xep-0053.html
https://xmpp.org/registrar/
https://xmpp.org/extensions/xep-0053.html

	Introduction
	Requirements
	Result Set Management
	How It Works
	Conversation Nodes
	Retrieving Information About the Conversation
	Retrieving Comments in a Conversation
	Submitting a Comment
	Other Activity
	Mentions
	Deleted Comments

	Implementation Notes
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	Namespace Versioning


