
XEP-0376: Pubsub Account Management

Dave Cridland
mailto:dave@hellopando.com
xmpp:dwd@dave.cridland.net

2017-09-11
Version 0.2

Status Type Short Name
Deferred Standards Track pam

This specification describes a newmodel for handling remote pubsub services and a protocol for doing
so.

mailto:dave@hellopando.com
xmpp:dwd@dave.cridland.net

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 User Stories 1
2.1 Device Agility . 1
2.2 New Devices . 1
2.3 Offline Capability . 1
2.4 PEP . 1

3 Protocol 2
3.1 Advertising Support . 2

3.1.1 Clients . 2
3.1.2 Servers . 2

3.2 Subscribing . 2
3.3 Unsubscribing . 4
3.4 Listing Subscriptions . 4
3.5 Auto Subscriptions . 5
3.6 Filtering . 5
3.7 Interaction with MAM . 5

4 Security Considerations 5

5 XMPP Registrar Considerations 6

6 IANA Considerations 6

2 USER STORIES

1 Introduction
The XMPP way is to have ”disposable”, or at least easily substituted, clients, maintaining long-
term state on the server, and allowing it to be synchronized between clients. In particular,
this can be seen on how the roster and presence fan-out operate - clients defer the operation
of such things to the server, which manages the shared state and allows servers to access and
manipulate it.
Historically, however, we have not done this for some more recently designed services,
including Multi User Chat and PubSub. In both cases, different clients may be unaware of
what chatrooms (etc) are joined (etc) by which other clients. This causes practical difficulty
in seamlessly switching between devices and/or clients.

2 User Stories
2.1 Device Agility

• When a user subscribes to a publish-subscribe node (presumably via some higher-level
abstraction), other online devices are aware of the new subscription immediately, and
can choose to reflect the new subscription in their UI.

• Not all devices may be capable of handling the particular payload and/or service, and
therefore should signal which payload and/or service types they support.

• The same capability as point 1 should be possible for unsubscribing.

2.2 New Devices
• When a user brings a new device online, it should be able to quickly learn all the user’s
current subscriptions and present them to the user in its UI.

2.3 Offline Capability
• When the device is offline for an extended period (beyond XEP-0198 resumption capa-
bility), it needs to be able to obtain all the events it missed, including when the events
occured.

• It should be able to tell which of these the user is unlikely to have seen on other devices.

• Further, it needs to be able to tell if new subscriptions have been added, or old ones
removed.

2.4 PEP
• A one-way subscription to a user should still allow PEP.

1

3 PROTOCOL

• PEP should work the same way as now - users see filtered notifications about the things
they care about.

3 Protocol
3.1 Advertising Support
3.1.1 Clients

Clients advertise support for this protocol via Service Discovery (XEP-0030) 1 using a Disco
Feature of ’urn:xmpp:pam:0’. This is required for local servers to detect support.

3.1.2 Servers

Servers advertise this support via Service Discovery (XEP-0030) 2 on the user account (eg,
<localpart@domain.tld>), using the same feature of ’urn:xmpp:pam:0’. This is used both by
the local user and also remote pubsub services.

3.2 Subscribing
When a client wishes to subscribe to a node, either on the local server or remotely, using
this protocol it does so by sending an <iq/> of type ”set” to its own account, containing a
pam element, which in turn has a service attribute (the target service jid) and a payload
of a Publish-Subscribe (XEP-0060) 3 subscribe element (as described in Publish-Subscribe
(XEP-0060) 4 §6.1). Example 32 from Publish-Subscribe (XEP-0060) 5 is thus performed in this
protocol as follows:

Listing 1: Client subscribes to a node
<iq type=’set’ id=’sub1’>

<pam xmln=’urn:xmpp:pam:0 ’ jid=’pubsub.shakespeare.lit’>
<subscribe xmlns=’http: // jabber.org/protocol/pubsub ’

node=’princely_musings ’
jid=’francisco@denmark.lit’/>

</pam>
</iq>

Note that because the Publish-Subscribe (XEP-0060) 6 operation is intact within the pam
element, local servers MAY interpret the operation, or MAY forward it verbatim. Note that
1XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.
2XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.
3XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.
4XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.
5XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.
6XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.

2

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html

3 PROTOCOL

the client SHALL always use its own bare jid (eg, <localpart@domain.tld>) within a subscribe,
servers MUST verify this.
Such a request SHALL cause the local server to send a traditional Publish-Subscribe (XEP-0060)
7 request, from the account bare jid, to the remote service.
When the remote service replies, the local server SHALL first notify all joined clients of the
new subscription (described more in #sublist)...

Listing 2: Server notifies about new subscription
<message >

<notify ver=’aocolb ’ service=’pubsub.shakespeare.lit’ xmlns=’
urn:xmpp:pam:0 ’>

<subscription xmlns=’http: // jabber.org/protocol/pubsub ’
node=’princely_musings ’
jid=’francisco@denmark.lit’
subscription=’subscribed ’/>

</notify >
</message >

... and then MUST respond to the original <iq/>. Since the subscription has already been
notified, this is an empty result <iq/>.
If the local server detects an error, it MUST NOT forward the request, and MUST respond with
an <iq/> stanza of type error, which contains an error element which MAY be stamped with
the local server as generator. Thus Example 34 from Publish-Subscribe (XEP-0060) 8 would be
very similar:

Listing 3: An error generated remotely
<iq type=’error ’ id=’sub1’>

<error type=’modify ’ by=’francisco@denmark.lit’>
<bad -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<invalid -jid xmlns=’http: // jabber.org/protocol/pubsub#errors

’/>
</error >

</iq>

If the remote service rejects the subscription request, the local server simply forwards the
response back as an <iq/> of type error, with the remote error copied through. The generator
MUST be set to the remote service if missing. Thus Example 35 from Publish-Subscribe
(XEP-0060) 9 might look as follows:

Listing 4: An error generated remotely

7XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.
8XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.
9XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.

3

https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html

3 PROTOCOL

<iq type=’error ’ id=’sub1’>
<error type=’auth’ by=’pubsub.shakespeare.lit’>

<not -authorized xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<presence -subscription -required xmlns=’http: // jabber.org/

protocol/pubsub#errors ’/>
</error >

</iq>

Clients MAY assume that if the generator is missing, the error is generated by the local server
and not a remote service.

3.3 Unsubscribing
As above.

3.4 Listing Subscriptions
Clients obtain a current listing of the subscriptions, for example on initial connection, by
sending a subscriptions request qualified by the pam namespace. If a client already has the
opaque version identifier cached, it MAY include it within a ”ver” attribute:

Listing 5: Client requests all current subscriptions
<iq type=’get’ id=’subscriptions1 ’>

<subscriptions xml=’urn:xmpp:pam:0 ’ ver=’asdvcjkasdjb ’>
</iq>

The local server responds with either a response containing a subscription list (such as this,
similar to Publish-Subscribe (XEP-0060) 10 Example 21):

Listing 6: Complete subscription list
<iq type=’result ’ id=’subscription1 ’>

<subscriptions xml=’urn:xmpp:pam:0 ’ ver=’kjlsadhfsd ’>
<subscription service=’pubsub.shakespeare.lit’ node=’node1 ’

jid=’francisco@denmark.lit’ subscription=’subscribed ’/>
<subscription service=’pubsub.marlowe.lit’ node=’node2 ’ jid=

’francisco@denmark.lit’ subscription=’subscribed ’/>
<subscription service=’pubsub.marlowe.lit’ node=’node5 ’ jid=

’francisco@denmark.lit’ subscription=’unconfigured ’/>
<subscription service=’pubsub.shakespeare.lit’ node=’node6 ’

jid=’francisco@denmark.lit’ subscription=’subscribed ’
subid=’123-abc’/>

10XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.

4

https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html

4 SECURITY CONSIDERATIONS

<subscription service=’pubsub.shakespeare.lit’ node=’node6 ’
jid=’francisco@denmark.lit’ subscription=’subscribed ’
subid=’004-yyy’/>

</subscriptions >
</iq>

Alternately, a server MAY - if the client has supplied an opaque version identifier - send a
sequence of <notify> elements followed by an empty <iq/> result.
Clients MAY persistently store the last ”ver” attribute seen from either the <subscriptions>
response or the last <notify>, whichever is later. This can then be used to minimize the
volume of subscription data transferred during resync.

3.5 Auto Subscriptions
Servers need to subscribe to remote PEP services explicitly those nodes which are of interest.
Interest needs to be detirmined by the client issuing a request; but this implies that servers
would gradually acrue any node type which the user has had a capable client at any time.
Perhaps timing out node types which have not been requested for over a certain period?
Clients can use +notify to handle auto-subscriptions between clients and their server.
Servers receiving +notify from accounts known to support this protocol ignore them.

3.6 Filtering
Clients filter subscriptions using a specific stanza (iq, probably), containing a list of node
names. This can be used instead of the odler +notify (which is broadcast).

3.7 Interaction with MAM
We probably want to say that events are now archived by MAM, but this may imply that
clients need to filter out such events (or explicitly include them). Maybe the mask above
affects MAM queries?

4 Security Considerations
I have literally no idea. I don’t think anything new is introduced that couldn’t be discovered
by traffic monitoring, although it collects and collates information that previously would not
have been so readily available.

5

6 IANA CONSIDERATIONS

5 XMPP Registrar Considerations
On publication of this specification, the XMPP Registrar will dance a little jig to the tune of
the traditional hornpipe with a tea-cosy upon his or her head.

6 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
11.

11The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

6

http://www.iana.org/
http://www.iana.org/

	Introduction
	User Stories
	Device Agility
	New Devices
	Offline Capability
	PEP

	Protocol
	Advertising Support
	Clients
	Servers

	Subscribing
	Unsubscribing
	Listing Subscriptions
	Auto Subscriptions
	Filtering
	Interaction with MAM

	Security Considerations
	XMPP Registrar Considerations
	IANA Considerations

