XVIPP

XEP-0354: Customizable Message Routing

Florian Schmaus
mailto:flo@geekplace.eu
xmpp: flo@geekplace.eu

2017-09-11
Version 0.2

Status Type Short Name
Deferred Standards Track NOT_YET_ASSIGNED

This specification specifies customizable behavior of RFC 6121 section 8.5.2.1.1 to allow various message
routing algorithms (e.g., for load balancing).

mailto:flo@geekplace.eu
xmpp:flo@geekplace.eu

Legal

Copyright

This XMPP Extension Protocol is copyright © 1999 - 2024 by the XMPP Standards Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
"Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https: //xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents

1 Introduction
2 Requirements
3 Glossary

4 Use Cases
4.1 Non-balancing Message Routing Algorithms
4.2 Balancing Message Routing Algorithms
43 Non-UseCaseso v v v ittt e et e e e

5 Protocol
5.1 Discovering SUPPOrt o v e e e e
5.2 Quering the current active and available message routing algorithms

5.3 Changing the active message routing algorithm
54 MessageRoutingHints,
5.4.1 Determingsupport
5.4.2 Determing available message routing algorithms of a (remote) server .
5.4.3 Sending a message with routinghint

6 Business Rules
6.1 GeneralRules.
6.2 Routing Algorithm Specification
6.2.1 Delivertoall
6.2.2 Deliver to most activeresource
6.2.3 Load balance usingroundrobin
6.2.4 Weightedloadbalancing

7 Implementation Notes
8 Security Considerations
9 IANA Considerations

10 XMPP Registrar Considerations
10.1 Protocol Namespaces v v v v v v v v v ot e e e e e
10.2 Protocol Versioningo v it

11 XML Schema

W N NN

A O U O W W

NN N NN NN

/'3 GLOSSARY

1 Introduction

The "Server Rules for Processing XML Stanzas” section in RFC 6121 ! defines only a “one
receives” or ”all receive” algorithm for message routing if the receiving entity of a message
stanza has multiple connected resources and the message is addressed to a bare JID. Also
RFC 6121 does not define a method to check or change the currently used message routing
algorithm. Furthermore, none of the described routing algorithms is a good match when it
comes down to achieve load-balancing between the connected resources, which is sometimes
desirable.

This extensions solves those issues by allowing clients to configure their desired message
routing algorithm. By exploiting the freedom provided by RFC 6121 which allows servers to
implement their own algorithm for determining the "most available” resource.

PubSub Queueing (XEP-0254) ? defines a XEP to queue PubSub items, which could be
used as alternative approach, instead of the herein defined message routing algorithms
(urn:xmpp:cmr:roundrobin’ and 'urn:xmpp:cmr:weighted’). But this solution requires more
and complexer code on the server and client side, while the guarantees provided by XEP-0254
are not always required.

2 Requirements

The authors have designed the customizable message routing protocol with the following
requirements in mind:

« The protocol MUST NOT violate the server rules for processing XML Stanzas as defined
inRFC 612188

« The protocol should be easy to use by clients and easy to adopt by server implementa-
tions

« The protocol must by extensible by further message routing algorithms

3 Glossary

The following terms are used throughout this document

Customizable Message Routing (CMR) The name of this XEP and the protocol defined by it.

'RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc6121>.
ZXEP-0254: PubSub Queueing <https://xmpp.org/extensions/xep-0254.html>.

http://tools.ietf.org/html/rfc6121
https://xmpp.org/extensions/xep-0254.html
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121
https://xmpp.org/extensions/xep-0254.html

\J 4 USE CASES

Message Routing Algorithm An algorithm that defines how a server processes message stan-
zas send to a server-local bare JID of type 'message’ or ’chat’, with at least one available
or connected resource of the receiver (RFC 6121 § 8.5.2.1.1).

4 Use Cases

4.1 Non-balancing Message Routing Algorithms

Non-balancing message algorithms consists of the traditional algorithms that are widely used
by XMPP implementations as defined in RFC 6121 § 8.5.2.1.1 and RFC 3921 . They usually try
to send a message either to the all resources or try to determine the best resource based on
some heuristic. They where designed with human-to-human interaction in mind.

Examples for non-balancing algorithms include:

« Deliver to all (urn:xmpp:cmr:all’)

« Deliver to most active resource (‘urn:xmpp:cmr:mostactive’)

4.2 Balancing Message Routing Algorithms

Balanced message routing algorithms try to distribute messages between the available re-
sources of the receiver. They are ideal for use with the Internet of Things (I0T) and especially
machine to machine (M2M) technologies.

Consider a large deployment of sensor nodes send their data to a cluster for further processing.
Every cluster node establishes a connection using the same bare JID but a different resource
for receiving the sensor data. Furthermore, after a cluster connection is authenticated,
it queries the XMPP service for the CMR status, and enables a balancing message routing
algorithm.

The sensor nodes can now send their data as payload of a message stanza to the cluster. The
server will evenly distributed the data between the cluster nodes by using a round-robin
scheme.

Since CMR balances message stanzas of type 'normal’ or "chat’, PubSub notifications will also
be evenly distributed between the connected resources of an connection where CMR is active.
Examples for balancing algorithms include:

» Load balance using round robin ('urn:xmpp:cmr:roundrobin’)

« Weighted load balancing ("urn:xmpp:cmr:weighted’)

RFC 3921: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc3921>.

http://tools.ietf.org/html/rfc3921
http://tools.ietf.org/html/rfc3921
http://tools.ietf.org/html/rfc3921

/5 PROTOCOL

4.3 Non-Use Cases

CMR is not suitable for scenarios where the routing behavior should also consider resources
with negative priority. This would violate RFC 6121 § 8.5.2.1.1. A suitable specification for
such use cases may already exists. For example a proper solution that involves forking of
messages even to resources with negatives priorities is explained in Section 6 of Message
Carbons (XEP-0280) *.

5 Protocol

5.1 Discovering Support

An entity advertises support for this protocol by including the 'urn:xmpp:cmr:0’ feature in
its service discovery information features as specified in Service Discovery (XEP-0030) ° or
section 6.3 of Entity Capabilities (XEP-0115) ©.

Listing 1: Service discovery information request

<ig xmlns=’jabber:client’
from="romeo@montague.example/garden’
id="infol’
to="montague.example’
type='get’>
<query xmlns=’http://jabber.org/protocol/disco#info’/>
</ig>

Listing 2: Service discovery information response

<ig xmlns=’jabber:client’
from="montague.example’
id="infol’
to=’romeo@montague.example/garden’
type=’result’>
<query xmlns=’http://jabber.org/protocol/disco#info’>

<feature var=’urn:xmpp:cmr:0’/>
</query>
</ig>

4XEP—028O:MessageCa.rbons<https://xmpp.org/extensions/xep—0280.html>.
5XEP—0030:Service]Discover"_y<https://xmpp.org/extensions/xep—@03®.html>.
6XEP—0115:EntityCapabilities<https://xmpp.org/extensions/xep—m15.html>.

https://xmpp.org/extensions/xep-0280.html
https://xmpp.org/extensions/xep-0280.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0280.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0115.html

/5 PROTOCOL

5.2 Quering the current active and available message routing algorithms

Clients are able to query the server for the currently active and available message routing
algorithms.

Listing 3: Client requests the current CMR state

<ig xmlns=’jabber:client’
from=’romeo@montague.example/garden’
id="statel’
type=’get’>
<query xmlns=’urn:xmpp:cmr:0’/>
</ig>

The result 1Q, must include exactly one <active/> element and at least one <available/>
element. Both elements must posses a ’algorithm’ attribute, which contains the name of the
available or active algorithm.

Listing 4: Server returns information about the CMR state

<ig xmlns=’jabber:client’
from=’romeo@montague.example’
id=’statel”’
to=’romeo@montague.example/garden’
type=’result’>
<query xmlns=’xmlns=’urn:xmpp:cmr:0’>
_.<active_algorithm="urn:xmpp:cmr:all’_/>
~.<available_algorithm="urn:xmpp:cmr:all’/>
_.<available_algorithm="urn:xmpp:cmr:mostactive’/>
_.<available_algorithm="urn:xmpp:cmr:roundrobin’/>
_.<available_algorithm="urn:xmpp:cmr:weighted’/>
</ig>

5.3 Changing the active message routing algorithm

To change the active message routing algorithm, the client sends an <iq/> of type ’set’ con-
taining a 'cmr’ child element which contains the desired algorithm as value of the "algorithm’
attribute.

Listing 5: Client requests to change the active message routing algorithm

<ig xmlns=’jabber:client’
from="romeo@montague.example/garden’
id=’changel”’
type=’set’>
<cmr xmlns=’urn:xmpp:cmr:Q’
algorithm="urn:xmpp:cmr:roundrobin’ />
</ig>

/5 PROTOCOL

The server will respond with an result <iq/> if the routing algorithm was successfully changed.

Listing 6: Server acknowledges the change of the active message routing algorithm

<ig xmlns=’jabber:client’
from=’romeo@montague.example’
id=’changel”’
to=’romeo@montague.example/garden’
type=’result’/>

If the server is unable to change the message routing algorithm, then an error <iq/> is
returned to the client.

Listing 7: Server informs client that the routing algorithm was not changed

<ig xmlns=’jabber:client’
from="romeo@montague.example’
id=’changel”’
to=’romeo@montague.example/garden’
type=’error’>
<error type=’cancel’>
<not-allowed xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/>
</error>
</ig>

5.4 Message Routing Hints

If allowed and supported by the server, clients are able to annotate message stanza with a
routing hint, that SHOULD affect the used message routing algorithm for the annotated stanza.

5.4.1 Determing support

Listing 8: Client sends service discovery information request

<ig xmlns=’jabber:client’
from="romeo@montague.example/garden’
id="info2’
to=’bar.example’
type=’'get’>
<query xmlns=’http://jabber.org/protocol/disco#info’/>
</ig>

Listing 9: Server replies with service discovery information response

<ig xmlns=’jabber:client’
from="bar.example’

/5 PROTOCOL

id="info2’
to=’romeo@montague.example/garden’
type=’result’>
<query xmlns=’http://jabber.org/protocol/disco#info’>

<feature var=’urn:xmpp:cmr:hints:0’/>
</query>
</ig>

5.4.2 Determing available message routing algorithms of a (remote) server

Listing 10: Client requests available message routing algorithms

<ig xmlns=’jabber:client’
from="romeo@montague.example/garden’
to="bar.example’
id="statel’
type=’"get’>
<query xmlns=’urn:xmpp:cmr:0’/>
</ig>

Listing 11: Server replies with available message routing algorithms

<ig xmlns=’jabber:client’

from="bar.example’

id="statel’

to=’romeo@montague.example/garden’

type=’result’>
<query xmlns=’xmlns="urn:xmpp:cmr:0’>
_.<available_algorithm="urn:xmpp:cmr:all’/>
_.<available_algorithm="urn:xmpp:cmr:mostactive’/>
_.<available_algorithm="urn:xmpp:cmr:roundrobin’/>
_.<available_algorithm="urn:xmpp:cmr:weighted’/>
_.<available_algorithm="urn:xmpp:cmr:forkalways’/>
</ig>

5.4.3 Sending a message with routing hint

Listing 12: Client sends a message with a routing hint

<message xmlns=’jabber:client’
from="romeo@montague.example/garden’
to=’foo@bar.example’>
<body>Hello everyone</body>
<cmr xmlns=’urn:xmpp:cmr:Q’
algorithm="run:xmpp:cmr:forkalways’/>
</message>

\J 6 BUSINESS RULES

6 Business Rules

6.1 General Rules

Clients are allowed to change the CMR state at any time. CMR MUST only affect the routing
of message stanzas of type 'normal’ or chat’, which are addressed to a bare JID and where the
receiving entity has more then one available resource with a non-negative presence priority.
That is, it affects the routing decision as described in RFC 6121 § 8.5.2.1.1 for messages of type
'normal’ and "chat’.

The CMR state, ie. the used routing algorithm, is identical for every session of an XMPP client.
Therefore implementations MUST NOT allow different CMR states between the resources of
the same bare JID.

If an entity advertises support for CMR as described in 3. it MUST support at least one message
routing algorithm.

6.2 Routing Algorithm Specification
6.2.1 Deliver to all

Algorithm Namespace: "urn:xmpp:cmr:all’
Deliver to all non-negative resources with share the same maximum priority. And if message
type is "chat’, only to those that have opted in to receive chat messages.

6.2.2 Deliver to most active resource

Algorithm Namespace: 'urn:xmpp:cmr:mostactive’
Deliver the message to the "most available” resource or resources, depending on the server’s
implementation.

6.2.3 Load balance using round robin

Algorithm Namespace: "urn:xmpp:cmr:roundrobin’
Deliver the message to the next resource selected by a round-robin algorithm.

6.2.4 Weighted load balancing

Algorithm Namespace: "urn:xmpp:cmr:weighted’
Deliver the message to a resource selected by a weighted round-robin algorithm. The weight
of a resource is determined by its priority.

N/ 10 XMPP REGISTRAR CONSIDERATIONS

7 Implementation Notes

Servers implementing CMR MUST at least implement one message routing algorithm, and
offer at least one of of 'urn:xmpp:cmr:all’ and "urn:xmpp:cmr:mostactive’. Technically this is
a constraint derived from Section 8.5.2.1.1. of RFC 6121.

8 Security Considerations

This specification introduces no known security considerations.

9 IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (TANA)
7

10 XMPP Registrar Considerations

10.1 Protocol Namespaces

This specification defines the following XML namespace:

¢ urn:xmpp:cmr:0

Upon advancement of this specification from a status of Experimental to a status of
Draft, the XMPP Registrar ® shall add the foregoing namespace to the registry located at
<https://xmpp.org/registrar/namespaces.html>, as described in Section 4 of XMPP Regis-
trar Function (XEP-0053) °.

10.2 Protocol Versioning

If the protocol defined in this specification undergoes a revision that is not fully backwards-
compatible with an older version, the XMPP Registrar shall increment the protocol version
number found at the end of the XML namespaces defined herein, as described in Section 4 of

"The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

8The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

*XEP-0053: XMPP Registrar Function <https://xmpp.org/extensions/xep-0053.html>.

http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/registrar/namespaces.html
https://xmpp.org/extensions/xep-0053.html
https://xmpp.org/extensions/xep-0053.html
http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/extensions/xep-0053.html

/11 XML SCHEMA

XEP-0053.

11 XML Schema

<?xml version=’1.0’ encoding=’UTF-8’7?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="urn:xmpp:cmr:0Q’
xmlns=’urn:xmpp:cmr:Q’
elementFormDefault="qualified’>

<xs:annotation>
<xs:documentation>
The protocol documented by this schema is defined in
XEP-XXXX: http://www.xmpp.org/extensions/xep-xxxx.html
</xs:documentation>
</xs:annotation>

<xs:element name=’query’>
<xs:complexType>
<xs:sequence>
<xs:element ref=’active’
minOccurs="1"
maxOccurs=’1"/>
<xs:element ref=’available’
minOccurs=’1"
maxOccurs="unbounded’/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name=’active’ type=’cmrtype’/>
<xs:element name=’available’ type=’cmrtype’/>
<xs:element name=’cmr’ type=’cmrtype’/>
<xs:complexType name=’cmrtype’>
<xs:complexType>
<xs:attribute name=’algorithm’ type=’xs:string’ use=’required’/>
</xs:complexContent>

</xs:complexType>

</xs:schema>

	Introduction
	Requirements
	Glossary
	Use Cases
	Non-balancing Message Routing Algorithms
	Balancing Message Routing Algorithms
	Non-Use Cases

	Protocol
	Discovering Support
	Quering the current active and available message routing algorithms
	Changing the active message routing algorithm
	Message Routing Hints
	Determing support
	Determing available message routing algorithms of a (remote) server
	Sending a message with routing hint

	Business Rules
	General Rules
	Routing Algorithm Specification
	Deliver to all
	Deliver to most active resource
	Load balance using round robin
	Weighted load balancing

	Implementation Notes
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	Protocol Versioning

	XML Schema

