XVIPP

XEP-0366: Entity Versioning

Sam Whited
mailto:sam@samwhited.com
xmpp : sam@samwhited.com
https://blog.samwhited.com/

2016-12-21
Version 0.1.2

Status Type Short Name
Deferred Standards Track EV

A method by which lists of items may be versioned so that servers will not need to send the entire list
if it has not been modified, saving bandwidth and time with minimal state being stored by the server and
client.

mailto:sam@samwhited.com
xmpp:sam@samwhited.com
https://blog.samwhited.com/

Legal

Copyright

This XMPP Extension Protocol is copyright © 1999 - 2024 by the XMPP Standards Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
"Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https: //xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents

10

11

12

13

Introduction 1
Requirements 1
Glossary 1
Use Cases 2
4.1 Clients 2
4.2 SEIVEIS . . v v v v i i i e e e e e e e e e e e 2
Entity Versioning Profiles 2
Discovering Support 3
Entity Sync 4
7.1 VersionTokens.t 4
7.2 Cachelnvalidation 5
7.3 Partialsync e 5
7.4 Listsearch 7
7.5 Aggregate Tokens i e 7
Implementation Notes 9
Security Considerations 9
IANA Considerations 9
XMPP Registrar Considerations 10
11.1 Protocol Namespaces . . . v v v v v v v v v v ot et e e e 10
11.2 Namespace Versioningo v v v v i v v v v i v i 10
11.3 Entity Versioning ProfilesRegistry 10
11.4 Entity VersioningProfiles 11
XML Schema 11

Acknowledgements 11

/'3 GLOSSARY

1 Introduction

This problem of "downloading the world” (downloading the entire roster every time a session
is initialized, or receiving an entire disco items response every time a MUC list is queried,
etc.) was partially addressed by Roster Versioning (XEP-0237) ! which was later merged into
RFC 6121 ? §2.6. While this solved the problem for the roster, it did not account for other
entities. Furthermore, roster versioning requires that the server maintain a great deal of state
(roster items which should be pushed for each entity on reconnect, monotonically increasing
counters, etc.) which can be difficult to store or synchronize in a large, distributed system.
This XEP defines a method by which generic entity lists can be versioned and cached which
is optimized for distributed systems with large entity lists, but which works equally well on
small, single server deployments.

2 Requirements

¢ An extra round trip MUST NOT be required to initiate entity versioning.

» Clients that do not implement this protocol (but which use servers that do) MUST still
be able to request and receive entities normally.

« Servers which implement this protocol MUST NOT be required to store multiple versions
of an entity list or maintain other redundant state.

+ Inconsistent state between servers in a cluster should not cause cache invalidation for
the entire entity list.

« Large changes SHOULD NOT be required for existing servers / clients.

3 Glossary

Aggregate Token A hash which represents the state of a list of entities, and changes if any of
the entities change.

Versioned Entity Any object which may be versioned (eg. rooms, users).

Version Token A short, case sensitive string which represents an entity and changes if that
entity changes.

1XEP-0237: Roster Versioning <https://xmpp.org/extensions/xep-0237.html>.
’RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc6121>,

https://xmpp.org/extensions/xep-0237.html
http://tools.ietf.org/html/rfc6121
https://xmpp.org/extensions/xep-0237.html
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121

\/ 5 ENTITY VERSIONING PROFILES

4 Use Cases

4.1 Clients

* A client on a mobile device where bandwidth and throughput are limited has a very
large roster which cause connecting to take an unacceptable amount of time. With en-
tity versioning, subsequent connections after the first do not take as long, and use less

bandwidth.

« Aclient often wants to view the list of multi-user chat rooms available on a servers MUC
service. However, the list is very long and takes a long time to download. After enabling
entity versioning the client can fetch the list, and then poll for changes at a later date
without re-requesting the entire list.

« A client wishes to cache the features supported by servers of the contacts in their roster
since their disco items is not likely to change often.

4.2 Servers

* A server is running in an environment where storing multiple versions of each users
roster may put too much pressure on the storage backend. After enabling entity ver-
sioning, they only have to store a small token per user and can calculate the diffs to send
to the client afterwards.

* A server maintains an out-of-band HTTP API for fetching information about MUC rooms
to display on their web page. They wish to use a reverse proxy to cache API requests
based on etags. Instead of attempting to check if the backend page has changed and
generate etags, the room’s entity version token is used as a weakly-validated ETag.

5 Entity Versioning Profiles

Because entity versioning is designed to be a generic system for syncing any sort of list in
XMPP, and the format and requirements of various entity lists may vary greatly, no specific
wire format is defined in this specification. Instead, the specifics for various lists will be left up
to separate XEPs which will define entity versioning "profiles” which must be registered with
the XMPP registrar. These profiles will define exactly how version tokens are represented in
the specific list format for which they wish to use entity versioning. The rest of this document
will provide details about entity versioning which will be common to all entity versioning
profiles and do not need to be redefined in EV profile XEPs. It will also define an EV profile
for fetching the roster.

The roster entity versioning profile which is used as an example throughout this document
will use the namespace "urn:xmpp:entityver:profile:roster:0’ as described in the XMPP Regis-
trar Considerations section of this document.

\J 6 DISCOVERING SUPPORT

6 Discovering Support

If a server supports entity versioning, it MUST inform the connecting client when returning
stream features during the stream negotiation process. This is done by including a <ver/>
element, qualified by the 'urn:xmpp:entityver:0’ namespace with child <profile> nodes for
each supported entity versioning profile. At the latest, this SHOULD be done when informing
a client that resource binding is required. For example if the server only supports versioning
of rosters it might return:

Listing 1: Stream Features

<stream:features>
<bind xmlns=’urn:ietf:params:xml:ns:xmpp-bind’>
<required/>
</bind>
<ver xmlns=’urn:xmpp:entityver:0’>
<profile xmlns=’urn:xmpp:entityver:profile:roster:0’/>
</ver>
</stream:features>

The entity versioning stream feature is merely informative and therefore is never mandatory-
to-negotiate.

Clients, servers, and other entities that support Service Discovery (XEP-0030) * and entity
versioning must respond to service discovery requests with a feature of 'urn:xmpp:entityver:0’
and with a feature for each EV profile supported by the responding entity as described in the
relavant specifications. Eg. a response from a server that supports roster versioning for the
requesting entity might look like the following:

Listing 2: Service discovery information response

<ig from=’shakespeare.lit’
id="ku6e51v3”’
to="kingclaudius@shakespeare.lit/castle’
type=’result’>
<query xmlns=’http://jabber.org/protocol/disco#info’>
<feature var=’urn:xmpp:entityver:0’/>
<feature var=’urn:xmpp:entityver:profile:roster:0’/>
</query>
</ig>

3XEP—003O:ServiceDiscovery<https://xmpp.org/extensions/xep—®030.htm1>.

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

\J 7 ENTITY SYNC

7 Entity Sync
7.1 Version Tokens

Version tokens are short case-sensitive strings which are generated by the server. Their
format is not defined in this spec, but a recommendation may be found in the Implementation
Notes. Version tokens are akin to a weakly-validated etag for the entity in question.

Servers that implement this protocol must assign such a version token to each entity that
is controlled by the server. The server SHOULD then update this version every time any
mutable property of the entity changes (eg. when the subscription status of a user changes).
The server MAY choose to update this token at any time (to force the clients to invalidate
their cached representation of the object). This version token MUST then be included with
every object representation of that entity transmitted in the stream. This is done by including
a sub-node called "version” qualified by the entity versioning XML namespace defined in
this document. Similarly, clients MAY also add version nodes for each version token they
possess to the request for a list (not specifying a version token will force the server to send
information on that entity to the client). If a client sends up a list of version tokens, the server
MUST then check to see if those tokens correspond to any entity which it knows about, and
not send down any entities with matching version tokens in the response.

For example, a versioned roster request might look like this:

Listing 3: Roster Request

<!-{}- Client -{}->
<ig from=’romeo@montague.lit/home’ id=’56’ to=’romeo@montague.lit’
type=’get’>
<query xmlns=’jabber:iq:roster’>
<item jid=’bill@shakespeare.lit’>
<version xmlns=’urn:xmpp:entityver:0’>25P2A7H8</version>
</item>
<item jid=’anne@shakespeare.lit’>
<version xmlns=’urn:xmpp:entityver:0’>VIZSVFOD</version>
</item>
</query>
</ig>

<!-{}- Server -{}->

<ig from=’romeo@montague.lit’ id=’56’ to=’romeo@montague.lit/home’
type=’result>

_.<query_xmlns=’jabber:iq:roster’>

ceow<item_subscription="both’_jid="bill@shakespeare.lit’>

uuuuuu <version_xmlns="urn:xmpp:entityver:0’>9ZFZXVP9</version>

cewu</item>

-.</query>

</ig>

\J 7 ENTITY SYNC

Note that in this case there may be three roster items total (and the client only knows about
two of them), or there may be two total roster items and the server is informing the client
about a change to ”bill@shakespeare.lit”. Version tokens MUST also be present in roster
pushes:

Listing 4: Roster Push

<ig from=’romeo@montague.lit’ id=’ah382g678jka7’ to=’romeo@montague.
lit/home’ type=’set’>
<query xmlns=’jabber:iq:roster’ ver=’ver34’>
<item jid=’tybalt@shakespeare.lit’ subscription=’remove’>
<version xmlns=’urn:xmpp:entityver:0’>XWE4MUUP</version>
</item>
</query>
</iqg>

7.2 Cache Invalidation

When a client syncs with the server and indicates that it has a version token in its cache that
does not match any entity on the server (or when the server wants to remove an entity from
the clients cache for any other reason), the server MUST reply with an empty <version/>
node. When the client receives such an empty version node it SHOULD purge the entity from
its cache. For example, the following would remove the roster item ’bill@shakespeare.lit’
from the cache:

Listing 5: Cache invalidation

<ig from=’romeo@montague.lit’ id=’56’ to=’romeo@montague.lit/home’
type='result>

_.<query._xmlns=’jabber:iq:roster’>

ceoo<item_subscription=’both’_jid="bill@shakespeare.lit’>

uuuuuu <version_xmlns=’urn:xmpp:entityver:0’/>

ceoo</item>

~.</query>

</ig>

Roster pushes that indicate a deleted item MUST also remove the version from the cache (and
need not contain an empty <version/> element).

7.3 Partial sync

For very large groups fetching an entire list may not be practical or necessary. For example,
one might imagine a large corporation with a shared roster that is too large for its version
tokens to be sent up to the server on every sync, or even to download fully the first time.
To solve this, servers MAY choose to send down only a part of an entity list in response to

\J 7 ENTITY SYNC

a query (unless the individual EV profile forbids partial list sync). How servers choose what
items to return is an implementation detail that is out of the scope of this document. Some
suggestions may be found in the Implementation Notes. On subsequent requests for the
entity list, the server MAY choose to return more entities (eg. based on changes in its internal
selection criteria), however it MUST NOT invalidate cached entities unless they have actually
been removed from the list.

XEPs defining entity versioning profiles MUST include a section to indicate if partial sync is
supported, and if so, how it will be indicated to the client (and how the client can request a
full list). If no mechanism is specified, this is done by adding a boolean "full_list” attribute to
the request, eg. a roster request for a partial list looks like:

Listing 6: Roster Request

<!-{}- Client -{}->
<iq from=’romeo@montague.lit/home’
id="56"
to="romeo@montague.lit’
type=’get’>
<query xmlns=’jabber:iq:roster’ full_list=’false’>
<item jid=’bill@shakespeare.lit’>
<version xmlns=’urn:xmpp:entityver:0’>25P2A7H8</version>
</item>
<item jid=’anne@shakespeare.lit’>
<version xmlns=’urn:xmpp:entityver:0’>VIZSVFOD</version>
</item>
</query>
</ig>

<!-{}- Server -{}->
<ig from=’romeo@montague.lit’ id=’56’ to=’romeo@montague.lit/home’
type=’result’>
<query xmlns=’jabber:iq:roster’ full_list=’false’>
<item subscription=’both’ jid=’bill@shakespeare.lit’>
<version xmlns=’urn:xmpp:entityver:0’>9ZFZXVP9</version>
</item>
</query>
</ig>

When making a request for a partial list, clients do not need to send up every entity in their
cache. Instead they MAY send up just those entities for which they wish to check for updates.
The server MUST then respond with any updates for those entities, and MAY also add other
entities to the list if desired. If the client requests a partial list but does not indicate that it has
anything in its cache, what entities to return (if any) is left up to the server implementation.

\J 7 ENTITY SYNC

7.4 List search

When a client has an incomplete versioned list, it may be beneficial to download more of the
list without requesting the full list. To do this, servers which support entity versioning MUST
supply a "search” IQ which can be used to discover list items matching a certain criteria. What
data to match on (JID, metadata, associated vcards, etc.), and what type of search are left up
to the server implementation and MAY be different between profiles.

Search queries are qualified by the 'urn:xmpp:entityver:0:search’ namespace and MUST have a
"profile’ attribute set to the namespace for which the search is being performed. For instance,
searching the roster looks like the following:

Listing 7: Roster search

<!-{}- Client -{}->
<ig from=’romeo@montague.lit/home’
id="564"
to=’romeo@montague.lit’
type=’get’>
<query xmlns="urn:xmpp:entityver:0:search” profile=’
urn:xmpp:entityver:profile:roster:0’>
Search term
</query>
</iqg>

<!-{}- Server -{}->
<ig from=’romeo@montague.lit’ id=’564’ to=’romeo@montague.lit/home’
type=’result’>
<query xmlns="urn:xmpp:entityver:@:search” profile=’
urn:xmpp:entityver:profile:roster:0’ type=’result’>
<item subscription='both’ jid="matching_search@term.lit’>
<version xmlns=’urn:xmpp:entityver:0’>4YAZ7Y38</version>
</item>
</query>
</iqg>

Search results SHOULD be added to the given list’s cache. In this way, the full list does not
need to be known.

7.5 Aggregate Tokens

While the version token approach to caching does not require a great deal of state to be stored
on the client or the server, it does require a lot more information to be sent by the client when
requesting a list of entities. For a very large list which is not likely to have changed, it may
be useful know in advance if the roster has changed or not (so that we can avoid sending the
large request entirely). To do this, we can request an aggregate version token from the server.
This aggregate token is calculated by constructing a string of comma separated "ID:version”

\J 7 ENTITY SYNC

pairs sorted in byte-wise order (because the ID:version pair is constructed before sorting, if
two items in the list have the same ID they can still be sorted by the version token), and taking
the MD5 hash of the constructed string. The ID in the pair is any ID or key that identifies the
entity as defined in its profile (eg. aJID for roster items and most other entities). For example,
if the server is calculating the aggregate version token for a roster, it might end up with the
following string:

Listing 8: Aggregate token list

anne@shakespeare.lit:VIZSVFOD ,bill@shakespeare.1lit:25P2A7H8

Which results in the aggregate token:

Listing 9: Aggregate token

0514fc90e6c7981b@6bbb2173bb8ef@3

The actual request is an 1Q sent to the server, or entity handling the versioned list which
contains a query that specifies the namespace of the list we want to fetch. Eg. to fetch the
aggregate token for the roster one would query the server with the query’s XMLNS set to
"urn:xmpp:entityver:profile:roster:0”:

Listing 10: Roster aggregate token request

<!-{}- Client -{}->

<ig to=’bill@shakespeare.lit’ type=’get’ id=’hilll1’>
<query xmlns=’urn:xmpp:entityver:profile:roster:0’/>

</ig>

<!-{}- Server -{}->
<ig to=’bill@shakespeare.lit/home’ type=’result’ id=’bill1’>
<query xmlns=’urn:xmpp:entityver:profile:roster:0’>
0514fc90e6c7981b06bbb2173bb8ef03
</query>
</ig>

Because aggregate tokens are OPTIONAL to implement, clients MUST fall back to making a
normal list request if any error is returned in response to an aggregate token 1Q.

If an aggregate token is requested for a list that may contain more than one type of entity
(eg. MUC rooms and pubsub nodes that live on the same component), then the server MUST
return the aggregate token constructed with the entire list (rooms and pubsub nodes).
Because aggregate tokens are calculated for the entire list as seen by the client or server, they
will never match if partial lists have been downloaded by the client.

Clients are also NOT REQUIRED to check aggregate tokens. However, clients MAY wish to
check aggregate tokens before making a roster or MUC request when the cached roster or MUC
list is very large. When to check aggregate tokens (if at all) is left up to the implementation.

/10 IANA CONSIDERATIONS

8 Implementation Notes

Version tokens may not provide enough collision resistance across versioned entities (here-
after simply called “entities”), and may vary from server to server, and therefore they MUST
NOT be used as an entity identifier.

Version tokens SHOULD always be considered opaque to the client (eg. even if the version
token is a derivable and consistent hash on the server side, clients should not need to know
how the server is calculating the token).

The author RECOMMENDS using 8 character (32-bit) random alphanumeric ASCII strings (eg.
AABd7z9T) for version tokens.

If a server which supports this XEP provides an HTTP API which can be used to fetch infor-
mation about entities (eg. for listing information about MUC rooms that a server provides on
the providers web page), the entities version token MAY be used as a weakly validated ETag
for any API requests for that entity.

Servers following this specification may choose to send down partial entity lists in response to
queries. For the case of rosters one or more of the following may be returned to the requesting
entity during the initial roster sync:

« Users that are grouped with the requester in some way. Eg. for a company with a large
shared roster which places the requesting client in the "Marketing Department” group,
the server may wish to return roster items that also share that group.

« Users whom the requester has contacted recently or frequently.

« Users that should always be returned as part of server policy.

9 Security Considerations

Client-side caching of entity information across sessions (rather than holding them in memory
only for the life of a session) could pose a privacy risk, especially on shared systems. Imple-
mentations SHOULD protect cached entity data with strong encryption or other appropriate
means.

10 IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
4

“The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

http://www.iana.org/
http://www.iana.org/

\/ 11 XMPP REGISTRAR CONSIDERATIONS

11 XMPP Registrar Considerations

11.1 Protocol Namespaces

This specification defines the following XML namespace:

* urn:xmpp:entityver:0
* urn:xmpp:entityver:0:search

Upon advancement of this specification from a status of Experimental to a status of
Draft, the XMPP Registrar ° shall add the foregoing namespace to the registry located at
<https://xmpp.org/registrar/stream-features.html>, as described in Section 4 of XMPP
Registrar Function (XEP-0053) .

11.2 Namespace Versioning

If the protocol defined in this specification undergoes a revision that is not fully backwards-
compatible with an older version, the XMPP Registrar shall increment the protocol version
number found at the end of the XML namespaces defined herein, as described in Section 4 of
XEP-0053.

11.3 Entity Versioning Profiles Registry

The XMPP Registrar shall maintain a registry of entity versioning profiles. All EV profile
registrations shall be defined in separate specifications (not in this document). Application
types defined within the XEP series MUST be registered with the XMPP Registrar, resulting
in protocol URNs of the form "urn:xmpp:entityver:profile:name:X” (where "name” is the
registered name of the profile and ”"X” is a non-negative integer).

In order to submit new values to this registry, the registrant shall define an XML fragment of
the following form and either include it in the relevant XMPP Extension Protocol or send it to
the email address <registrar@xmpp.org>:

<profile>
<name>The name of the entity versioning profile.</name>
<desc>A natural-language summary of the profile.</desc>
<listdef>
The document in which the original list definition is specified.
</listdef>

>The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

®XEP-0053: XMPP Registrar Function <https://xmpp.org/extensions/xep-0053.html>

10

https://xmpp.org/registrar/
https://xmpp.org/registrar/stream-features.html
https://xmpp.org/extensions/xep-0053.html
https://xmpp.org/extensions/xep-0053.html
https://xmpp.org/registrar/
https://xmpp.org/extensions/xep-0053.html

\/ 13 ACKNOWLEDGEMENTS

<doc>
The document in which the EV profile for the list is specified (
may be the
same as <listdev/>).
</doc>
</profile>

11.4 Entity Versioning Profiles

This specification defines the following entity versioning profile:

« urn:xmpp:entityver:profile:roster:0

Upon advancement of this specification from a status of Experimental to a status of Draft, the
XMPP Registrar 7 shall add the following definition to the entity versioning profiles registry,
as described in this document:

<profile>
<name>Roster entity versioning</name>
<desc>Allows versioning of entities in an XMPP roster.</desc>
<listdef>RFC 6121</listdef>
<doc>TODO: Insert this document once it is assigned a number</doc>
</profile>

12 XML Schema

TODO

13 Acknowledgements

The original entity versioning proposal was engineered and written by HipChat’s Doug Keen.

’The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

11

https://xmpp.org/registrar/
https://xmpp.org/registrar/

	Introduction
	Requirements
	Glossary
	Use Cases
	Clients
	Servers

	Entity Versioning Profiles
	Discovering Support
	Entity Sync
	Version Tokens
	Cache Invalidation
	Partial sync
	List search
	Aggregate Tokens

	Implementation Notes
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	Namespace Versioning
	Entity Versioning Profiles Registry
	Entity Versioning Profiles

	XML Schema
	Acknowledgements

