
XEP-0389: Extensible In-Band Registration

SamWhited
mailto:sam@samwhited.com
xmpp:sam@samwhited.com

https://blog.samwhited.com/

2020-11-17
Version 0.6.0

Status Type Short Name
Experimental Standards Track ibr2

This specification defines an XMPP protocol extension for in-band registration with instant messaging
servers and other services with which an XMPP entity may initiate a stream. It aims to improve upon the
state of the art and replace XEP-0077: In-Band Registration by allowing multi-factor registration mecha-
nisms, and account recovery.

mailto:sam@samwhited.com
xmpp:sam@samwhited.com
https://blog.samwhited.com/

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Requirements 1

3 Glossary 1

4 Use Cases 2

5 Discovering Support 2

6 Flows 2
6.1 Stream Feature . 3
6.2 Retrieving the Flows . 4
6.3 Selecting a Flow . 5
6.4 Issuing Challenges . 6
6.5 Completing Registration or Recovery . 7

7 Challenges 8
7.1 Data Form . 8
7.2 Out of Band Data . 10
7.3 SASL . 10

8 Internationalization Considerations 11

9 Security Considerations 11

10 IANA Considerations 12

11 XMPP Registrar Considerations 12
11.1 Protocol Namespaces . 12
11.2 IBR Challenges Registry . 13
11.3 Challenge Types . 13
11.4 Namespace Versioning . 14

3 GLOSSARY

1 Introduction
Historically, registering with an XMPP service has been difficult. Each server either used
customized out-of-band registration mechanisms such as web forms which were difficult
to discover, or they used In-Band Registration (XEP-0077) 1 which could easily be abused
by spammers to register large numbers of accounts and which allowed for only limited
extensibility.
To solve these issues this specification provides a new in-band registration protocol that al-
lows servers to present the user with a series of ”challenges”. This allows for both multi-stage
proof-of-possession registration flows and spam prevention mechanisms such as proof-of-
work functions.

2 Requirements
• The server MUST be able to present multiple challenges to the client.

• The server SHOULD be able reduce account registration spam.

• The server MAY present a challenge that requires the user to complete a step out-of-
band.

• A client SHOULD be able to register an account without requiring the user to leave the
client.

• A client MUST be able to use the same mechanism to register an account and to recover
a forgotten password (subject to server policy).

• A client MUST be able to register with a server as well as external components.

3 Glossary
Challenge A challenge is an action taken during account registration or recovery that re-

quires a response. For example, displaying a form to a user or asking for a token.

Challenge Type The type of a challenge is a unique string that identifies the type of payload
that can be expected. For example, a challenge element with type ”jabber:x:data” can
be expected to contain a data form. Challenge types must be defined and registered in
the challenge types registry. When defining a challenge it is often convenient to reuse
an XML namespace from the document defining the challenge.

Flow A flow, or more specifically a ”registration flow” or ”recovery flow”, is a collection of
challenges that together can be used to gather enough information to register a new
account or recover an existing account.

1XEP-0077: In-Band Registration <https://xmpp.org/extensions/xep-0077.html>.

1

https://xmpp.org/extensions/xep-0077.html
https://xmpp.org/extensions/xep-0077.html

6 FLOWS

4 Use Cases
• As a server operator, I want to prevent individual spammers from registering many ac-
counts so I require registrants to perform a proof-of-work function before registration
is completed.

• As a server operator I want to prevent bots from registering accounts so I require that
registrants submit a form which requires user interaction.

• As a user I do not want to lose access to my account if I forget my password, so I provide
my email and telephone number in response to the servers data form.

• As a server operator I donotwant users to accidentally add an incorrect recovery address
so I send an email with a unique link to the indicated account and require that they click
the link before registration can continue.

• As a server operator I want to prevent SPIM using a proof-of-possession protocol so I
present the user with a form asking for a mobile phone number and then send a verifi-
cation code to that number via SMS and show another form requesting the verification
code.

5 Discovering Support
Clients, servers, and other services such as components that support Extensible IBR MUST
advertise the fact by including a feature of ”urn::xmpp:register:0” in response to Service
Discovery (XEP-0030) 2 information requests and in their Entity Capabilities (XEP-0115) 3

profiles.

Listing 1: Disco info response
<query xmlns=’http: // jabber.org/protocol/disco#info’>…

<feature var=’urn:xmpp:register:0 ’ />…

</query >

6 Flows
Registration or recovery is completed after responding to a series of challenges issued by
the server. Challenges are grouped in to ”flows”, a number of challenges that may be issued
together to complete an action. For example, a registration flow might be created that issues
a data form challenge which will be shown to the user to gather information, then issues a

2XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.
3XEP-0115: Entity Capabilities <https://xmpp.org/extensions/xep-0115.html>.

2

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0115.html

6 FLOWS

second data form challenge to let the user enter a confirmation code that was sent to their
email.

6.1 Stream Feature
If a server supports registering for or recovering an account using Extensible IBR during
stream negotiation, it MUST inform the connecting client when returning stream features
during the stream negotiation process. This is done by including a <register/> element,
qualified by the ’urn:xmpp:register:0’ namespace for account registration, or a <recovery/>
element qualified by the same namespace for account recovery. The register and recovery
features are always voluntary-to-negotiate. The registration and recovery features MUST
NOT be advertised before a security layer has been negotiated, eg. using direct TLS or
opportunistic TLS. They SHOULD be advertised at the same time as the SASL authentication
feature, meaning that after registration or recovery is completed SASL authentication can
proceed.
For recovery or registration, the server MUST include a list of all challenges which the client
may receive during the course of registering or recovering an account. These are grouped
into ”flows” and let the client pick a registration workflow that only contains challenges
which the client supports. Each <flow/> element MUST have a unique ”id” attribute which
is used by the client to identify the flow being selected. The id attribute is only used during
this particular flow negotiation and has no meaning after a flow has been selected. Flows
must also have at least one <name/> element containing a short, human readable description
of the flow. If multiple <name/> elements are present they MUST have unique values for
the ”xml:lang” attribute. Clients MAY use the name element to show the different flows
to the user and ask them to pick between them. Each flow element must also contain an
unordered set of <challenge/> elements representing the various challenge types that may be
required to complete the registration or recovery flow. Each <challenge/> element contains
a ”type” attribute that uniquely identifies the challenge for the purpose of determining if it
is supported. If a flow would offer the same challenge twice (eg. two data forms asking for
different data), the challenge SHOULD only be listed once in the flow element.
For example, a server may advertise a ”Verify with SMS” flow and a ”Verify by Phone Call”
flow that both show a data form asking for a phone number and then a second data form
asking for a token provided to the user in a text message or phone call depending on which
flow the user selects.

Listing 2: Host Advertises Stream Features
<stream:features >

<mechanisms xmlns=’urn:xmpp:sasl:0 ’>
<mechanism >EXTERNAL </mechanism >
<mechanism >SCRAM -SHA -1-PLUS</mechanism >
<mechanism >SCRAM -SHA -1</mechanism >
<mechanism >PLAIN </mechanism >

</mechanisms >

3

6 FLOWS

<register xmlns=’urn:xmpp:register:0 ’>
<flow id=’0’>

<name>Verify with SMS</name>
<challenge type=’jabber:x:data ’/>

</flow>
<flow id=’1’>

<name>Verify by Phone Call</name>
<challenge type=’jabber:x:data ’/>

</flow>
<flow id=’2’>

<name>Verify with the web</name>
<challenge type=’jabber:x:data ’/>
<challenge type=’jabber:x:oob ’/>

</flow>
</register >
<recovery xmlns=’urn:xmpp:register:0 ’>

<flow id=’0’>
<name>Visit Password Recovery Site</name>
<challenge type=’jabber:x:oob ’/>

</flow>
</recovery >

</stream:features >

Just because a challenge type is listed by the server in the initial flow element does not mean
that it will be issued by the server. Servers MAY choose to issue more or fewer challenges
based on the result of previous challenges and may not use every challenge type listed in the
original flow.

6.2 Retrieving the Flows
Registration or recovery may also be completed after stream neogtiation if server policy
allows it.
To find what flows an entity provides (if any) after stream negotiation is complete the
requester can send an IQ of type ”get” containing a <register> or <recovery> element qualified
by the ”urn:xmpp:register:0” namespace.

Listing 3: Registration flows query
<iq type=’get’>

<register xmlns=’urn:xmpp:register:0 ’/>
</iq>

When responding to a query for registration or recovery flows the list of challenges MUST
be included just as it would be during stream feature negotiation. That is, a ”register” or
”recovery” element containing a list of flows, each with an id, containing a name and a list of
challenges.

4

6 FLOWS

Listing 4: Registration flows results
<iq type=’result ’>

<register xmlns=’urn:xmpp:register:0 ’>
<flow id=’0’>

<name>Verify with SMS</name>
<challenge type=’jabber:x:data ’/>

</flow>
<flow id=’1’>

<name>Verify by Phone Call</name>
<challenge type=’jabber:x:data ’/>

</flow>
<flow id=’2’>

<name>Verify with the web</name>
<challenge type=’jabber:x:data ’/>
<challenge type=’jabber:x:oob ’/>

</flow>
</register >

</iq>

If an entity supports issuing challenges but does not provide any flows after stream negotia-
tion is complete it MUST respond with an empty list. Similarly, an entity that supports this
specification but does not support issuing challenges itself (for example, a client that only
supports receiving challenges) it MUST respond successfully with an empty list.

Listing 5: Empty registration flows results
<iq type=’result ’>

<register xmlns=’urn:xmpp:register:0 ’/>
</iq>

6.3 Selecting a Flow
A client selects the registration or recovery feature for negotiation by replying with an
element of the same name and namespace. The element MUST contain a <flow> element that
MUST have an ”id” attribute matching one of the flows advertised by the server. For example,
to select the ”Verify by Phone Call” registration flow from the previous example, the client
would reply with:

Listing 6: Client selects a recovery flow
<register xmlns=’urn:xmpp:register:0 ’>

<flow id=’1’/>
</register >

If during stream initialization the client attempts to select a flow that does not match one of
the flows sent by the server, the server MUST respond with an ”undefined-condition” stream
error containing an ”invalid-flow” application error qualified by the ’urn:xmpp:register:0’

5

6 FLOWS

namespace.

Listing 7: Server responds to an invalid selection during stream negotiation
<stream:error >

<undefined -condition xmlns=’urn:ietf:params:xml:ns:xmpp -streams ’/>
<invalid -flow xmlns=’urn:xmpp:register:0 ’/>

</stream:error >
</stream:stream >

If the client is initiating registration or recovery after a stream has already been initiated it
uses the same registration element wrapped in an IQ of type ”set”.

Listing 8: Client selects a recovery flow after stream negotiation
<iq type=’set’ id=’foo’>

<recovery xmlns=’urn:xmpp:register:0 ’>
<flow id=’0’/>

</recovery >
</iq>

If the client attempts to select a flow that does not match one of the flows sent by the server
in response to an IQ after stream initialization the server MUST respond with a stanza error
of type ”item-not-found”.

Listing 9: Server responds to an invalid selection after stream negotiation
<iq type=’error ’>

<error type=’cancel ’>
<item -not -found xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

6.4 Issuing Challenges
If a valid flow is selected by the client the server then replies to the IQ or feature selection
with a challenge. If replying to an IQ, the challenge must be wrapped in an IQ of type ”result”.
Challenges take the form of a <challenge/> element qualified by the ’urn:xmpp:register:0’
namespace with a ’type’ attribute that uniquely identifies the type of payload a client might
expect the element to contain.

Listing 10: Server issues a challenge
<challenge xmlns=’urn:xmpp:register:0 ’

type=’urn:example:challenge ’>
<example xmlns=’urn:example:challenge ’>Payload </example >

</challenge >

6

6 FLOWS

After a challenge is received, the client replies to the challenge by sending a <response/>
element qualified by the ’urn:xmpp:register:0’ namespace or a cancellation as defined later in
this document. If the client sends a response, it MUST also include the payload corresponding
to the challenges ’type’ element (which may be empty).

Listing 11: Client responds to a challenge
<response xmlns=’urn:xmpp:register:0 ’>

<result xmlns=’urn:example:challenge ’>Example Response </result >
</response >

After a response is received, if the server needs more information it MAY issue another
challenge. For example, if the user has entered their email in response to a challenge, the
server might send an email and then issue another challenge asking for the unique code sent
in the email.

6.5 Completing Registration or Recovery
If after receiving a challenge or response a client or server does not wish to continue
registration or recovery, it may send an empty <cancel/> element qualified by the
’urn:xmpp:register:0’ namespace. This informs the client or server that registration is
complete. This is the same as submitting a data form of type ’cancel’ in response to a data
form challenge.

Listing 12: User Cancels Registration or Recovery
<cancel xmlns=’urn:xmpp:register:0 ’/>

If the IQ based registration or recovery flow is being used and the server wishes to cancel the
flow, it MAY respond to any IQ with the cancel element and type ”result”.

Listing 13: Client or server cancels request
<iq type=’result ’ id=’bar’>

<cancel xmlns=’urn:xmpp:register:0 ’/>
</iq>

A server may also issue a cancelation IQ with type ’set’ if it wishes to cancel after a request/re-
sponse has been received (ie. when there is no existing IQ to respond to).

Listing 14: Server cancels flow
<iq type=’set’ id=’bar’>

<cancel xmlns=’urn:xmpp:register:0 ’/>
</iq>

7

7 CHALLENGES

If the client successfully completes all required challenges during stream negotiation the
server MUST return a <success/> element qualified by the ’urn:xmpp:register:0’ namespace,
at which point it may continue with the stream negotiation process. The success element
MUST contain a <jid> element containing the bare JID as registered or recovered by the server
and a <username> element containing the simple user name for use with SASL (normally this
will be the same as the localpart of the JID).

Listing 15: Server indicates success during steam negotiation
<success xmlns=’urn:xmpp:register:0 ’>

<jid>mercutio@example.net</jid>
<username >mercutio </username >

</success >

If the IQ based flow is being used and the server wishes to indicate success after a challenge
has been completed it sends an IQ of type ”set” containing the <success/> element.

Listing 16: Server indicates success after stream negotiation
<iq type=’set’ id=’bar’>

<success xmlns=’urn:xmpp:register:0 ’>
<jid>mercutio@example.net</jid>
<username >mercutio </username >

</success >
</iq>

7 Challenges
This document defines several challenges that use existing technologies.

7.1 Data Form
Challenges of type ’jabber:x:data’ MUST always contain a data form (an ’x’ element with type
’form’) as defined by Data Forms (XEP-0004) 4.

Listing 17: Server issues a data form challenge
<challenge xmlns=’urn:xmpp:register:0 ’

type=’jabber:x:data ’>
<x xmlns=’jabber:x:data ’ type=’form’>

<title >Chat Registration </title >
<instructions >

Please provide the following information

4XEP-0004: Data Forms <https://xmpp.org/extensions/xep-0004.html>.

8

https://xmpp.org/extensions/xep-0004.html
https://xmpp.org/extensions/xep-0004.html

7 CHALLENGES

to sign up to view our chat rooms!
</instructions >
<field type=’hidden ’ var=’FORM_TYPE ’>

<value >urn:xmpp:register:0 </value >
</field >
<field type=’text -single ’ label=’Given␣Name’ var=’first ’/>
<field type=’text -single ’ label=’Family␣Name’ var=’last’/>
<field type=’text -single ’ label=’Nickname ’ var=’nick’>

<required/>
</field >
<field type=’text -single ’ label=’Recovery␣Email␣Address ’ var=’

email ’>
<required/>

</field >
</x>

</challenge >

The response to a ”jabber:x:data” challenge MUST be a form submission (an ’x’ element of
type ’submit’). For instance, to reply to the data form challenge from the previous example a
client might send:

Listing 18: Client submits a data form in response to the challenge
<response xmlns=’urn:xmpp:register:0 ’>

<x xmlns=’jabber:x:data ’ type=’submit ’>
<field type=’hidden ’ var=’FORM_TYPE ’>

<value >urn:xmpp:register:0 </value >
</field >
<field type=’text -single ’ label=’Given␣Name’ var=’first ’>

<value >Juliet </value >
</field >
<field type=’text -single ’ label=’Family␣Name’ var=’last’>

<value >Capulet </value >
</field >
<field type=’text -single ’ label=’Nickname ’ var=’nick’>

<value >Jule</value >
</field >
<field type=’text -single ’ label=’Recovery␣Email␣Address ’ var=’

email ’>
<value >juliet@capulet.com</value >

</field >
</x>

</response >

9

7 CHALLENGES

7.2 Out of Band Data
Challenges of type ”jabber:x:oob” MUST contain an <x/> element qualified by the ”jab-
ber:x:oob” namespace as defined in Out-of-Band Data (XEP-0066) 5.

Listing 19: Server issues an OOB challenge
<challenge xmlns=’urn:xmpp:register:0 ’

type=’jabber:x:oob ’>
<x xmlns=’jabber:x:oob ’>

<url>http: // example.net/login?token=foo</url>
</x>

</challenge >

If the client sends a response to the OOB challenge it MUST be empty.

Listing 20: Client acknowledges the OOB challenge
<response xmlns=’urn:xmpp:register:0 ’/>

7.3 SASL
Servers can support changing passwords by providing a reset flow containing a SASL chal-
lenge. The SASL challenge re-uses the SASL profile from RFC 6120 6. The server begins by
sending the mechanisms list, and the client responds by selecting a mechanism and possibly
including initial data. Each step in the SASL process is issued as a new SASL challenge.

Listing 21: SASL challenge flow
<!-{}- Server -{}->
<challenge xmlns=’urn:xmpp:register:0 ’

type=’urn:ietf:params:xml:ns:xmpp -sasl’>
<mechanisms xmlns=’urn:ietf:params:xml:ns:xmpp -sasl’>

<mechanism >EXTERNAL </mechanism >
<mechanism >SCRAM -SHA -1-PLUS</mechanism >
<mechanism >SCRAM -SHA -1</mechanism >
<mechanism >PLAIN </mechanism >

</mechanisms >
</challenge >

<!-{}- Client -{}->
<response xmlns=’urn:xmpp:register:0 ’>

<auth xmlns=”urn:ietf:params:xml:ns:xmpp -sasl”
mechanism=”SCRAM -SHA -1”>

biwsbj1qdWxpZXQscj1vTXNUQUF3QUFBQU1BQUFBTlAwVEFBQUFBQUJQVTBBQQ ==

5XEP-0066: Out of Band Data <https://xmpp.org/extensions/xep-0066.html>.
6RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.

10

https://xmpp.org/extensions/xep-0066.html
http://tools.ietf.org/html/rfc6120
https://xmpp.org/extensions/xep-0066.html
http://tools.ietf.org/html/rfc6120

9 SECURITY CONSIDERATIONS

</auth>
</response >

<!-{}- Server -{}->
<challenge xmlns=’urn:xmpp:register:0 ’

type=’urn:ietf:params:xml:ns:xmpp -sasl’>
<challenge xmlns=”urn:ietf:params:xml:ns:xmpp -sasl”>

cj1vTXNUQUF3QUFBQU1BQUFBTlAwVEFBQUFBQUJQVTBBQWUxMjQ2OTViLTY5Y
TktNGRlNi05YzMwLWI1MWIzODA4YzU5ZSxzPU5qaGtZVE0wTURndE5HWTBaaT
AwTmpkbUxUa3hNbVV0TkRsbU5UTm1ORE5rTURNeixpPTQwOTY=

</challenge >
</challenge >

<!-{}- Client -{}->
<response xmlns=’urn:xmpp:register:0 ’>

<response xmlns=”urn:ietf:params:xml:ns:xmpp -sasl”>
Yz1iaXdzLHI9b01zVEFBd0FBQUFNQUFBQU5QMFRBQUFBQUFCUFUwQUFlMTI0N
jk1Yi02OWE5LTRkZTYtOWMzMC1iNTFiMzgwOGM1OWUscD1VQTU3dE0vU3ZwQV
RCa0gyRlhzMFdEWHZKWXc9

</response >
</response >

8 Internationalization Considerations
When providing instructions in a data form, or in the name element of a registration or
recovery flow, the server SHOULD use the language specified in the XML stream’s current
xml:lang, or the closest language for which the server has a translation (eg. based on mutual
intelligibility between scripts and languages).
For more information about language tags and matching, see BCP 47 7.

9 Security Considerations
Servers that allow in-band registration need to take measures to prevent abuse. Common
techniques to prevent spam registrations include displaying CAPTCHAs or requiring proof-
of-possession of a valid email address or telephone number by sending a unique code (e.g.
an HMAC that can later be verified as having originated at the server) to the users email and
requiring that they enter the code before continuing. Servers that do not take such measures
risk being black listed by other servers in the network.

7BCP 47: Tags for Identifying Languages <http://tools.ietf.org/html/bcp47>.

11

http://tools.ietf.org/html/bcp47
http://tools.ietf.org/html/bcp47

11 XMPP REGISTRAR CONSIDERATIONS

10 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
8.

11 XMPP Registrar Considerations
11.1 Protocol Namespaces
This specification defines the following XML namespace:

• urn:xmpp:register:0

Upon advancement of this specification from a status of Experimental to a status
of Draft, the XMPP Registrar 9 shall add the foregoing namespace to the registries
located at <https://xmpp.org/registrar/stream-features.html>, and <https:
//xmpp.org/registrar/disco-features.html> as described in Section 4 of XMPP Reg-
istrar Function (XEP-0053) 10.

<var>
<name>urn:xmpp:register:0 </name>
<desc>Support for in band registration and password reset.</desc>
<doc>&xep0389;</doc>

</var>

<feature >
<ns>urn:xmpp:register:0 </ns>
<name>Extensible In-Band Registration </name>
<element >register </element >
<desc>Support for in band registration and password reset.</desc>
<doc>&xep0389;</doc>

</feature >

The XMPP Registrar 11 shall also add the foregoing namespace to the Jabber/XMPP Protocol
Namespaces Registry located at <https://xmpp.org/registrar/namespaces.html>. Upon
8The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

9The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

10XEP-0053: XMPP Registrar Function <https://xmpp.org/extensions/xep-0053.html>.
11The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in

the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

12

http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/registrar/stream-features.html
https://xmpp.org/registrar/disco-features.html
https://xmpp.org/registrar/disco-features.html
https://xmpp.org/extensions/xep-0053.html
https://xmpp.org/extensions/xep-0053.html
https://xmpp.org/registrar/
https://xmpp.org/registrar/namespaces.html
http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/extensions/xep-0053.html
https://xmpp.org/registrar/

11 XMPP REGISTRAR CONSIDERATIONS

advancement of this specification from a status of Experimental to a status of Draft, the XMPP
Registrar 12 shall remove the provisional status from this registry entry.

<ns>
<name>urn:xmpp:register:0 </name>
<doc>&xep0389;</doc>
<status >provisional </status >

</ns>

11.2 IBR Challenges Registry
The XMPP Registrar shall maintain a registry of IBR challenges. Challenges defined within the
XEP series MUST be registered with the XMPP Registrar.
In order to submit new values to this registry, the registrant shall define an XML fragment of
the following form and either include it in the relevant XMPP Extension Protocol or send it to
the email address <registrar@xmpp.org>:

<challenge >
<type>A name that uniquely identifies the challenge.</type>
<desc>A natural -language summary of the challenge.</desc>
<doc>

The document (or documents) in which the IBR challenge and its
payload are

defined.
</doc>

</challenge >

For an example registration, see the next section.

11.3 Challenge Types
This specification defines the following IBR challenge:

• jabber:x:data

• jabber:x:oob

Upon advancement of this specification from a status of Experimental to a status of Draft,
the XMPP Registrar 13 shall add the following definitions to the IBR challenges registry, as
12The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in

the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

13The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

13

https://xmpp.org/registrar/
https://xmpp.org/registrar/
https://xmpp.org/registrar/
https://xmpp.org/registrar/
https://xmpp.org/registrar/

11 XMPP REGISTRAR CONSIDERATIONS

described in this document:

<challenge >
<type>jabber:x:data </type>
<desc>Requests that the client fill out an XEP -0004 data form.</desc

>
<doc>&xep0389;, &xep0004;</doc>

</challenge >

<challenge >
<type>jabber:x:oob </type>
<desc>Requests that the client execute a URI.</desc>
<doc>&xep0066;</doc>

</challenge >

11.4 Namespace Versioning
If the protocol defined in this specification undergoes a revision that is not fully backwards-
compatible with an older version, the XMPP Registrar shall increment the protocol version
number found at the end of the XML namespaces defined herein, as described in Section 4 of
XEP-0053.

14

	Introduction
	Requirements
	Glossary
	Use Cases
	Discovering Support
	Flows
	Stream Feature
	Retrieving the Flows
	Selecting a Flow
	Issuing Challenges
	Completing Registration or Recovery

	Challenges
	Data Form
	Out of Band Data
	SASL

	Internationalization Considerations
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	IBR Challenges Registry
	Challenge Types
	Namespace Versioning

