
XEP-0420: Stanza Content Encryption

Paul Schaub
mailto:vanitasvitae@riseup.net
xmpp:vanitasvitae@jabberhead.tk

2021-11-18
Version 0.4.1

Status Type Short Name
Experimental Standards Track SCE

The Stanza Content Encryption (SCE) protocol is intended as away to allow clients to securely exchange
arbitrary extension elements using different end-to-end encryption schemes.

mailto:vanitasvitae@riseup.net
xmpp:vanitasvitae@jabberhead.tk

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Requirements 1

3 Glossary 1

4 Affix Elements 2

5 Motivation 3

6 Use Cases 4
6.1 Use in <message/> stanzas . 4
6.2 Use in <iq/> stanzas . 5

7 Sending an encrypted stanza 7

8 Receiving an encrypted stanza 8

9 Server-processed Elements 8

10 Business Rules 11

11 Implementation Notes 12

12 Security Considerations 12
12.1 Encryption Profiles . 12

13 XMPP Registrar Considerations 13

14 XML Schema 13

15 Acknowledgements 13

3 GLOSSARY

1 Introduction
There is a number of different end-to-end encryption mechanisms that can be used to secure
user communication against unauthorized access from malicious third parties. Popular
examples for this are OMEMO Encryption (XEP-0384) 1 and OpenPGP for XMPP (XEP-0373) 2.
While the latter allows for encryption of arbitrary extension elements, protocols such as
OMEMO Encryption (XEP-0384) 3 are limited to only encrypt the body of a message. This
approach is not very flexible and prevents the combined usagewith XMPP extension protocols
such as Stateless Inline Media Sharing (XEP-0385) 4 or Last Message Correction (XEP-0308) 5 as
their extension elements cannot be included in the encrypted part of the message, therefore
leaking information about the message content.
This extension protocol proposes a solution to aforementioned issues by generalizing the
OpenPGP Content Elements (eg. <signcrypt>) introduced by OpenPGP for XMPP (XEP-0373) 6

for the use with other encryption protocols.

2 Requirements
This proposal widens the scope of the security guarantees given by the used encryption
mechanism from just the body of the message to various extension elements. It is intended to
serve as a ”one size fits all” solution for extension element encryption in XMPP.
In order to achieve its goal, Stanza Content Encryption does the following:

• Define elements that hold sensitive information

• Speficy rules about howextension elements are encrypted and embedded in themessage

• Specify rules about which elements are allowed inside and outside the protected domain

3 Glossary
Envelope Element <envelope/> An XMPP extension element which is used to hold the <con-

tent/> element and the affix elements. The XML representation of this element is en-
crypted and then embedded as the payload of the message being sent.

Content Element <content/> An element which is used to contain all extension elements
which need to be encrypted.

1XEP-0384: OMEMO Encryption <https://xmpp.org/extensions/xep-0384.html>.
2XEP-0373: OpenPGP for XMPP <https://xmpp.org/extensions/xep-0373.html>.
3XEP-0384: OMEMO Encryption <https://xmpp.org/extensions/xep-0384.html>.
4XEP-0385: Stateless Inline Media Sharing (SIMS) <https://xmpp.org/extensions/xep-0385.html>.
5XEP-0308: Last Message Correction <https://xmpp.org/extensions/xep-0308.html>.
6XEP-0373: OpenPGP for XMPP <https://xmpp.org/extensions/xep-0373.html>.

1

https://xmpp.org/extensions/xep-0384.html
https://xmpp.org/extensions/xep-0373.html
https://xmpp.org/extensions/xep-0384.html
https://xmpp.org/extensions/xep-0385.html
https://xmpp.org/extensions/xep-0308.html
https://xmpp.org/extensions/xep-0373.html#example-2
https://xmpp.org/extensions/xep-0373.html
https://xmpp.org/extensions/xep-0384.html
https://xmpp.org/extensions/xep-0373.html
https://xmpp.org/extensions/xep-0384.html
https://xmpp.org/extensions/xep-0385.html
https://xmpp.org/extensions/xep-0308.html
https://xmpp.org/extensions/xep-0373.html

4 AFFIX ELEMENTS

4 Affix Elements
In order to prevent certain attacks, different affix elements MAY be added as direct child
elements of the <envelope/> element.

Element Description Usage Verification
<rpad/> Random-length random-

content padding
Prevent known cipher-
text and message length
correlation attacks. The
content of this element
is a randomly generated
sequence of random
length between 0 and
200 characters. TODO:
sane boundaries?

None. This element is
only used to change the
length of the ciphertext
and doesn’t need to be
verified

<time/> Timestamp Prevent replay attacks
using old messages. This
element MUST have one
attribute ’stamp’, whose
value is a timestamp
following the format
described in XMPP Date
and Time Profiles (XEP-
0082) XEP-0082: XMPP
Date and Time Profiles
<https://xmpp.org/extensions/xep-
0082.html>.. The times-
tamp represents the
time at which the mes-
sage was encrypted by
the sender.

Receiving clients MUST
check whether the
difference between
the timestamp and the
sending time derived
from the stanza itself
lays within a reasonable
margin. The client
SHOULD use the content
of the timestamp ele-
ment when displaying
the send date of the
message

<to/> Recipient of the message Prevent spoofing of the
recipient. This element
MUST have one attribute
’jid’ whose value is the
bare JID of the message’s
recipient.

Receiving clients MUST
check if the JID matches
the to attribute of the en-
closing stanza and oth-
erwise alert the user/re-
ject the message

<from/> Sender of the message Prevent spoofing of the
sender. This element
MUST have one attribute
’jid’ whose value is the
bare JID of the message’s
sender.

Receiving clients MUST
check if the value
matches the from at-
tribute of the enclosing
stanza and otherwise
alert the user/reject the
message

2

5 MOTIVATION

Listing 1: Examples of Affix Elements
<time stamp=’2004 -01 -25 T06:05:00 +01 :00’/>
<to jid=’missioncontrol@houston.nasa.gov’/>
<from jid=’opportunity@mars.planet ’/>
<rpad>C1DHN9HK -9 A25tSmwK4hU!Jji9%GKYK^syIlHJT9TnI4 </rpad>

Encryption protocols that make use of Stanza Content Encryption MUST define their own
profiles that describe mandatory behaviour of which of these elements are used. They MAY
also define and add their own specific affix elements.

5 Motivation
Some end-to-end encryption protocols like OMEMO Encryption (XEP-0384) 7 are historically
limited to encryption of the message body only. This approach excludes other extension
elements from the protected domain of the payload element, exposing them to potential
attackers.

Listing 2: An imperfectly encrypted message which leaks dangerous information about the
conversation through the plaintext OOB extension element

<message from=’narrator@jabber.org’
to=’viewer@jabber.org’>

<encrypted xmlns=’eu.siacs.conversations.axolotl ’>
<header sid=’27183 ’>

...
</header >
<payload >

SSBnb3QgaW4gZXZlcnlvbmUncyBob3N0aWxlIGxpdHRsZSBmYWNlLiBZZXMsIHRoZXNlIGFyZSBi

cnVpc2VzIGZyb20gZmlnaHRpbmcuIFllcywgSSdtIGNvbWZvcnRhYmxlIHdpdGggdGhhdC4gSSBh

bSBlbmxpZ2h0ZW5lZC4=
</payload >

</encrypted >
<x xmlns=’jabber:x:oob ’>

<url>https: //en.wikipedia.org/wiki/Fight_Club#Plot</url>
</x>

</message >

The example above obviously leaks information about the communication through the
unencrypted OOB extension element.

7XEP-0384: OMEMO Encryption <https://xmpp.org/extensions/xep-0384.html>.

3

https://xmpp.org/extensions/xep-0384.html
https://xmpp.org/extensions/xep-0384.html

6 USE CASES

Most end-to-end encryption mechanisms are also focussed solely onmessage content encryp-
tion and do not tackle <iq/> requests/replies at all. Stanza Content Encryption can be applied
to those as well.

Listing 3: Unencrypted IQ request
<iq from=’doctor@shakespeare.lit/pda’

id=’get -data -1’
to=’ladymacbeth@shakespeare.lit/castle ’
type=’get’>

<data xmlns=’urn:xmpp:bob ’
cid=’sha1+8 f35fef110ffc5df08d579a50083ff9308fb6242@bob.xmpp.

org’/>
</iq>

Listing 4: Likewise unencrypted reply
<iq from=’ladymacbeth@shakespeare.lit/castle ’

id=’get -data -1’
to=’doctor@shakespeare.lit/pda’
type=’result ’>

<data xmlns=’urn:xmpp:bob ’
cid=’sha1+8 f35fef110ffc5df08d579a50083ff9308fb6242@bob.xmpp.

org’
max -age=’86400 ’
type=’image/png’>

iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs +9 AAAABGdBTUEAALGP
C/xhBQAAAAlwSFlzAAALEwAACxMBAJqcGAAAAAd0SU1FB9YGARc5KB0XV+IA
AAAddEVYdENvbW1lbnQAQ3JlYXRlZCB3aXRoIFRoZSBHSU1Q72QlbgAAAF1J
REFUGNO9zL0NglAAxPEfdLTs4BZM4DIO4C7OwQg2JoQ9LE1exdlYvBBeZ7jq
ch9// q1uH4TLzw4d6+ErXMMcXuHWxId3KOETnnXXV6MJpcq2MLaI97CER3N0
vr4MkhoXe0rZigAAAABJRU5ErkJggg ==

</data>
</iq>

6 Use Cases
6.1 Use in <message/> stanzas
The main use case of Stanza Content Encryption is the use of end-to-end encryption protocols
in combination with extension protocols that store sensitive information in other places than
the message body.
This applies to many extension elements that add additional information to <message/>
stanzas, such as those of Out-of-Band Data (XEP-0066) 8.

8XEP-0066: Out of Band Data <https://xmpp.org/extensions/xep-0066.html>.

4

https://xmpp.org/extensions/xep-0066.html
https://xmpp.org/extensions/xep-0066.html

6 USE CASES

Listing 5: Envelope element containing the messages body and the OBB element.
<envelope xmlns=’urn:xmpp:sce:1 ’>

<content >
<body xmlns=’jabber:client ’>[...] </body>
<x xmlns=’jabber:x:oob ’>

<url>https: //en.wikipedia.org/wiki/Fight_Club#Plot</url>
</x>

</content >
</envelope >

Listing 6: Finished message stanza containing the <envelope/> element from the previous ex-
ample, inside of its payload element, encrypted using a hypothetical encryption pro-
tocol and SCE.

<message from=’narrator@jabber.org’
to=’viewer@jabber.org’>

<encrypted xmlns=’urn:xmpp:encryption:stub:sce:1 ’>
<payload >

PGNvbnRlbnQgeG1sbnM9J3Vybjp4bXBwOnNjZTowJz48cGF5bG9hZD48Ym9keSB4bWxucz0namFi

YmVyOmNsaWVudCc+
SSBnb3QgaW4gZXZlcnlvbmUncyBob3N0aWxlIGxpdHRsZSBmYWNlLiBZZXMs

IHRoZXNlIGFyZSBicnVpc2VzIGZyb20gZmlnaHRpbmcuIFllcywgSSdtIGNvbWZvcnRhYmxlIHdp

dGggdGhhdC4gSSBhbSBlbmxpZ2h0ZW5lZC48L2JvZHk+
PHggeG1sbnM9J2phYmJlcjp4Om9vYic+

PHVybD5odHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9GaWdodF9DbHViI1Bsb3Q8L3VybD48

L3g+PC9wYXlsb2FkPjwvY29udGVudD4=
</payload >

</encrypted >
</message >

6.2 Use in <iq/> stanzas
Stanza Content Encryption thrives not only to allow for rich content encryption in <message/>
stanzas, but is also applicable to <iq/> queries. A resource might want to query sensitive
information from another resource capable of Stanza Content Encryption.

Listing 7: Sender prepares a <content/> element containing the query subject.
<envelope xmlns=’urn:xmpp:sce:1 ’>

<content >
<data xmlns=’urn:xmpp:bob ’

cid=’sha1+8 f35fef110ffc5df08d579a50083ff9308fb6242@bob.xmpp.
org’/>

</content >
<from jid=’doctor@shakespeare.lit/pda’/>

5

6 USE CASES

<to jid=’ladymacbeth@shakespear.lit/castle ’/>
</envelope >

Listing 8: The sender then encrypts the <envelope/> element for the recipient and sends the
<iq/> containing the result of the encryption.

<iq from=’doctor@shakespeare.lit/pda’
id=’get -data -1’
to=’ladymacbeth@shakespeare.lit/castle ’
type=’get’>

<encrypted xmlns=’urn:xmpp:encryption:stub:sce:1 ’>
<payload >

V2FpdCwgd2hhdD8gQXJlIHlvdSBzZXJpb3VzPyBEaWQgeW91IHJlYWxseSBqdXN0IGdyYWIgeW91

ciBmYXZvdXJpdGUgYmFzZTY0IGRlY29kZXIganVzdCB0byBjaGVjayB0aGlzIGRvY3VtZW50IGZv

ciBoaWRkZW4gbWVzc2FnZXM/
IFdoYXQgYXJlIHlvdSBzb21lIGtpbmQgb2YgbmVyZD8gU29tZSBn

ZWVrIHdpdGggYSBiaW5hcnkgd3Jpc3Qgd2F0Y2g/
</payload >

</encrypted >
</iq>

Listing 9: The recipient prepares the reply to the request by assembling the <envelope/>
element.

<envelope xmlns=’urn:xmpp:sce:1 ’>
<content >

<data xmlns=’urn:xmpp:bob ’
cid=’sha1+8 f35fef110ffc5df08d579a50083ff9308fb6242@bob.xmpp.

org’
max -age=’86400 ’
type=’image/png’>

iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAMAAAC67D+
PAAAAclBMVEUAAADYZArfaA9GIAoBAAGN

QA3MXgniaAiEOgZMIATDXRXZZhHUZBHIXhDrbQ6sUQ7OYA2TRAubRwqMQQq7VQlKHgMAAAK5WRfJ

YBOORBFoMBCwUQ/ycA6FPgvbZQpeKglNJQmrTQeOPgQyFwR6MwACAABRPE/
oAAAAW0lEQVQI1xXI

Rw6EMBTAUP8kJKENnaF37n9FQPLCekAgzklhgCwfrlNHEXhrvCsxaU/
SwLGAFuIWZFpBERtKm9Xf

JqH+vVWh4POqgHrsAtht095b+geYRSl57QHSPgP3+CwvAAAAAABJRU5ErkJggg ==
</data>

</content >
<from jid=’ladymacbeth@shakespear.lit/castle ’/>
<to jid=’doctor@shakespeare.lit/pda’/>

</envelope >

Listing 10: The <envelope/> element is then encrypted and sent as a reply to the initiator of
the request.

6

7 SENDING AN ENCRYPTED STANZA

<iq from=’ladymacbeth@shakespeare.lit/castle ’
id=’get -data -1’
to=’doctor@shakespeare.lit/pda’
type=’result ’>

<encrypted xmlns=’urn:xmpp:encryption:stub:sce:1 ’>
<payload >

PGNvbnRlbnQgeG1sbnM9J3Vybjp4bXBwOnNjZTowJz4KICA8cGF5bG9hZD4KICAgIDxkYXRhIHht

bG5zPSd1cm46eG1wcDpib2InCiAgICAgICAgY2lkPSdzaGExKzhmMzVmZWYxMTBmZmM1ZGYwOGQ1

NzlhNTAwODNmZjkzMDhmYjYyNDJAYm9iLnhtcHAub3JnJwogICAgICAgIG1heC1hZ2U9Jzg2NDAw

JwogICAgICAgIHR5cGU9J2ltYWdlL3BuZyc+
CiAgICBpVkJPUncwS0dnb0FBQUFOU1VoRVVnQUFB

QW9BQUFBS0NBTUFBQUM2N0QrUEFBQUFjbEJNVkVVQUFBRFlaQXJmYUE5R0lBb0JBQUdOCiAgICBR

QTNNWGduaWFBaUVPZ1pNSUFURFhSWFpaaEhVWkJISVhoRHJiUTZzVVE3T1lBMlRSQXViUndxTVFR

cTdWUWxLSGdNQUFBSzVXUmZKCiAgICBZQk9PUkJGb01CQ3dVUS95Y0E2RlBndmJaUXBlS2dsTkpR

bXJUUWVPUGdReUZ3UjZNd0FDQUFCUlBFL29BQUFBVzBsRVFWUUkxeFhJCiAgICBSdzZFTUJUQVVQ

OGtKS0VObmFGMzduOUZRUExDZWtBZ3prbGhnQ3dmcmxOSEVYaHJ2Q3N4YVUvU3dMR0FGdUlXWkZw

QkVSdEttOVhmCiAgICBKcUgrdlZXaDRQT3FnSHJzQXRodDA5NWIrZ2VZUlNsNTdRSFNQZ1AzK0N3

dkFBQUFBQUJKUlU1RXJrSmdnZz09CiAgICA8L2RhdGE+
CiAgPC9wYXlsb2FkPgogIDxmcm9tIGpp

ZD0nbGFkeW1hY2JldGhAc2hha2VzcGVhci5saXQvY2FzdGxlJy8+
CiAgPHRvIGppZD0nZG9jdG9y

QHNoYWtlc3BlYXJlLmxpdC9wZGEnLz4KPC9jb250ZW50Pgo=
</payload >

</encrypted >
</iq>

7 Sending an encrypted stanza
In order to send an encrypted message without leaking extension elements, the sender pre-
pares the message by placing the sensitive extension elements inside a <content/> element
and that inside an <envelope/> element.
Depending on the encryption-specific SCE-profile, some affix elements are added as child
elements of the <envelope/> element.
The <envelope/> element is then serialized into XML and encrypted using the SCE-specific
profile of the encryption mechanism in place. The result is appended to the message.
Since the outer message element does not contain a <body/> element the sender appends an

7

9 SERVER-PROCESSED ELEMENTS

unencrypted <store/> hint as specified in Message Processing Hints (XEP-0334) 9.
The message can then be sent to the recipient.

8 Receiving an encrypted stanza
The recipient of the message decrypts its encrypted payload. The result is the <envelope/>
element containing the <content/> element and the affix elements as direct child elements.
Depending on the affix profiles specified by the used encryption protocol, the affix elements
are verified to prevent certain attacks from taking place.
Afterwards, the extension elements inside the <content/> element are checked against the
permitted list and any disallowed elements are discarded.
As a last step, the original unencrypted stanza is recreated by replacing the <envelope/>
element of the stanza with the elements inside of the <content/> element.

9 Server-processed Elements
There are certain extension elements which are required to be available to the server in order
to do message routing and processing. Additionally there are some elements that MUST be
filtered by the server. Allowing for those elements to be included in, and parsed from the
encrypted payload would allow a malicious client to perform a number of attacks.
Contrary to this, other elements are considered sensitive and MUST NOT be available in
plaintext outside the <envelope/> element.
It is hard to come up with a complete list of exceptional elements at this point, as there is no
practical implementation experience.
Below is a non-exhaustive list of elements that are definitely forbidden inside the <envelope/>
element and permitted as direct child elements of the message.

9XEP-0334: Message Processing Hints <https://xmpp.org/extensions/xep-0334.html>.

8

https://xmpp.org/extensions/xep-0334.html
https://xmpp.org/extensions/xep-0334.html

9 SERVER-PROCESSED ELEMENTS

Element Reason
Elements of Message Processing Hints (XEP-0334) XEP-0334: Message Processing Hints <https://xmpp.org/extensions/xep-0334.html>. Message

Pro-
cess-
ing
Hints
are
ad-
dressed
to
the
server
and
MUST
there-
fore
be
ac-
ces-
si-
ble
in
plain-
text.
A
re-
ceiv-
ing
client
MUST
ig-
nore
any
mes-
sage
pro-
cess-
ing
hints
en-
coun-
tered
in-
side
the
en-
crypted
<en-
velope/>
el-
e-
ment

9

9 SERVER-PROCESSED ELEMENTS

Element Reason
Stanza-ID elements of Unique and Stable Stanza IDs (XEP-0359) XEP-0359: Unique and Stable Stanza IDs <https://xmpp.org/extensions/xep-0359.html>. Sending

clients
MUST
NOT
in-
clude
Stanza-
ID
el-
e-
ments
in-
side
the
<en-
velope/>
el-
e-
ment,
as
this
would
pre-
vent
the
server
from
fil-
ter-
ing
it.
A
client
MUST
ig-
nore
Stanza-
ID
el-
e-
ments
en-
coun-
tered
in-
side
the
<en-
velope/>
el-
e-
ment

10

10 BUSINESS RULES

Element Reason
Elements of Extended Stanza Addressing (XEP-0033) XEP-0033: Extended Stanza Addressing <https://xmpp.org/extensions/xep-0033.html>. The

server
MUST
be
able
to
ac-
cess
the
<ad-
dress-
es/>
and
<ad-
dress/>
el-
e-
ments
in
or-
der
to
do
mes-
sage
rout-
ing,
so
they
MUST
NOT
be
en-
crypted.

TODO: Other elements?

10 Business Rules
Unencrypted <envelope/> elements are NOT ALLOWED as child elements of the stanza and
MUST be dropped.

11

12 SECURITY CONSIDERATIONS

Elements in the <content/> element MUST be identified using an element name and names-
pace. Notably the <body/> element MUST contain a valid namespace (i.e. ”jabber:client”).
The recipient MUST verify that the decrypted <envelope/> element contains valid XML before
processing it any further. Invalid XML must be rejected.
After verifying the integrity of the <envelope/> element, the recipient needs to make sure
that no server-processed elements are found inside of it. Any forbidden elements MUST be
dropped before the message is processed any further.
Furthermore the receiving clientMUST ignore any extension elements considered as sensitive
which are found outside of the <envelope/> element, especially as direct unencrypted child
elements of the enclosing stanza.
Since a chat message encrypted with SCE MUST NOT contain a <body/> element, it is not
eligible for MAM message storage (Message Archive Management (XEP-0313) 10). Therefore
sending entities MUST append an unencrypted Message Processing Hints (XEP-0334) 11

<store/> hint as a direct child element to the message.

11 Implementation Notes
As a first, naïve approach a recipient of a message containing an <envelope/> element
could simply reinject the reassambled unencrypted stanza into the XML stream. This might
introduce some security issues. Most notably, depending on the clients implementation it
may become ambiguous which elements were received end-to-end encrypted and which were
received unencrypted.
Implementations should rather handle encrypted elements explicitly.

12 Security Considerations
For the sake of simplicity, the examples in this document are not encrypted. A real-world
implementation MUST make use of real cryptographic protocols.

12.1 Encryption Profiles
This specification presents a set of affix elements which can be used to counter certain attacks.
However it does not dictate any behaviour regarding what elements MUST be used/verified
or when.
Different cryptographic protocols come with different possible attack scenarios which must
be taken into consideration, so it is left up to those cryptographic protocols to define profiles
that describe the use of affix elements.

10XEP-0313: Message Archive Management <https://xmpp.org/extensions/xep-0313.html>.
11XEP-0334: Message Processing Hints <https://xmpp.org/extensions/xep-0334.html>.

12

https://xmpp.org/extensions/xep-0313.html
https://xmpp.org/extensions/xep-0334.html
https://xmpp.org/extensions/xep-0313.html
https://xmpp.org/extensions/xep-0334.html

15 ACKNOWLEDGEMENTS

13 XMPP Registrar Considerations
TODO: Maybe the Registrar should handle a list of elements that are forbidden as child
elements of the <content/> element?

14 XML Schema
TODO.

15 Acknowledgements
Big thanks to the authors of OpenPGP for XMPP (XEP-0373) 12 (Florian Schmaus, Dominik
Schürmann and Vincent Breitmoser) which heavily inspired the idea of this protocol.
Also thanks to Marvin Wißfeld, Tim Henkes, Daniel Gultsch, Melvin Keskin and Andreas
Straub for their feedback.

12XEP-0373: OpenPGP for XMPP <https://xmpp.org/extensions/xep-0373.html>.

13

https://xmpp.org/extensions/xep-0373.html
https://xmpp.org/extensions/xep-0373.html

	Introduction
	Requirements
	Glossary
	Affix Elements
	Motivation
	Use Cases
	Use in <message/> stanzas
	Use in <iq/> stanzas

	Sending an encrypted stanza
	Receiving an encrypted stanza
	Server-processed Elements
	Business Rules
	Implementation Notes
	Security Considerations
	Encryption Profiles

	XMPP Registrar Considerations
	XML Schema
	Acknowledgements

