
XEP-0012: Last Activity

Jeremie Miller
mailto:jer@jabber.org
xmpp:jer@jabber.org

Thomas Muldowney
mailto:temas@jabber.org
xmpp:temas@jabber.org

Peter Saint-Andre
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/

2008-11-26
Version 2.0

Status Type Short Name
Final Standards Track iq-last

This specification defines an XMPP protocol extension for communicating information about the last
activity associated with an XMPP entity. It is typically used by an IM client to retrieve the most recent
presence information from an offline contact by sending a last activity request to the server that hosts
the account controlled by the contact.

mailto:jer@jabber.org
xmpp:jer@jabber.org
mailto:temas@jabber.org
xmpp:temas@jabber.org
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2020 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Protocol 1

3 Offline User Query 2

4 Online User Query 3

5 Server and Component Query 4

6 Determining Support 5

7 Implementation Notes 6

8 Security Considerations 6

9 IANA Considerations 6

10 XMPP Registrar Considerations 7

11 XML Schema 7

2 PROTOCOL

1 Introduction
It is often helpful to know the time of the last activity associated with a entity. The canonical
usage is to discover when a disconnected user last accessed its server. The ’jabber:iq:last’
namespace provides a method for retrieving that information. The ’jabber:iq:last’ namespace
can also be used to discover or publicize when a connected user was last active on the server
(i.e., the user’s idle time) or to query servers and components about their current uptime.

2 Protocol
In order to request last activity information regarding another entity, the requesting entity
sends an <iq/> stanza of type ”get” to the target entity, containing a <query/> element
qualified by the ’jabber:iq:last’ namespace:

Listing 1: Last Activity Query
<iq from=’romeo@montague.net/orchard ’

id=’last1 ’
to=’juliet@capulet.com’
type=’get’>

<query xmlns=’jabber:iq:last ’/>
</iq>

The target entityMUST return either an IQ-result or an IQ-error. When returning an IQ-result,
the target entity sends an <iq/> stanza of type=’result’ containing a <query/> element with a
REQUIRED ’seconds’ attribute and OPTIONAL XML character data.

Listing 2: Last Activity Response
<iq from=’juliet@capulet.com’

id=’last1 ’
to=’romeo@montague.net/orchard ’
type=’result ’>

<query xmlns=’jabber:iq:last ’ seconds=’903’/>
</iq>

The requesting entity interprets the IQ-result based on the responding entity’s JID type in
order to determine the meaning of the information. Specifically, the information means
something different depending on the identity of the responding entity:

1. An account registered on anXMPP server, with a JID of the form<localpart@domain.tld>.

2. A connected or available resource associatedwith such an account, with a JID of the form
<localpart@domain.tld/resource>.

1

3 OFFLINE USER QUERY

3. An ”always-on” XMPP server or service, with a JID of the form <domain.tld>.

These differences are explained more fully below.

3 Offline User Query
The primary usage of the ’jabber:iq:last’ namespace is to find out how long ago a user logged
out (and, additionally, what their status message was at that time). This primary usage
assumes that the IQ-get is sent to a bare JID <localpart@domain.tld>. When used in this way,
the <query/> element contained in the IQ-result has a ’seconds’ attribute, which is the number
of seconds that have passed since the user last logged out. In addition, the element MAY
contain XML character data that specifies the status message of the last unavailable presence
received from the user. An example is shown below:

Listing 3: Last Activity Query
<iq from=’romeo@montague.net/orchard ’

id=’last1 ’
to=’juliet@capulet.com’
type=’get’>

<query xmlns=’jabber:iq:last ’/>
</iq>

As specified in XMPP Core 1 and XMPP IM 2, an IQ stanza of type ”get” sent to a bare JID
<localpart@domain.tld> is handled by the user’s server on the user’s behalf, not delivered to
one or more connected or available resources.
If the requesting entity is not authorized to view the user’s presence information (normally
via a presence subscription as defined in XMPP-IM), the user’s server MUST NOT return last
activity information but instead MUST return a <forbidden/> error in response to the last
activity request.

Listing 4: Requesting Entity is Not Authorized to Retrieve Last Activity Information
<iq from=’juliet@capulet.com’

id=’last1 ’
to=’romeo@montague.net/orchard ’
type=’error ’>

<error type=’auth’>
<forbidden xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

1RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
2RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc6121>.

2

http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121

4 ONLINE USER QUERY

If the requesting entity is authorized to view the user’s presence information, the server shall
return information about the last presence activity recorded by the server for that user.

Listing 5: Last Activity Response by Server
<iq from=’juliet@capulet.com’

id=’last1 ’
to=’romeo@montague.net/orchard ’
type=’result ’>

<query xmlns=’jabber:iq:last ’ seconds=’903’>Heading Home</query >
</iq>

In this example, the user logged out fifteen minutes and three seconds ago, and when
they logged out they sent a presence stanza of type=’unavailable’ whose <status/> element
contained the text ”Heading Home”.
If the user has at least one connected or available resource when the server receives the
request, the response MUST (subject to local security policies) contain an empty <query/>
element whose ’seconds’ attribute is set to a value of ’0’.

4 Online User Query
A requesting entity can send a last activity query to the full JID <local-
part@domain.tld/resource> of a connected or available resource associated with an account.

Listing 6: Last Activity Query Sent to Full JID
<iq from=’romeo@montague.net/orchard ’

id=’last2 ’
to=’juliet@capulet.com/balcony ’
type=’get’>

<query xmlns=’jabber:iq:last ’/>
</iq>

In this case, the user’s server shall either deliver the IQ to an available resource or respond on
behalf of the user.
In particular, as with the offline query use case above, if the requesting entity is not authorized
to view the user’s presence information (normally via a presence subscription as defined in
XMPP IM), the user’s server MUST NOT deliver the IQ-get to an available resource but instead
MUST return a <forbidden/> error in response to the last activity request.

Listing 7: Requesting Entity is Not Authorized to Retrieve Last Activity Information
<iq from=’juliet@capulet.com’

id=’last1 ’
to=’romeo@montague.net/orchard ’

3

5 SERVER AND COMPONENT QUERY

type=’error ’>
<error type=’auth’>

<forbidden xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

If the user’s server delivers the IQ-get to one of the user’s available resources, the user’s client
MAY respond with the idle time of the user (i.e., the last time that a human user interacted
with the client application).

Listing 8: Last Activity Response by Client
<iq from=’juliet@capulet.com/balcony ’

id=’last2 ’
to=’romeo@montague.net/orchard ’
type=’result ’>

<query xmlns=’jabber:iq:last ’ seconds=’123’/>
</iq>

In the foregoing example, the user has been idle for about two minutes.
Support for this functionality is OPTIONAL. A client that does not support the protocol, or
that does not wish to divulge this information, MUST return a <service-unavailable/> error.

Listing 9: Service Unavailable Error
<iq from=’juliet@capulet.com/balcony ’

id=’last2 ’
to=’romeo@montague.net/orchard ’
type=’error ’>

<error type=’cancel ’>
<service -unavailable xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

If there is no available resource matching the <localpart@domain.tld> in the ’to’ attribute of
the request, the server MUST follow the rules in XMPP IM in order to determine what error
stanza to return.

5 Server and Component Query
When the last activity query is sent to a server or component (i.e., to a JID of the form
<domain.tld>), the information contained in the IQ reply reflects the uptime of the JID sending
the reply. The seconds attribute specifies how long the host has been running since it was last
(re-)started. The <query/> element SHOULD NOT contain XML character data.

4

6 DETERMINING SUPPORT

Listing 10: Last Activity Query Sent to Server or Service
<iq from=’romeo@montague.net/orchard ’

id=’last3 ’
to=’capulet.com’
type=’get’>

<query xmlns=’jabber:iq:last ’/>
</iq>

Listing 11: Last Activity Response from Server or Service
<iq from=’capulet.com’

id=’last3 ’
to=’romeo@montague.net/orchard ’
type=’result ’>

<query xmlns=’jabber:iq:last ’ seconds=’123456 ’/>
</iq>

In this example, the server has been running for a little more than 34 hours.

6 Determining Support
If an entity supports the Last Activity protocol, it MUST advertise that fact in its responses to
Service Discovery (XEP-0030) 3 information (”disco#info”) requests by returning a feature of
”jabber:iq:last”.

Listing 12: Requesting entity queries responding entity regarding protocol support
<iq from=’stpeter@jabber.org/roundabout ’

id=’disco1 ’
to=’jabber.org’
type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

Listing 13: Responding entity communicates protocol support
<iq from=’jabber.org’

id=’disco1 ’
to=’stpeter@jabber.org/roundabout ’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
<feature var=’jabber:iq:last ’/>

</query >
</iq>

3XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

5

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

9 IANA CONSIDERATIONS

In order for an application to determine whether an entity supports this protocol, where
possible it SHOULD use the dynamic, presence-based profile of service discovery defined in
Entity Capabilities (XEP-0115) 4. However, if an application has not received entity capabilities
information from an entity, it SHOULD use explicit service discovery instead.

7 Implementation Notes
The information contained in an IQ reply for this namespace is inherently ambiguous. Specif-
ically, for a bare JID <localpart@domain.tld> the information is the time since the JID was last
connected to its server; for a full JID <localpart@domain.tld/resource> the information is the
time since the resource was last active in the context of an existing session; and for a bare
domain the information is the uptime for the server or component. An application MUST take
these differences into account when presenting the information to a human user (if any).

8 Security Considerations
A server MUST NOT allow an unauthorized entity to learn a user’s network availability
by sending a Last Activity request to a JID of the form <localpart@domain.tld> or <local-
part@domain.tld/resource>, since doing so would constitute a ”presence leak” as described in
RFC 6120. That is, Last Activity information MAY be divulged only to those entities that have
permission to view the user’s presence via a presence subscription (potentially as restricted
by Privacy Lists (XEP-0016) 5 or Blocking Command (XEP-0191) 6).
A client MUST provide a way for a human user to disable sending of Last Activity responses
from the client’s full JID <localpart@domain.tld/resource>.

9 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
7.

4XEP-0115: Entity Capabilities <https://xmpp.org/extensions/xep-0115.html>.
5XEP-0016: Privacy Lists <https://xmpp.org/extensions/xep-0016.html>.
6XEP-0191: Blocking Command <https://xmpp.org/extensions/xep-0191.html>.
7The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

6

https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0016.html
https://xmpp.org/extensions/xep-0191.html
http://www.iana.org/
https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0016.html
https://xmpp.org/extensions/xep-0191.html
http://www.iana.org/

11 XML SCHEMA

10 XMPP Registrar Considerations
No action on the part of the XMPP Registrar 8 is necessary as a result of this document,
since ’jabber:iq:last’ is already registered in the protocol namespaces registry located at
<https://xmpp.org/registrar/namespaces.html>.

11 XML Schema

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’jabber:iq:last ’
xmlns=’jabber:iq:last ’
elementFormDefault=’qualified ’>

<xs:annotation >
<xs:documentation >

The protocol documented by this schema is defined in
XEP -0012: http://www.xmpp.org/extensions/xep -0012. html

</xs:documentation >
</xs:annotation >

<xs:element name=’query ’>
<xs:complexType >

<xs:simpleContent >
<xs:extension base=’xs:string ’>

<xs:attribute
name=’seconds ’
type=’xs:unsignedLong ’
use=’optional ’/>

</xs:extension >
</xs:simpleContent >

</xs:complexType >
</xs:element >

</xs:schema >

8The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

7

https://xmpp.org/registrar/
https://xmpp.org/registrar/namespaces.html
https://xmpp.org/registrar/

	Introduction
	Protocol
	Offline User Query
	Online User Query
	Server and Component Query
	Determining Support
	Implementation Notes
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	XML Schema

