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2 CONCEPTS AND APPROACH

1 Introduction
The purpose of push notifications is to inform users of new messages or other pertinent
information even when they have no XMPP clients online.
Typically, these notifications are delivered to a user’s mobile device, displaying a notice that
can trigger opening an XMPP client to continue a conversation or answer a Jingle session
request.
There have been several push notification implementations by mobile XMPP client vendors.
However, experience has shown that these implementations carried several drawbacks:

• Treated the XMPP client and XMPP server as one unified service, such that push notifi-
cations only worked using the ”official” client.

• Proxied a user’s session through the client provider’s backend services in order to mon-
itor for and trigger push notifications.

The goal for this document is to make the generalized case possible, whereby a user may use
their XMPP client of choice with their own server of choice. The requirements are thus:

• Allow XMPP servers to support push notifications to multiple client implementations,
via multiple external or proprietary push services.

• Allow clients to receive push notifications from multiple third-party XMPP servers.

• Eliminate the need for clients to proxy a user’s XMPP session in order to enable push
notifications.

Note: Any publish-subscribe use cases not described herein are described in Publish-
Subscribe (XEP-0060) 1. Also, this document does not show error flows related to the generic
publish-subscribe use cases referenced herein, since they are exhaustively defined in Publish-
Subscribe (XEP-0060) 2. The reader is referred to XEP-0060 for all relevant protocol details
related to the XMPP publish-subscribe extension. This document merely defines a ”subset”
or ”profile” of XMPP publish-subscribe.

2 Concepts and Approach
XMPP Push works between the user’s XMPP server and two push notification services in
tandem:

1. The user’s XMPP server publishes notifications to the XMPP Push Service of each of the
user’s client applications.

1XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.
2XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.
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2 CONCEPTS AND APPROACH

2. The XMPP Push Service (as defined here) for a client application then delivers the noti-
fication to a third-party notification delivery service.

3. The third-party (and potentially proprietary or platform-dependent) push service de-
livers the notification from the client application’s backend service to the user’s device.

This two-tiered push architecture allows the user’s XMPP server to deliver notifications to
arbitrary third-party clients, and in turn allows those clients to use the appropriate delivery
mechanism for their platforms without having to share any private keys or other credentials
with the XMPP server.

2.1 General Architecture of a Push Notification Service
The current state-of-the-art for a generic push notification service requires four actors:

App Client The app client is the software installed and ran by the user, and is the final receiver
of a push notification.

App Server The app server is a backend service for the app client. Atminimum, the app server
exists to trigger push notifications, but it often also performs business logic for the app.

User Agent The user agent is a service running locally on the user’s device which receives
push notifications and delivers them to the appropriate application.

Push Service The push service ferries notifications from the App Server to the User Agent.
How it does so is often proprietary and vendor/platform dependent.

Enabling notifications is a five step process:

1. The App Client asks the User Agent to authorize the delivery of notifications.

2. The User Agent then requests a token from the Push Service which authorizes delivery
of notifications to that User Agent and App Client.

3. The Push Service issues the token to the User Agent.

4. The User Agent gives the token to the App Client.

5. The App Client sends the token to the App Server for later use.

Listing 1: The five general steps to enable push notifications
+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+

+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+
| | 5 | |
| App Client +-{}-{}-{}-{}-{}-{}-{}-{}-{}-> App Server |

2



2 CONCEPTS AND APPROACH

| | | |
+-+-{}-{}-{}-{}-{}-{}-{}-^-+

+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+
|1 |4
| |

+-v-{}-{}-{}-{}-{}-{}-{}-+-+ 3
+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+

| < -{}-{}-{}-{}-{}-{}-{}-{}-{}-+ |
| User Agent | | Push Service |
| +-{}-{}-{}-{}-{}-{}-{}-{}-{}-> |
+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+ 2

+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+

To send a push notification, the App Server sends the notification data to the Push Service
along with the saved token.

Listing 2: General delivery of a push notification
+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+

+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+
| | | |
| App Client | | App Server |
| | | |
+-{}-{}-{}-{}-^-{}-{}-{}-{}-{}-+

+-{}-{}-{}-{}-{}-+-{}-{}-{}-{}-+
| |
| |

+-{}-{}-{}-{}-+-{}-{}-{}-{}-{}-+ +-{}-{}-{}-{}-{}-v
-{}-{}-{}-{}-{}-{}-{}-+

| | | |
| User Agent < -{}-{}-{}-{}-{}-{}-{}-{}-{}-+ Push Service |
| | | |
+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+

+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+

2.2 Mapping the General Architecture to XMPP
To build an XMPP Push service on top of a general push service, we perform the following
mapping:

• The general App Client becomes the XMPP User Agent

• The general App Server becomes the XMPP Push Service

• The XMPP server is now the new logical ”App Server”

• The XMPP client portion of the application is the new logical ”App Client”

3



3 XMPP PUSH SERVICE

Listing 3: Mapping the generic push architecture to use XMPP
+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+

+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+
| | 5 | |
| XMPP Client +-{}-{}-{}-{}-{}-{}-{}-{}-> XMPP Server |
| | | |
+-+-{}-{}-{}-{}-{}-{}-{}-^-{}-+

+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+
|1 |4
| |

+-v-{}-{}-{}-{}-{}-{}-{}-+-+ 3
+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+

| < -{}-{}-{}-{}-{}-{}-{}-{}-{}-+ |
|

| App Client | | App Server | XMPP Push Service |
| +-{}-{}-{}-{}-{}-{}-{}-{}-{}-> |

|
+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+ 2

+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+

3 XMPP Push Service
An XMPP Push Service is a PubSub service as defined by the XMPP Publish-Subscribe (XEP-
0060) 3 extension. The functional difference between a Push Service and a generic pubsub
service is that a Push Service will generally summarize and forward published content via
non-XMPP mechanisms.
Note: a Push Service is provided by a specific client application as part of the App Server. A
user’s XMPP server will typically not act as a Push Service itself, but will instead publish to the
Push Services for the user’s client applications.

3.1 Recommended Defaults
A Push Service MUST:

• Support the ’whitelist’ access model and set it to the default.

• Support the ’publish-only’ affiliation.

3XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.
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4 DISCOVERING SUPPORT

3.2 Business Rules
Each PubSub node is a delivery target for the Push Service, which could represent multiple
devices for a single user.
In order to prevent information leaks, each node SHOULD be configured with a ’whitelist’
access model so that only trusted entities are able to view or subscribe to published notifica-
tions. Furthermore, the ’publish-only’ affiliation SHOULD be used to allow acceptable entities
(such as the server JID and the user’s bare JID) to publish to the node to trigger notifications.
Care SHOULD be taken to ensure that publish requests are coming from the user’s server and
not from other third-party client applications using the full JID of a user. A Push Service MAY
opt to only accept or further process publish requests from server JIDs and bare user JIDs to
ensure that only a user’s server is able to publish, but it SHOULD instead use publish options
with credentials shared only with the user’s server (see Enabling Notifications).

4 Discovering Support
4.1 Account Owner Service Discovery
Before enabling or disabling push services, a client SHOULD determine whether the user’s
server supports publishing push notifications; to do so, it MUST send a Service Discovery
(XEP-0030) 4 information quest to the user’s bare JID:

Listing 4: Client queries server regarding protocol support
<iq from=’user@example.com/mobile ’

to=’user@example.com’
id=’x13’
type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

If the user’s server supports publishing push notifications and the account is provisioned to
allow them, the server MUST include the feature ’urn:xmpp:push:0’ in its list of supported
features.

Listing 5: Server communicates protocol support
<iq from=’juliet@capulet.lit’

to=’juliet@capulet.lit/balcony ’
id=’disco1 ’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
<identity category=’account ’ type=’registered ’/>
<feature var=’urn:xmpp:push:0 ’/>

4XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

5
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5 ENABLING NOTIFICATIONS

...
</query >

</iq>

4.2 Push Service Discovery
If a service supports the XMPP Push Service publish-subscribe profile described herein, it
MUST include an identity of ”pubsub/push” in ”disco#info” results.

Listing 6: Service identifies as a Push Services
<iq from=’push -5. client.example ’

to=’user@example.com/mobile ’
id=’x23’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
<identity category=’pubsub ’ type=’push’ />
<feature var=’urn:xmpp:push:0 ’/>
...

</query >
</iq>

5 Enabling Notifications
The full process for enabling notifications requires initializing two separate push services:
between the App Client and App Server, and between the App Server and the user’s XMPP
server.
Note: It is assumed that an App Client is able to perform any registration procedures it
requires to bootstrap its own preferred push notification system. Furthermore, it is assumed
that the App Client or App Server is able to provision a node on its own XMPP Push Service. It
is possible, but not required, to perform these actions over XMPP using In-Band Registration
(XEP-0077) 5.

1. The App Client performs any necessary bootstrapping and registration for its preferred
push service.

2. The App Client registers itself with the App Server.

3. The App Server allocates or reuses a node on the App Server’s XMPP Push Service.

4. The App Server informs the App Client of the provisioned node, along with any addi-
tional parameters required for publishing to that node.

5XEP-0077: In-Band Registration <https://xmpp.org/extensions/xep-0077.html>.

6
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5. The App Client requests the XMPP server to publish notifications to the given node.

Listing 7: The full flow of enabling push notifications for an application
+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+

+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+
| | | |
| XMPP Client +-{}-{}-{}-{}-{}-{}-{}-{}-> XMPP Server |
| | 5b | |
+-{}-{}-{}-{}-{}-^-{}-{}-{}-{}-{}-+

+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+
|5a
|

+-{}-{}-{}-{}-{}-+-{}-{}-{}-{}-+ 4
+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+

| < -{}-{}-{}-{}-{}-{}-{}-{}-{}-+ |
|

| App Client | | App Server <-3-> XMPP Push Service |
| +-{}-{}-{}-{}-{}-{}-{}-{}-{}-> |

|
+-{}-+-{}-{}-{}-{}-{}-^-{}-+ 2

+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+

|1a |1d
| |

+-{}-v-{}-{}-{}-{}-{}-+-{}-+ 1c
+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+

| < -{}-{}-{}-{}-{}-{}-{}-{}-{}-+ |
| User Agent | | Push Service |
| +-{}-{}-{}-{}-{}-{}-{}-{}-{}-> |
+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+ 1b

+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+

For the last step, the App Client sends an IQ-set to the user’s bare JID with an <enable />
element qualified by the ’urn:xmpp:push:0’ namespace, which MUST contain a ’jid’ attribute
of the XMPP Push Service being enabled. It SHOULD contain a ’node’ attribute which is set to
the provisioned node specified by the App Server.

Listing 8: Enabling Notifications
<iq type=’set’ id=’x42’>

<enable xmlns=’urn:xmpp:push:0 ’ jid=’push -5. client.example ’ node=’
yxs32uqsflafdk3iuqo ’ />

</iq>

An App Server MAY require additional information to be provided with each published
notification, such as authentication credentials. These parameters are included in the

7



6 DISABLING NOTIFICATIONS

enable request by adding a Data Forms (XEP-0004) 6 data form with a FORM_TYPE of
’http://jabber.org/protocol/pubsub#publish-options’.

Listing 9: Enabling Notifications, with provided publish options
<iq type=’set’ id=’x43’>

<enable xmlns=’urn:xmpp:push:0 ’ jid=’push -5. client.example ’ node=’
yxs32uqsflafdk3iuqo ’>

<x xmlns=’jabber:x:data ’ type=’submit ’>
<field var=’FORM_TYPE ’><value >http:// jabber.org/protocol/pubsub#

publish -options </value ></field >
<field var=’secret ’><value >eruio234vzxc2kla -91</value ></field >

</x>
</enable >

</iq>

The JID for a Push Service MAY be enabled multiple times for a user only if different node
values are provided. If the combination of JID and node has already been enabled, then the
server SHOULD use the last received request for any publish options.

6 Disabling Notifications
If the user decides to stop push notifications for a particular client application, the App
Client SHOULD send an IQ-set to the user’s bare JID with a <disable /> element qualified by
the ’urn:xmpp:push:0’ namespace, which MUST include a ’jid’ attribute of the service to be
removed.

Listing 10: Disabling all notifications to a given service
<iq type=’set’ id=’x97’>

<disable xmlns=’urn:xmpp:push:0 ’ jid=’push -5. client.example ’ />
</iq>

A ’node’ attribute MAY be included to remove a particular JID and node combination if
multiple nodes have been enabled for a single service JID.

Listing 11: Disabling notifications
<iq type=’set’ id=’x97’>

<disable xmlns=’urn:xmpp:push:0 ’ jid=’push -5. client.example ’ node=’
yxs32uqsflafdk3iuqo ’ />

</iq>

6XEP-0004: Data Forms <https://xmpp.org/extensions/xep-0004.html>.
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7 PUBLISHING NOTIFICATIONS

If a ’node’ attribute is provided, then only that combination of JID and node SHOULD be
removed from the set of enabled services. Otherwise, the server SHOULD disable all enabled
entries for the specified service for the user.
When a service is not enabled, the server MUST NOT attempt publishing notifications to the
service.

7 Publishing Notifications
When the user’s server detects an event warranting a push notification, it performs a PubSub
publish to all XMPP Push Services registered for the user, where the item payload is a
<notification /> element in the ’urn:xmpp:push:0’ namespace.
A Data Forms (XEP-0004) 7 data form whose FORM_TYPE is ’urn:xmpp:push:summary’ MAY
be included to provide summarized information such as the number of unread messages or
number of pending subscription requests.
Other elements MAY be included if relevant for the notification.

Listing 12: Server publishes a push notification
<iq type=’set’

from=’example.com’
to=’push -5. client.example ’
id=’n12’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<publish node=’yxs32uqsflafdk3iuqo ’>

<item>
<notification xmlns=’urn:xmpp:push:0 ’>

<x xmlns=’jabber:x:data ’>
<field var=’FORM_TYPE ’><value >urn:xmpp:push:summary </value

></field >
<field var=’message -count ’><value >1</value ></field >
<field var=’last -message -sender ’><value >juliet@capulet.

example/balcony </value ></field >
<field var=’last -message -body’><value >Wherefore art thou ,

Romeo?</value ></field >
</x>
<additional xmlns=’http: // example.com/custom ’>Additional

custom elements </additional >
</notification >

</item>
</publish >

</pubsub >
</iq>

7XEP-0004: Data Forms <https://xmpp.org/extensions/xep-0004.html>.
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7 PUBLISHING NOTIFICATIONS

If additional data was provided when enabling the service, the publish request SHOULD
include the data as publish options.

Listing 13: Server publishes a push notification with provided publish options
<iq type=’set’

from=’example.com’
to=’push -5. client.example ’
id=’n12’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<publish node=’yxs32uqsflafdk3iuqo ’>

<item>
<notification xmlns=’urn:xmpp:push:0 ’>

<x xmlns=’jabber:x:data ’>
<field var=’FORM_TYPE ’><value >urn:xmpp:push:summary </value

></field >
<field var=’message -count ’><value >1</value ></field >
<field var=’last -message -sender ’><value >juliet@capulet.

example/balcony </value ></field >
<field var=’last -message -body’><value >Wherefore art thou ,

Romeo?</value ></field >
</x>
<additional xmlns=’http: // example.com/custom ’>Additional

custom elements </additional >
</notification >

</item>
</publish >
<publish -options >

<x xmlns=’jabber:x:data ’>
<field var=’FORM_TYPE ’><value >http:// jabber.org/protocol/

pubsub#publish -options </value ></field >
<field var=’secret ’><value >eruio234vzxc2kla -91<value ></field >

</x>
</publish -options >

</pubsub >
</iq>

7.1 Publish Errors
If a publish request is returned with an IQ-error, then the server SHOULD consider the
particular JID and node combination to be disabled.
However, a server MAY choose to keep a service enabled if the error is deemed recoverable or
transient, until a sufficient number of errors have been received in a row.
A server MAY retry an automatically disabled JID and node combination after a period of time
(e.g. 1 day).

10



8 REMOTE DISABLING OF NOTIFICATIONS

7.2 Notification Delivery
Once the notification has been published to the XMPP Push Service, it is left to the implemen-
tation how to deliver the notification to the user’s device. However, the general flow for the
process looks like so:

Listing 14: The full path of a push notification, from XMPP server to user client
+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+

+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+
| | | |
| XMPP Client | | XMPP Server +-{}-{}-{}-{}-{}-{}-{}-+
| | | | |
+-{}-{}-{}-{}-^-{}-{}-{}-{}-{}-{}-+

+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+ |
. |
. |

+-{}-{}-{}-{}-+-{}-{}-{}-{}-{}-+
+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+-{}-{}-{}-{}-{}-{}-{}-{}-v
-{}-{}-{}-{}-{}-{}-{}-{}-+

| | | | |
| App Client | | App Server < XMPP Push Service |
| | | | |
+-{}-{}-{}-{}-^-{}-{}-{}-{}-{}-+

+-{}-{}-{}-{}-{}-+-{}-{}-{}-{}-+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+

| |
| |

+-{}-{}-{}-{}-+-{}-{}-{}-{}-{}-+ +-{}-{}-{}-{}-{}-v
-{}-{}-{}-{}-{}-{}-{}-+

| | | |
| User Agent <-{}-{}-{}-{}-{}-{}-{}-{}-{}-+ Push Service |
| | | |
+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+

+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-+

8 Remote Disabling of Notifications
It can be desirable for an XMPP Push Service to stop accepting notifications from the user’s
XMPP server. To do so, the XMPP Push Service removes the ’publish-only’ (or other publish-
enabling affiliation) from the user’s JID, and MAY send an affiliation change notice to the
user’s bare JID:

Listing 15: Push Service announces stop of push support
<message from=’push -5. client.example ’ to=’user@example.com’>

11
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<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’ node=’
yxs32uqsflafdk3iuqo ’>

<affiliation jid=’user@example.com’ affiliation=’none’ />
</pubsub >

</message >

Upon receiving an affiliation change event, the server MAY remove the received JID and node
combination from the set of enabled services. If a server does not do so, then the service will
be removed from the enabled set through the error handling process.

9 Security Considerations
Push notifications require routing private information, such as message bodies, through
third parties. As such, servers SHOULD allow users to limit the information sent via push
notifications.
It is NOT RECOMMENDED to allow in-band modification of push notification content settings.
Such operations SHOULD be done out-of-band to prevent privilege escalation.

10 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
8.

11 XMPP Registrar Considerations
11.1 Protocol Namespaces
The XMPP Registrar 9 includes ’urn:xmpp:push:0’ in its registry of protocol namespaces (see
<https://xmpp.org/registrar/namespaces.html>).

• urn:xmpp:push:0

8The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

9The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.
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11.2 Protocol Versioning
If the protocol defined in this specification undergoes a revision that is not fully backwards-
compatible with an older version, the XMPP Registrar shall increment the protocol version
number found at the end of the XML namespaces defined herein, as described in Section 4 of
XEP-0053.

11.3 Field Standardization
Field Standardization for Data Forms (XEP-0068) 10 defines a process for standardizing the
fields usedwithin Data Forms scoped by a particular namespace, and theXMPPRegistrarmain-
tains a registry of such FORM_TYPES (see <https://xmpp.org/registrar/formtypes.html>).

11.3.1 urn:xmpp:push:summary FORM_TYPE

<form_type >
<name>urn:xmpp:push:summary </name>
<doc>XEP -XXXX</doc>
<desc>Provides summarizing information about a user for use in push

notifications.</desc>
<field

var=’message -count ’
type=’text -single ’
label=’The␣number␣of␣unread␣or␣undelivered␣messages ’/>

<field
var=’pending -subscription -count ’
type=’text -single ’
label=’The␣number␣of␣pending␣incoming␣presence␣subscription␣

requests ’/>
<field

var=’last -message -sender ’
type=’jid -single ’
label=’The␣sender␣of␣the␣last␣received␣message ’/>

<field
var=’last -message -body’
type=’text -single ’
label=’The␣body␣text␣of␣the␣last␣received␣message ’/>

</form_type >

11.4 Service Discovery Category/Type
The XMPP Registrar includes a category of ”component” in its registry of Service Discovery
identities (see <https://xmpp.org/registrar/disco-categories.html>); as a result of this
10XEP-0068: Field Data Standardization for Data Forms <https://xmpp.org/extensions/xep-0068.html>.
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document, the Registrar includes a type of ”jidprep” to that category.
The registry submission is as follows:

<category >
<name>pubsub </name>
<type>

<name>push</name>
<desc>

A push notification service that supports the publish -subscribe
profile defined in XEP -XXXX.

</desc>
<doc>XEP -XXXX</doc>

</type>
</category >

12 XML Schema

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’urn:xmpp:push:0 ’
xmlns=’urn:xmpp:push:0 ’
elementFormDefault=’qualified ’>

<xs:annotation >
<xs:documentation >

The protocol documented by this schema is defined in
XEP -xxxx: http://www.xmpp.org/extensions/xep -xxxx.html

</xs:documentation >
</xs:annotation >

<xs:import
namespace=’jabber:x:data ’
schemaLocation=’http: //xmpp.org/schemas/x-data.xsd’ />

<xs:element name=’enable ’>
<xs:complexType >

<xs:sequence minOccurs=’0’ maxOccurs=’unbounded ’ xmlns:xdata=’
jabber:x:data ’>

<xs:element ref=’xdata:x ’ />
</xs:sequence >
<xs:attribute name=’jid’ type=’xs:string ’ use=’required ’ />
<xs:attribute name=’node’ type=’xs:string ’ use=’required ’ />

</xs:complexType >
</xs:element >

14
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<xs:element name=’disable ’>
<xs:complexType >

<xs:attribute name=’jid’ type=’xs:string ’ use=’required ’ />
<xs:attribute name=’node’ type=’xs:string ’ use=’optional ’ />

</xs:complexType >
</xs:element >

<xs:element name=’notification ’>
<xs:complexType >

<xs:sequence minOccurs=’0’ maxOccurs=’unbounded ’ xmlns:xdata=’
jabber:x:data ’>

<xs:element ref=’xdata:x ’ />
<xs:any />

</xs:sequence >
</xs:complexType >

</xs:element >

</xs:schema >
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