XVIPP

XEP-0426: Character counting in message bodies

Marvin Wilfeld
mailto:xmpp@larma.de
xmpp: jabber@larma.de

2022-12-27
Version 0.3.0

Status Type Short Name
Experimental Informational charcount

This document describes how to correctly count characters in message bodies. This is required when
referencing a position in the body.

mailto:xmpp@larma.de
xmpp:jabber@larma.de

Legal

Copyright

This XMPP Extension Protocol is copyright © 1999 - 2024 by the XMPP Standards Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
"Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https: //xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction

2 Character counting

2.1 Mlegaloffsets
2.2 Developernotes v v i i e e e e
23 Rationale

3 Subsequences

3.1 Developernotes e
3.2 Rationale
4 Glossary

5 IANA Considerations
6 XMPP Registrar Considerations

7 Acknowledgements

W NN =

=W

\/ 2 CHARACTER COUNTING

1 Introduction

Various use-cases require the possibility to reference a part of the message body or a specific
position in it. This was realized by providing offsets from the beginning of the message (when
referencing a region, those offsets would define begin and end of a region). XEPs doing so
include In-Band Real Time Text (XEP-0301) !, References (XEP-0372) ? (and thereof derived
Stateless Inline Media Sharing (XEP-0385) *) and Message Markup (XEP-0394) 4.

For these use-cases, it is highly relevant to decide how to count “characters” in a message
body. While it at first sounds trivial, there are various ways of doing so in modern font
systems. The purpose of this XEP is to define how characters shall be counted for the purpose
of the aforementioned XEPs and any future XEP relying on a similar feature.

2 Character counting

When counting characters in a body, they shall be counted by their number of Unicode
code points. Message bodies must be used as strings of the XML characters (as defined in
§2.2 of XML 1.0 °). This means that, i.e. no Unicode normalization may be performed before
determining offsets when receiving or after determining offsets when sending. Any kind
of further body processing shall be performed after counting (e.g. /me® as described in
The /me Command (XEP-0245) 7 is always counted as 4 characters without considering the
sending user’s name). All references (as defined in §4.1 of XML 1.0 ®) must be counted by their
referenced character(s) and not the reference characters (e.g. the encoded & is counted
as one decoded character &).

String Grapheme clus- UTF-8 bytes UTF-16 units (2 Code points
ter bytes)

Hello, world! 13 13 13 13

You & Me 8 8 8 8

ooooog 7 21 7 7

'XEP-0301: In-Band Real Time Text <https://xmpp.org/extensions/xep-0301.html>.

2XEP-0372: References <https: //xmpp.org/extensions/xep-0372.html>,

>XEP-0385: Stateless Inline Media Sharing (SIMS) <https://xmpp.org/extensions/xep-0385.html>,
*XEP-0394: Message Markup <https://xmpp.org/extensions/xep-0394.html>.

*Extensible Markup Language (XML) 1.0 (Fourth Edition) <http: //www.w3.org/TR/REC-xml/>,

The middle dot is used to represent a space character and is not meant to be taken verbatim.
"XEP-0245: The /me Command <https://xmpp.org/extensions/xep-0245.html>.

SExtensible Markup Language (XML) 1.0 (Fourth Edition) <http: //www.w3.org/TR/REC-xml/>,

https://xmpp.org/extensions/xep-0301.html
https://xmpp.org/extensions/xep-0372.html
https://xmpp.org/extensions/xep-0385.html
https://xmpp.org/extensions/xep-0394.html
http://www.w3.org/TR/REC-xml/
https://xmpp.org/extensions/xep-0245.html
http://www.w3.org/TR/REC-xml/
https://xmpp.org/extensions/xep-0301.html
https://xmpp.org/extensions/xep-0372.html
https://xmpp.org/extensions/xep-0385.html
https://xmpp.org/extensions/xep-0394.html
http://www.w3.org/TR/REC-xml/
https://xmpp.org/extensions/xep-0245.html
http://www.w3.org/TR/REC-xml/

\/ 2 CHARACTER COUNTING

String Grapheme clus- UTF-8 bytes UTF-16 units (2 Code points
ter bytes)

UL 5 There are 43 21 13
spaces between
the emojis.

You may also
perceive this
as more than 5
glyphs if your
font or display
engine does not
support the re-
quired Unicode
version.

2.1 Illegal offsets

As grapheme clusters may consist of multiple code points, a code point offset might be illegal
if it points inside a grapheme cluster.

However, receiving entities SHOULD NOT consider illegal offsets invalid, as different Unicode
versions may have different understanding of what a grapheme cluster is. Instead, receiving
entities may choose one of the following behaviors:

« Split the grapheme cluster into multiple graphemes. In most cases, this is closest to the
intended behavior. Many font display engines will do this automatically as needed.

« When the offset defines the end of a region, include the full grapheme cluster in the re-
gion. Otherwise, take the offset as if it pointed to the beginning of the grapheme cluster.

2.2 Developer notes

Some programming languages include a string type that operates directly on Unicode code
points. If these types are used, offset numbers can be used as-is in string operations. Popular
examples of such programming languages are Python and Haskell.

Other programming languages include a string type that operates on UTF-16 units. As can be
seen in the table above, those match the number of code points in many cases and thus are
sometimes confused to be the same. Popular examples of such programming languages are
C#,]Java and JavaScript.

C/C++ includes a wide character and string type. Those behave differently across platforms
and as such should be used with care.

\J' 3 SUBSEQUENCES

2.3 Rationale

The most obvious way of counting characters is to count them how humans would. This
sounds easy when only having western scripts in mind but becomes more complicated in
other scripts and most importantly is not well-defined across Unicode versions. New unicode
versions regularly added new possibilities to build grapheme clusters, including from existing
code points. To be forward compatible, counting grapheme clusters, graphemes, glyphs or
similar is thus not an option. This leaves basically the two options of using the number of
code units of the encoded string or the number of code points.

The main advantage of using the code units would be that those are native to many program-
ming languages, easing the task for developers. However programming languages do not
share a common encoding for their string type (C/C++ use UTF-8, C#/Java use UTF-16, Python
3 hides the internal encoding from the developer and only presents it in code points), so
there is no best pick here. If one was to choose an encoding, the best choice would be UTF-8,
the native encoding of XMPP. However this makes counting bytes a more complex task for
programming languages that use a different encoding like UTF-16, as strings would need to
be transcoded first.

Counting code points has the advantage that offset counts cannot point inside a code point.
This could happen when using code units of any encoding that may use more than one unit
to represent a code point (such as UTF-8 and UTF-16). If an offset count points inside a code
point, that would be an invalid offset, raising more uncertainty of the correct behavior in
such cases. Most notably the opportunity of splitting (as it exists for grapheme cluster) is
not an option in that case, because splitting a code point would not create any usable output.
Counting code points is widely supported in programming languages and can easily be
implemented for encoded strings when not. The XML 1.0 ? standard also defines a character
as a unicode code point, thus counting code points is equivalent to counting XML characters.

3 Subsequences

When referencing a subsequence of the characters of a message body, the begin and end of
the subsequence should be provided by two numbers, denoting the number of characters
(counted as described above) before the begin of the subsequence or before the end of the
subsequence, respectively. In other words, the begin is the index of the first character in the
subsequence and the end is the index following the last character in the subsequence. That
means, if a subsequence covers the full body, its begin should be given as 0 and its end should
be given as the number of characters in the body.

°Extensible Markup Language (XML) 1.0 (Fourth Edition) <http: //www.w3.org/TR/REC-xm1/>.

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/

/6 XMPP REGISTRAR CONSIDERATIONS

3.1 Developer notes

Subsequence indexing in various programming languages match the convention described
here. When using Python, the subsequence created by body[begin:end] matches all require-
ments of this document.

Some programming languages define subsequences by offset and length. In this case, begin
matchs the offset while end-begin matches the length.

3.2 Rationale

The convention for subsequences was choosen because it has three main advantages: It
matches subsequence indexing in various programming languages, end minus begin of a
subsequence equal the length of the subsequence and the end of the first of two adjacent
subsequence matches the begin of the second one.

4 Glossary

Unicode terminology used across this document, can be looked up in the Unicode glossary at
https://www.unicode.org/glossary/.

5 IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
10

6 XMPP Registrar Considerations

This document requires no interaction with XMPP Registrar 1.

The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

""The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

https://www.unicode.org/glossary/
http://www.iana.org/
https://xmpp.org/registrar/
http://www.iana.org/
https://xmpp.org/registrar/

/7 ACKNOWLEDGEMENTS

7 Acknowledgements

The author would like to thank Guus der Kinderen, Ralph Meijer, Jonas Schifer, Lance Stout
and others that provided feedback.

	Introduction
	Character counting
	Illegal offsets
	Developer notes
	Rationale

	Subsequences
	Developer notes
	Rationale

	Glossary
	IANA Considerations
	XMPP Registrar Considerations
	Acknowledgements

