
XEP-0008: IQ-Based Avatars

Thomas Muldowney
mailto:temas@jabber.org
xmpp:temas@jabber.org

Julian Missig
mailto:julian@jabber.org
xmpp:julian@jabber.org

Jens Alfke
mailto:jens@mac.com

Peter Millard

2022-03-08
Version 0.3.1

Status Type Short Name
Obsolete Historical None

This specification provides historical documentation of an IQ-based protocol for exchanging user
avatars.

mailto:temas@jabber.org
xmpp:temas@jabber.org
mailto:julian@jabber.org
xmpp:julian@jabber.org
mailto:jens@mac.com

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Image Requirements 1

3 Avatar Availability 1

4 Avatar Retrieval 2

5 Future Considerations 4

6 Author Note 4

3 AVATAR AVAILABILITY

1 Introduction
Many communication applications now allow for the association of a small image or buddy
icon (avatar) with a user of that application. The avatar is not intended to be a defining
portrait of the user, but rather a simple expression of the user’s appearance, mood, status, and
the like. This proposal outlines a way to incorporate avatars into the current Jabber platform.

2 Image Requirements
Certain restrictions are placed upon the image. First, the image height and width must be
between thirty-two (32) and sixty-four (64) pixels. The suggested size is sixty-four (64) pixels
high and sixty-four (64) pixels wide 1. Images should be square, but this is not required. Images
should be in GIF, JPEG, or PNG format, although it is possible that in future revisions of this
specmore formatswill be allowed. Finally, imagesmust use less than eight (8) kilobytes of data.

3 Avatar Availability
There are two methods of showing that a client has an avatar available:

1. Embedding the jabber:x:avatar namespace within <presence/> packets using Jabber’s
<x/> element

2. Displaying the jabber:iq:avatar namespace in browse requests

Partly because Jabber browsing is relatively undeveloped, this proposal focuses on the first
option.
The <x/> element in the jabber:x:avatar namespace contains a SHA1 hash (hexadecimal,
not base64) of the image data itself (not the base64-encoded version) in a <hash/> element.
(Because the odds of creating an identical hash are small, the hash is considered unique to the
image and can be used to cache images between client sessions, resulting in fewer requests
for the image.) The initial announcement of the availability of an avatar is done by sending a
presence packet with the jabber:x:avatar information, as follows:

<presence >
<x xmlns=’jabber:x:avatar ’>

<hash>SHA1 of image data</hash>
</x>

</presence >

1It is highly recommended that clients never scale up images when displaying them.

1

4 AVATAR RETRIEVAL

If the avatar-generating user changes the avatar, a new presence packet is sent out with the
updated information:

<presence >
<x xmlns=’jabber:x:avatar ’>

<hash>SHA1 of new image data</hash>
</x>

</presence >

To disable the avatar, the avatar-generating user’s client will send a presence packet with the
jabber:x:avatar namespace but with no hash information:

<presence >
<x xmlns=’jabber:x:avatar ’/>

</presence >

Clients should send the current avatar hash in every <presence/> packet even if the avatar
has not changed. Remember that other clients logging in will receive a copy of the most
recent <presence/> element, which should therefore always contain the most recent avatar
hash. However, if the client’s connection is lost unexpectedly or the client disconnects
without sending an unavailable presence, the server will send other clients a <presence/>
element containing no jabber:x:avatar extension. Therefore if, after receiving one or more
presence packets containing jabber:x:avatar information, an avatar-receiving client receives
a presence packet that does not include the jabber:x:avatar namespace, it is recommended
that the client save the avatar image until the next set of information is received. In this case
the avatar-generating client might send something as simple as the following:

<presence/>

4 Avatar Retrieval
There are two methods for retrieving the actual avatar data:

1. An exchange between clients of <iq/> elements in the jabber:iq:avatar namespace

2. Public XML storage from the avatar-generating client to the server and public XML re-
trieval from the server to the avatar-requesting client (see Private XML Storage (XEP-
0049) 2).

2XEP-0049: Private XML Storage <https://xmpp.org/extensions/xep-0049.html>.

2

https://xmpp.org/extensions/xep-0049.html
https://xmpp.org/extensions/xep-0049.html
https://xmpp.org/extensions/xep-0049.html

4 AVATAR RETRIEVAL

The first of these methods is preferred. On this model, a query is sent directly to the avatar-
generating client using an <iq/> element of type ”get” in the jabber:iq:avatar namespace 3 4:

<iq id=’2’ type=’get’ to=’user@server/resource ’>
<query xmlns=’jabber:iq:avatar ’/>

</iq>

The avatar-generating client will reply with an <iq/> element of type ”result” in the jab-
ber:iq:avatar namespace; this reply will contain a query element that in turn contains a
<data/> element with the MIME type in the ’mimetype’ attribute and the data base64-encoded
in the body of the <data/> element:

<iq id=’2’ type=’result ’ to=’user@server/resource ’>
<query xmlns=’jabber:iq:avatar ’>

<data mimetype=’image/jpeg’>
Base64 -Encoded Data

</data>
</query >

</iq>

If the first method fails, the second method that should be attempted by sending a request
to the server for the avatar-generating user’s public XML containing the avatar data. This
data is to be stored in the storage:client:avatar namespace. This method presumes that the
avatar-generating client has already stored its avatar data on the server:

<iq id=’0’ type=’set’ to=’user@server ’>
<query xmlns=’storage:client:avatar ’>

<data mimetype=’image/jpeg’>
Base64 Encoded Data

</data>
</query >

</iq>

Once such data has been set, the avatar can be retrieved by any requesting client from the
avatar-generating client’s public XML storage:

<iq id=’1’ type=’get’ to=’user@server ’>
<query xmlns=’storage:client:avatar ’/>

</iq>

3Whenever possible, the avatar-requesting client should attempt to determine if the avatar-generating client has
an avatar available before requesting it.

4It is suggested that no request be made if it is known (such as through a browse reply) that a client does not
support the jabber:iq:avatar namespace.

3

6 AUTHOR NOTE

5 Future Considerations
It is acknowledged that sending avatar information within presence packets is less than
desirable in many respects (e.g., in network traffic generated); however, there currently
exists in Jabber no generic framework for addressing these shortcomings. Possible solutions
on the horizon include live browsing and a pub/sub model, but these are still embryonic and
experimental. Once something of that nature is accepted by the Council, the avatar spec will
be modified to work within that framework rather than by attaching to presence.

6 Author Note
Peter Millard, a co-author of this specification from version 0.1 through version 0.3, died on
April 26, 2006.

4

	Introduction
	Image Requirements
	Avatar Availability
	Avatar Retrieval
	Future Considerations
	Author Note

