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This protocol extension for XEP-0045 Multi User Chat allows clients to check whether they are still
joined to a chatroom.
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Legal

Copyright

This XMPP Extension Protocol is copyright © 1999 - 2024 by the XMPP Standards Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
"Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

## NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https: //xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).
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1 Introduction

The Multi-User Chat (XEP-0045) ! protocol was not designed to handle s2s interruptions or
message loss well. Rather often, the restart of a server or a component causes a client to
believe that it is still joined to a given chatroom, while the chatroom service does not know of
this occupant.

Existing approaches for re-synchronization are either inefficient (presence updates and
“silent” messages are reflected to all occupants, totalling to O(N?) stanzas per time unit),
or mask message / presence losses (the implicit join performed via the deprecated GC1.0
protocol).

This specification aims to provide the most efficient, albeit not the most elegant, way for
clients to periodically check whether they are still joined to a chatroom. However, it can not
ensure that a client remains joined to a room without any interruptions.

2 Requirements

This specification only makes sense in the context of Multi-User Chat (XEP-0045) ? chatrooms.
It makes use of XMPP Ping (XEP-0199) 3 to perform periodic self-pings.

Server support for this extension is optional, but will significantly improve the reliability
with Multi-Session Nicks and mobile clients.

3 Client Self-Presence Check

A typical connection between a client and a Multi-User-Chatroom (MUC) goes through
the client-to-server link, possibly a server-to-server link and a typically local server-to-
component link. If one of the involved servers or the MUC component is restarted, or one
of the links is disturbed for some time, this can lead to the removal of some or all occupants
from the affected MUCs, without the clients being informed.

To an occupant, this looks like the MUC is silent (there is no chat activity and no presence
changes), making it hard to realize that the connection was interrupted.

To prevent the bad usability effect (message loss, lack of reaction from people in a chatroom),
a client needs to actively check whether it is still joined to a MUC.

3.1 Possible Protocol Approaches

There are multiple alternative approaches for a client to test whether it is still joined to a MUC:

'XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>,
2XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>.
$XEP-0199: XMPP Ping <https://xmpp.org/extensions/xep-0199.html>.


https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0199.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0199.html
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1. Silent message (e.g. Chat State Notifications (XEP-0085) 4): this message will be re-
flected to all MUC occupants, causing unwanted traffic and potentially waking up mobile
devices without reason. If implemented by all clients, this will result in O(N?) messages
to the MUC.

2. Presence update: if the MUC service implements the legacy GC1.0 protocol, this will be
treated as a join attempt, and the MUC will return the full list of occupants and full room
history. The user’s client will however miss partial history (other occupants leaving,
potentially also messages), and this has the same drawbacks as the first solution.

3. Private message to self: the client can send a MUC private message to itself. However,
not all MUCs support / allow private messages, and there is no way to differentiate that
from the error responses.

4. Private IQ to self: the client can send an IQ to its own occupant JID. MUCs typically do
not forbid those, and reflect the IQ request to the client (or another client of the same
user). Once that client responds to the reflected IQ, the response is delivered to the
initiating client as a sign of still being joined.

5. Dedicated MUC IQ: a new type of 1Q can be deployed to let the client explicitly check
whether it is still joined to a MUC. However, this needs to be supported by the server,
and the client needs to implement a fallback solution.

The private IQ is the most robust and traffic-efficient solution, and it does not rely on server
support. The XMPP Ping (XEP-0199) ° protocol is appropriate to use for this use case.

3.2 Performing a Self-Ping

After an adequate amount of silence from a given MUC (e.g. 15 minutes), or from all MUCs
from a given service domain, a client should initiate a self-ping. If Juliet is joined as JuliC in
the characters@chat.shakespeare.lit MUC, her client will send the following ping IQ:

Listing 1: Self-Ping by Juliet’s Client

<ig from=’juliet@capulet.lit/client’ id=’s2cl1’ type=’get’
to=’characters@chat.shakespeare.lit/JuliC’>
<ping xmlns=’urn:xmpp:ping’/>
</iqg>

If Juliet’s client is not joined, the MUC service will respond with a <not-acceptable> error.
Thus, her client can automatically attempt a rejoin.

“XEP-0085: Chat State Notifications <https: //xmpp.org/extensions/xep-0085.html>,
SXEP-0199: XMPP Ping <https://xmpp.org/extensions/xep-0199.html>.



https://xmpp.org/extensions/xep-0085.html
https://xmpp.org/extensions/xep-0199.html
https://xmpp.org/extensions/xep-0085.html
https://xmpp.org/extensions/xep-0199.html
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Listing 2: Server Response to a Non-Occupant

<ig from=’characters@chat.shakespeare.lit/JuliC’ id=’s2cl1’ type=’error
to=’juliet@capulet.lit/client’ >
<error type="”cancel” by="characters@chat.shakespeare.lit”>
<not-acceptable xmlns="urn:ietf:params:xml:ns:xmpp-stanzas” />
</error>
</ig>

If her client is joined, the IQ request will be forwarded to any one of Juliet’s joined clients.

Listing 3: Server Reflection of Ping

<igq from=’characters@chat.shakespeare.lit/JuliC’ id=’c@ffee-s2c1’ type
=’get’
to=’juliet@capulet.lit/somerandomclient’ >
<ping xmlns=’urn:xmpp:ping’/>
</iqg>

Depending on the other client implementation and its connection status, the 1Q will be
responded to eventually, in one of these ways, as delivered to the "client” resource:

+ Successful IQ response: the client is still joined.

+ Error (<service-unavailable> or <feature-not-implemented>): the client is joined, but
the pinged client does not implement XMPP Ping (XEP-0199) °.

* Error (<item-not-found>): the client is joined, but the occupant just changed their
name (e.g. initiated by a different client).

+ Error (<remote-server-not-found> or <remote-server-timeout>): the remote server
is unreachable for unspecified reasons; this can be a temporary network failure or a
server outage. No decision can be made based on this; Treat like a timeout (see below).

+ Any other error’: the client is probably not joined any more. It should perform a re-
join.

+ Timeout (no response): the MUC service (or another client) is unreachable. The client
may indicate the status to the user and re-attempt the self-ping after some timeout, until
it receives either an error or a success response.

SXEP-0199: XMPP Ping <https://xmpp.org/extensions/xep-0199.html>,
"Different service implementations will send different responses to a client that’s not joined. The recommended
error code is <not-acceptable>, however some servers will respond with <not-allowed> or <bad-request> as well.



https://xmpp.org/extensions/xep-0199.html
https://xmpp.org/extensions/xep-0199.html
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3.3 Server Optimization

The normal routing rules of the self-ping impose two round-trips: first the initial ping from
the client to the MUC, then the reflection of the ping and its response (possibly to another
client), and finally the response to the initial IQ. If the other client is experiencing network
connectivity issues, which is often the case with mobile devices, the ping request might never
be responded to.

Therefore, a MUC service supporting this protocol may directly respond to a occupant’s
Ping request to the occupant’s own nickname, as opposed to routing it to any of the
occupant’s clients. A service implementing this optimization needs to advertise the
http://jabber.org/protocol/muc#self-ping-optimization feature in the Service Discovery
(XEP-0030) 8 disco#info response on the individual MUC room JIDs, and it MUST respond to a
self-ping request as follows:

« Successful IQ response: the client is joined to the MUC.

« Error (<not-acceptable>): the client is not joined to the MUC.

Listing 4: MUC Service Advertises Self-Ping Optimization

<iq from=’darkcave@chat.shakespeare.lit’
type=’result’>
<query xmlns=’http://jabber.org/protocol/disco#info’>
<I={3- ... {3
<feature var='http://jabber.org/protocol/muc#self-ping-
optimization’/>
</query>
</ig>

4 Implementation Notes

In Multi-Session-Nick scenarios, where multiple clients of the same user are joined as the
same occupant, it is possible that another client initiates a nickname change while a ping
request is pending. In that case, the ping might be responded to with <item-not-found>.

A client should not perform a self-ping after initiating a nickname change, and before receiv-
ing the response to the nickname change from the service, as it is not yet clear whether the
new nickname will be accepted.

If a client session is in hibernation (Stream Management (XEP-0198) °), the client should defer
sending of self-ping requests until it is reconnected and re-authenticated.

8XEP—0030:Service]Discovery<https://xmpp.org/extensions/xep—0®30.html>.
9XEP-0198:StreamManagement<https://xmpp.org/extensions/xep—0198.htm1>



https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0198.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0198.html

/8 XML SCHEMA

5 Security Considerations

A MUC service implementation should not allow a non-occupant to obtain information about
occupants. This is however true irregardless of implementing this specification.

6 IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
10

7 XMPP Registrar Considerations

Include “http://jabber.org/protocol/muc#self-ping-optimization” as a valid feature in the
Registry of Features.

<var>
<name>http://jabber.org/protocol/muc#self-ping-optimization</name>
<desc>Support for the MUC self-ping optimization</desc>
<doc>XEP-0410</doc>

</var>

8 XML Schema

This document does not define any new XML structure requiring a schema.

The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>



http://www.iana.org/
http://www.iana.org/
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