XVIPP

XEP-0065: SOCKS5 Bytestreams

Dave Smith Matthew Miller
mailto:dizzyd@jabber.org mailto:linuxwolf@outer-planes.net
xmpp:dizzyd@jabber.org xmpp: linuxwolf@outer-planes.net

Peter Saint-Andre Justin Karneges
mailto:stpeter@stpeter.im mailto:justin@karneges.com
xmpp: stpeter@jabber.org xmpp: justin@andbit.net

https://stpeter.im/

2021-03-04
Version 1.8.2

Status Type Short Name
Draft Standards Track bytestreams

This document defines an XMPP protocol extension for establishing an out-of-band bytestream be-
tween any two XMPP users, mainly for the purpose of file transfer. The bytestream can be either direct
(peer-to-peer) or mediated (though a special-purpose proxy server). The typical transport protocol used
is TCP, although UDP can optionally be supported as well.

mailto:dizzyd@jabber.org
xmpp:dizzyd@jabber.org
mailto:linuxwolf@outer-planes.net
xmpp:linuxwolf@outer-planes.net
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/
mailto:justin@karneges.com
xmpp:justin@andbit.net

Legal

Copyright

This XMPP Extension Protocol is copyright © 1999 - 2024 by the XMPP Standards Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
"Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https: //xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents

1

Introduction

Terminology

Determining Support

Discovering Proxies

Direct Connection

5.1
5.2
5.3

Process e e e
Flow . . .o
Protocol
5.3.1 Requester Initiates S5B Negotiation
5.3.2 Target Establishes SOCKS5 Connection with StreamHost/Requester

5.3.3 Target Acknowledges Bytestream

Mediated Connection

6.1
6.2
6.3

Process e e
FloW . . o
Protocol
6.3.1 Requester Initiates S5B Negotiation
6.3.2 Target Establishes SOCKS5 Connection with Proxy
6.3.3 Target Acknowledges Bytestream
6.3.4 Requester Establishes SOCKS5 Connection with StreamHost
6.3.5 Activationof Bytestream

Use with Multi-User Chat

Optional UDP Support

Discovering UDP Support o v vttt
RequestingUDPModeo v ittt et e e
UDPProcess o v v v v i ittt et e e e e e e

8.1
8.2
8.3

8.4

8.3.1
8.3.2

Establishing the UDP Association
Initializing the UDP Channel

Exchanging UDPPackets

Formal Description

<query/>Element
<streamhost/>Element e
<streamhost-used/>Element
<activate/>Element e
<udpsuccess/>Element

9.1
9.2
9.3
9.4
9.5

0NNy

10

10
10
12
12
12
13
14
15
15

16

17
17
18
18
19
19
20

10

11

12

13

14

15

Implementation Notes
10.1 StreamHost Requirements . . .
10.2 SOCKS5 Parameter Mapping . .

Security Considerations

11.1 Confidentiality and Integrity . .
11.2 Session Hijacking
11.3 Denial of Service
11.4 Useof SHA-1

IANA Considerations

XMPP Registrar Considerations

13.1 Protocol Namespaces
13.2 Service Discovery Features . . .
13.3 Service Discovery Category/Type

Schema

Acknowledgements

..........................

..........................

22
22
23

23
23
24
24
24

24

24
24
25
25

25

27

\/ 2 TERMINOLOGY

1 Introduction

XMPP is designed for sending relatively small chunks of XML between network entities and
is not designed for sending binary data. However, sometimes it is desirable to send binary
data to another entity that one has discovered on the XMPP network (e.g., to send a file).
Therefore it is valuable to have a generic protocol for streaming binary data between any two
entities on an XMPP network. The main application for such a bytestreaming technology is
file transfer as specified in SI File Transfer (XEP-0096) ! and Jingle File Transfer (XEP-0234) 2.
However, other applications are possible, which is why it is important to develop a generic
protocol rather than one that is specialized for a particular application such as file transfer.
This document defines a protocol that meets the following conditions:

« Bytestreams are established over standard TCP connections (RFC 793 *) or UDP associa-
tions (RFC 768 *), where TCP support is REQUIRED and UDP support is OPTIONAL

« Sockets can be direct (peer-to-peer) or mediated (established through a relay)

 Where possible, standard wire protocols are used

Specifically, this protocol makes use of the SOCKS 5 protocol, which is an IETF-approved,
IPv6-ready technology for bytestreams defined in RFC 1928 °. However, because this protocol
uses a subset of the SOCKS5 protocol that is specially adapted for bytestreaming over XMPP,
existing SOCKS5 proxies cannot be used to implement this protocol without modifications.
There are two scenarios addressed by this protocol:

1. A direct connection in which the StreamHost is the Requester, as described under Direct
Connection

2. A mediated connection in which the StreamHost is a Proxy, as described under Mediated
Connection

Early versions of this specification documented only the use of TCP connections. In version
1.6 (approved in November 2004), optional UDP associations were added, as described in the
Optional UDP Support section of this document. However, the main body of this document
describes the use of TCP, which is the primary method of SOCKS5 Bytestreams ("S5B”).

2 Terminology

The following terms are used throughout this document.

'XEP-0096: SI File Transfer <https://xmpp.org/extensions/xep-0096.html>.
*XEP-0234: Jingle File Transfer <https://xmpp.org/extensions/xep-0234.html>,
*RFC 793: Transmission Control Protocol <http://tools.ietf.org/html/rfce793>,
“RFC 768: User Datagram Protocol <http://tools.ietf.org/html/rfce768>.

SRFC 1928: SOCKS Protocol Version 5 <http://tools.ietf.org/html/rfc1928>.

https://xmpp.org/extensions/xep-0096.html
https://xmpp.org/extensions/xep-0234.html
http://tools.ietf.org/html/rfc0793
http://tools.ietf.org/html/rfc0768
http://tools.ietf.org/html/rfc1928
https://xmpp.org/extensions/xep-0096.html
https://xmpp.org/extensions/xep-0234.html
http://tools.ietf.org/html/rfc0793
http://tools.ietf.org/html/rfc0768
http://tools.ietf.org/html/rfc1928

/'3 DETERMINING SUPPORT

Requester The entity that starts a bytestream negotiation with a Target. Before version 1.8
of this document a Requester was known as an Initiator.

Target The entity with which the Requester is attempting to establish a bytestream.

Proxy An entity that is willing to be a middleman for the bytestream between the Requester
and the Target.

StreamHost The system that the Target connects to and that is "hosting” the bytestream; the
Streamhost can be either the Requester or a Proxy.

StreamID A relatively unique Stream ID for this connection; this is generated by the Requester
for tracking purposes.

Note: Because either party can attempt to establish a bytestream (this is formalized in Jingle
SOCKS5 Bytestreams Transport Method (XEP-0260)), the Requester and the Target roles
apply to a particular S5B negotiation, and do not map to the Initiator and Responder roles
from Jingle (XEP-0166) 7 in a fixed way. For example, during a Jingle negotiation the Jingle
Initiator might first take on the role of an S5B Requester (with the Jingle Responder being the
S5B Target) but if that first bytestreams negotiation fails (the so-called "fallback scenario”)
then the Jingle Responder might take on the role of an S5B Requester (with the Jingle Initiator
being the S5B Target).

In the protocol flow diagrams, the line types have the following meaning:

”

e -7 ... communications over XMPP

” ’

. ’ ... communications over TCP

« "\\\\”and ”////” ... communications over SOCKS5

« "====" ... communications over the bytestream itself

In the examples, "streamer.example.com” is a Proxy that services bytestreams on port 7625.

3 Determining Support

If an entity supports this protocol, it MUST advertise that fact in its responses to Ser-
vice Discovery (XEP-0030) 8 information ("disco#info”) requests by returning a feature of
"http://jabber.org/protocol/bytestreams”.

SXEP-0260: Jingle SOCKS5 Bytestreams Transport Method <https://xmpp.org/extensions/xep-0260.html>,
"XEP-0166: Jingle <https://xmpp.org/extensions/xep-0166.html>,
8XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>

https://xmpp.org/extensions/xep-0260.html
https://xmpp.org/extensions/xep-0260.html
https://xmpp.org/extensions/xep-0166.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0260.html
https://xmpp.org/extensions/xep-0166.html
https://xmpp.org/extensions/xep-0030.html

\J 4 DISCOVERING PROXIES

Listing 1: Requester Sends Service Discovery Request to Target

<ig from=’requester@example.com/foo’
id=’gr91cs53”’
to=’target@example.org/bar’
type=’get’>
<query xmlns=’http://jabber.org/protocol/disco#info’/>
</iqg>

Listing 2: Target Replies to Service Discovery Request

<ig from=’target@example.org/bar’
id="gr91cs53”’
to=’requester@example.com/foo’
type='result’>
<query xmlns=’http://jabber.org/protocol/disco#info’>
<identity category=’client’ type=’pc’/>
<feature var="http://jabber.org/protocol/bytestreams’/>
</query>
</ig>

4 Discovering Proxies
Before attempting to initiate a bytestream, the Requester might need to find a proxy (e.g., if

it has not been configured to know about a proxy). It can do so using Service Discovery by
communicating with its server.

Listing 3: Requester Sends Service Discovery Request to Server

<ig from=’requester@example.com/foo’
id=’pi2b15fyv’
to=’example.com’
type=’"get’>
<query xmlns=’http://jabber.org/protocol/disco#items’/>
</iqg>

The server will return all of the items it knows about.

Listing 4: Server Replies to Service Discovery Request

<iq from=’example.com’
id=’pi2b15fyv’
to=’requester@example.com/foo’
type='result’>

<query xmlns=’http://jabber.org/protocol/disco#items’>

<item jid=’chatrooms.example.com’ name=’Chatroom_Service’/>
<item jid=’news.example.com’ name=’News_Feeds’/>
<item jid=’streamer.example.com’ name=’File_Transfer_Relay’/>

\J 4 DISCOVERING PROXIES

</query>
</iqg>

In this case, the "streamer.example.com” is a bytestreams proxy.
For each item in the disco#items result, the Requester needs to query to determine if it is a
bytestreams proxy.

Listing 5: Requester Sends Service Discovery Request to Proxy

<ig from=’requester@example.com/foo’
id="yx92b153"’
to="streamer.example.com’
type=’'get’>
<query xmlns=’http://jabber.org/protocol/disco#info’/>
</ig>

The proxy returns its information and the Requester inspects it to determine if it contains an
identity of category "proxy” and type "bytestreams”.

Listing 6: Server Replies to Service Discovery Request

<iq from=’streamer.example.com’
id="yx92b153”’
to=’requester@example.com/foo’
type=’result’>
<query xmlns=’http://jabber.org/protocol/disco#info’>
<identity category=’proxy’
type='bytestreams’
name='File_Transfer_Relay’/>
<feature var=’http://jabber.org/protocol/bytestreams’/>
</query>
</ig>

Next the Requester needs to request the full network address to be used for bytestreaming
through the Proxy. This is done by sending an 1Q-get to the proxy containing a <query/>
element qualified by the bytestreams namespace (not the service discovery namespace). °

Listing 7: Requester Requests Network Address from Proxy

<ig from=’requester@example.com/foo’
id=’uj2c15z9’
to=’streamer.example.com’
type=’"get’>

*Before version 1.8 of this specification, the <query/> element in this use case possessed a ’sid’ attribute; however,
it is unnecessary for the Requester to specify the StreamlID here and it would be harmful for the Proxy to reserve
the StreamlID at this point because the StreamID might never be used (thus forcing the Proxy to establish and
maintain state about the bytestream) and because the Requester might use the Proxy’s services for multiple
different streams.

\J 4 DISCOVERING PROXIES

<query xmlns=’http://jabber.org/protocol/bytestreams’/>
</iqg>

The Proxy replies by returning an 1Q-result that contains its network address, structured
using the <streamhost/> child of the <query/> element; the <streamhost/> element MUST
possess the following attributes:

¢ host =the IP address or DNS domain name of the StreamHost for SOCKS5 communication
over TCP (if the value is an IPv6 address, it MUST be formatted according to RFC 5952 1°,
as is done in XMPP Core)

¢ jid = the JabberlID of the StreamHost for communication over XMPP
» port = the port on which to connect for SOCKS5 communication over TCP

Note: If the value of the 'host’ attribute is a DNS domain name, it MUST be resolvable to
the IP address on which the Proxy (or an instance thereof) is hosted using an A or AAAA lookup.

Listing 8: Proxy Informs Requester of Network Address

<ig from=’streamer.example.com’
id="uj2c15z9’
to="requester@example.com/foo’
type=’result’>
<query xmlns=’http://jabber.org/protocol/bytestreams’>
<streamhost
host="24.24.24.1"
jid=’streamer.example.com’
port=’7625"/>
</query>
</iqg>

If the Requester does not have permissions to initiate bytestreams on the Proxy for whatever
reason (e.g., a proxy implementation might enable administrators to ban JIDs or domains
from using the Proxy), the Proxy MUST return a <forbidden/> error to the Requester.

Listing 9: Requester is Forbidden to use Proxy

<ig from=’streamer.example.com’
id=’uj2c15z9’
to="requester@example.com/foo’
type=’error’>
<error type=’auth’>
<forbidden
xmlns="urn:ietf:params:xml:ns:xmpp-stanzas’/>

°RFC 5952: A Recommendation for IPv6 Address Text Representation <http://tools.ietf.org/html/rfc5952>.
"'RFC 6120: Extensible Messaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.

http://tools.ietf.org/html/rfc5952
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc5952
http://tools.ietf.org/html/rfc6120

\/ 5 DIRECT CONNECTION

</error>
</iqg>

If the Proxy is unable to act as a StreamHost, the Proxy MUST return an error to the Requester,
which SHOULD be <not-allowed/>.

Listing 10: Proxy is Unable to Act as a StreamHost

<ig from=’requester@example.com/foo’
id=’uj2c15z9’
to=’streamer.example.com’
type=’'error’>
<error type=’cancel’>
<not-allowed
xmlns="urn:ietf:params:xml:ns:xmpp-stanzas’/>
</error>
</iqg>

5 Direct Connection

In this situation, the StreamHost is the Requester, which means that the Requester knows the
network address of the StreamHost and knows when to activate the bytestream.

5.1 Process

For direct connections, the process for establishing a bytestream is as follows:

1. Requester initiates S5B negotiation with Target by sending an IQ-set that includes
the full JID <localpart@domain.tld/resource> and network address of StreamHost/Re-
quester as well as the StreamID (SID) of the proposed bytestream (and, optionally, the
calculated DST.ADDR value; see under Use with Multi-User Chat).

2. Target opens a TCP socket to the specified network address at the StreamHost/Re-
quester.

3. Target requests SOCKS5 connection at StreamHost/Requester.

4. StreamHost/Requester sends acknowledgement of successful connection to Target via
SOCKS5.

\/ 5 DIRECT CONNECTION

5. Target accepts the S5B stream by returning an 1Q-result to the Requester, preserving
the ’id’ of the initial IQ-set.

6. Requester and Target exchange data over the bytestream.

5.2 Flow

The data flow is shown in the following diagram.

Requester Target

| Send S5B initiation request

Request SOCKS5 connection
N RN N N N A A R R R R R RN

Acknowledge SOCKS5 connection
117177777777777777777777777777>

Send S5B acceptance

5.3 Protocol
5.3.1 Requester Initiates S5B Negotiation

To initiate an S5B negotiation with the Target, the Requester sends network address infor-
mation about one or more StreamHosts to the Target. In the case of a direct connection, the
Requester might include information only about itself (as shown in the following example) or
about itself and a Proxy.

The <query/> element MUST contain one or more <streamhost/> elements, each of which
MUST possess the ’host’, ’jid’, and ’port’ attributes. The <query/> element MUST possess a
’sid” attribute that specifies the Stream ID for this bytestream. The <query/> element MAY
possess a ‘'mode’ attribute whose value is "tcp” (the default) or “udp” (for which see Optional
UDP Support). The <query/> element MAY possess a 'dstaddr’ attribute whose value is the
Requester’s calculated hash value for the SOCKS5 DST.ADDR field (see Use with Multi-User

\/ 5 DIRECT CONNECTION

Chat).

Listing 11: Requester Initiates Negotiation

<iq from=’requester@example.com/foo’
id="hu3vax16’
to=’target@example.org/bar’
type=’set’>
<query xmlns=’http://jabber.org/protocol/bytestreams’
sid="vxf9n471bn46’ >
<streamhost
jid="requester@example.com/foo’
host=7192.168.4.1"
port="5086"/>
</query>
</iqg>

If the request is malformed (e.g., the <query/> element does not include the ’sid” attribute),
the Target MUST return an error of <bad-request/>.

Else if the Target is unwilling to accept the bytestream, it MUST return an error of <not-
acceptable/> to the Requester.

Listing 12: Target Refuses Bytestream

<ig from=’target@example.org/bar’
id="hu3vax16’
to="requester@example.com/foo’
type=’'error’>
<error type=’modify’>
<not-acceptable
xmlns="urn:ietf:params:xml:ns:xmpp-stanzas’/>
</error>
</iqg>

If the Target is willing to negotiate a bytestream, it proceeds as shown in the following sections.

5.3.2 Target Establishes SOCKS5 Connection with StreamHost/Requester

Next the Target attempts to open a standard TCP socket on the network address of the
StreamHost/Requester (for information about UDP usage, see the Optional UDP Support
section of this document).

Note: If the Requester provides more than one StreamHost, the Target SHOULD try to connect
to them in the order of the <streamhost/> children within the <query/> element. Jingle
SOCKS5 Bytestreams Transport Method (XEP-0260) '? modifies this rule by providing explicit
priorities for each streamhost candidate.

2XEP-0260: Jingle SOCKS5 Bytestreams Transport Method <https: //xmpp.org/extensions/xep-0260.html>,

https://xmpp.org/extensions/xep-0260.html
https://xmpp.org/extensions/xep-0260.html
https://xmpp.org/extensions/xep-0260.html

\/ 5 DIRECT CONNECTION

If the Target is able to open a TCP socket on a StreamHost/Requester, it MUST use the SOCKS5
protocol to establish a SOCKS5 connection. In accordance with RFC 1928 '3, the Target might
need to authenticate in order to use the proxy. However, any authentication required is
beyond the scope of this document.

Once the Target has successfully authenticated with the StreamHost/Requester, it sends a
CONNECT request (CMD = X’01’) in order to continue the negotiation. The following rules

apply:

1. The hostname MUST be SHA1(SID + Requester JID + Target JID) where the definition of
the SHA1 hashing algorithm is as specified by RFC 3174 ' and the output is hexadecimal-
encoded (not binary); as noted above and under Use with Multi-User Chat, the DST.ADDR
value might have been provided directly from the Requester to the Target).

2. The port MUST be 0 (zero).

3. The JIDs used as input to the hash function MUST be the actual JIDs used for
the 1Q exchange between the Requester and the Target (these might be full JIDs
(<localpart@domain.tld/resource> or <domain.tld/resource>) or bare JIDs (<local-
part@domain.tld> or <domain.tld>) depending on the addresses of the entities involved
in the negotiation).

4. The appropriate stringprep profiles (as specified in RFC 6122 '*) MUST be applied to the
JIDs before application of the SHA1 hashing algorithm.

Listing 13: Target Establishes SOCKS5 Connection with StreamHost

CMD = X’01°
ATYP = X’03’
DST.ADDR = SHA1 Hash of: (SID + Requester JID + Target JID)
DST.PORT 0

Listing 14: StreamHost Acknowledges Connection

STATUS = X’00’

When replying to the Target in accordance with Section 6 of RFC 1928 ¢, the StreamHost
MUST set the BND.ADDR and BND.PORT to the DST.ADDR and DST.PORT values provided by
the client in the connection request.

If the Target tries but is unable to connect to any of the StreamHosts and it does not wish to at-
tempt a connection from its side, it MUST return an <item-not-found/> error to the Requester.

BBRFC 1928: SOCKS Protocol Version 5 <http://tools.ietf.org/html/rfc1928>.

YRFC 3174: US Secure Hash Algorithm 1 (SHA1) <http://tools.ietf.org/html/rfc3174>,

RFC 6122 Extensible Messaging and Presence Protocol (XMPP): Address Format <http://tools.ietf.org/htm
1/rfc6122>.

1SRFC 1928: SOCKS Protocol Version 5 <http://tools.ietf.org/html/rfc1928>,

http://tools.ietf.org/html/rfc1928
http://tools.ietf.org/html/rfc3174
http://tools.ietf.org/html/rfc6122
http://tools.ietf.org/html/rfc1928
http://tools.ietf.org/html/rfc1928
http://tools.ietf.org/html/rfc3174
http://tools.ietf.org/html/rfc6122
http://tools.ietf.org/html/rfc6122
http://tools.ietf.org/html/rfc1928

/6 MEDIATED CONNECTION

Listing 15: Target Is Unable to Connect to Any StreamHost and Wishes to End Negotiation

<ig from=’target@example.org/bar’
id="hu3vax16’
to="requester@example.com/foo’
type=’'error’>
<error type=’cancel’>
<item-not-found
xmlns="urn:ietf:params:xml:ns:xmpp-stanzas’/>
</error>
</iqg>

5.3.3 Target Acknowledges Bytestream

After the Target has authenticated with the StreamHost/Requester, it replies to the initiate
request with an 1Q-result whose <query/> element contains a <streamhost-used/> child that
specifies which StreamHost was used (in this case, the StreamHost/Requester).

Listing 16: Target Notifies Requester of Bytestream

<ig from=’target@example.org/bar’
id="hu3vax16’
to=’requester@example.com/foo’
type=’result’>
<query xmlns=’http://jabber.org/protocol/bytestreams’
sid="vxf9n471bn46’>
<streamhost-used jid=’requester@example.com/foo’/>
</query>
</iqg>

At this point, the Requester knows which StreamHost was used by the Target and the parties
are able to use the StreamHost/Requester to exchange data over the bytestream.

6 Mediated Connection

In this situation, the StreamHost is not the Requester but a Proxy, which means that the
Requester needs to discover the network address of the StreamHost before sending the
initiation request to the Target, needs to negotiate a connection with the StreamHost in the
same way that the Target does, and needs to ask the StreamHost to activate the bytestream
before it can be used.

6.1 Process

For mediated connections, the process for establishing a bytestream is as follows:

10

Vs

MEDIATED CONNECTION

10.

11.

12.

13.

. As a precondition, the Requester optionally discovers the network address of

StreamHost over XMPP as discussed in the Service Discovery section of this docu-
ment.

. Requester initiates S5B negotation with Target by sending IQ-set that includes the

JabberID and network address of StreamHost as well as the StreamID (SID) of the
proposed bytestream (and, optionally, the calculated DST.ADDR value; see under Use
with Multi-User Chat).

. Target opens a TCP socket to the selected StreamHost.

. Target requests SOCKS5 connection at StreamHost/Proxy.

. StreamHost sends acknowledgement of successful connection to Target via SOCKS5.

. Target sends IQ-result to Requester, preserving the 'id’ of the initial 1Q-set.

. Requester opens a TCP socket at the StreamHost.

. Requester establishes connection via SOCKS5, with the DST.ADDR and DST.PORT pa-

rameters set to the values defined below.

. StreamHost sends acknowledgement of successful connection to Requester via SOCKS5.

Requester sends 1Q-set to StreamHost requesting that StreamHost activate the
bytestream associated with the StreamID.

StreamHost activates the bytestream. (Data is now relayed between the two SOCKS5
connections by the proxy.)

StreamHost sends 1Q-result to Requester acknowledging that the bytestream has been
activated (or specifying an error).

Requester and Target can begin using the bytestream.

11

/6 MEDIATED CONNECTION

6.2 Flow

The data flow is shown in the following diagram.

Requester Proxy
Target
I I

| Send S5B initiation request

Request SOCKS 5 connection
NN A RN N N R N N R R R R R R SRR

Acknowledge SOCKS 5 connection
[1770777777777777777777777777>

Send S5B acceptance

Request SOCKS 5 connection
11770 771717777771777777777777777>

| I
| I
| I
| I
| Acknowledge SOCKS 5 connection |
RSN N N N N N A N A R R
| I
| |

I

I

I

Request activation

6.3 Protocol
6.3.1 Requester Initiates S5B Negotiation

To initiate an S5B negotiation with the Target, the Requester sends network address infor-
mation about one or more StreamHosts to the Target. In the case of a mediated connection,
the Requester might include information only about the Proxy (as shown in the following

12

/6 MEDIATED CONNECTION

example) or about the Proxy and itself.

The <query/> element MUST contain one or more <streamhost/> elements, each of which
MUST possess the "host’, ’jid’, and "port’ attributes. The <query/> element MUST possess a
'sid” attribute that specifies the Stream ID for this bytestream. The <query/> element MAY
possess a ‘'mode’ attribute whose value is "tcp” (the default) or “udp” (for which see Optional
UDP Support). The <query/> element MAY possess a 'dstaddr’ attribute whose value is the
Requester’s calculated hash value for the SOCKS5 DST.ADDR field (see Use with Multi-User
Chat).

Listing 17: Requester Initiates Negotiation

<ig from=’requester@example.com/foo’
id="npg71g53”’
to=’target@example.org/bar’
type=’"set’>
<query xmlns=’http://jabber.org/protocol/bytestreams’
sid="vxf9n471bn46’ >
<streamhost
host="24.24.24.1"
jid=’streamer.example.com’
port="7625"/>
</query>
</iqg>

If the Target is willing to negotiate a bytestream, it proceeds as shown in the following sections.

6.3.2 Target Establishes SOCKS5 Connection with Proxy

Next the Target attempts to open a standard TCP socket on the network address of the Proxy.
If the Target is able to open a TCP socket on the Proxy, it uses the SOCKS5 protocol to establish
a SOCKS5 connection. In accordance with RFC 1928 7, the Target might need to authenticate
in order to use the proxy. However, any authentication required is beyond the scope of this
document.

Once the Target has successfully authenticated with the Proxy, it sends a CONNECT request
(CMD =X’071’) in order to continue the negotiation. The following rules apply:

1. The hostname MUST be SHA1(SID + Requester JID + Target JID) where the definition of
the SHA1 hashing algorithm is as specified by RFC 3174 '8 and the output is hexadecimal-
encoded (not binary); as noted above and under Use with Multi-User Chat, the DST.ADDR
value might have been provided directly from the Requester to the Target).

2. The port MUST be 0 (zero).

YRFC 1928: SOCKS Protocol Version 5 <http://tools.ietf.org/html/rfc1928>,
BRFC 3174: US Secure Hash Algorithm 1 (SHA1) <http://tools.ietf.org/html/rfc3174>,

13

http://tools.ietf.org/html/rfc1928
http://tools.ietf.org/html/rfc3174
http://tools.ietf.org/html/rfc1928
http://tools.ietf.org/html/rfc3174

/6 MEDIATED CONNECTION

3. The JIDs provided MUST be the JIDs used for the IQ exchange between the Requester
and the Target, which MAY be full JIDs (<localpart@domain.tld/resource> or <do-
main.tld/resource>) or bare JIDs (<localpart@domain.tld> or <domain.tld>).

4. The appropriate stringprep profiles (as specified in RFC 6122 *°) MUST be applied to the
JIDs before application of the SHA1 hashing algorithm.

Listing 18: Target Establishes SOCKS5 Connection with StreamHost

CMD = X’01°

ATYP = X’03’

DST.ADDR = SHA1 Hash of: (SID + Requester JID + Target JID)
DST.PORT = 0

Listing 19: StreamHost Acknowledges Connection

STATUS = X’00’

When replying to the Target in accordance with Section 6 of RFC 1928 %, the Proxy MUST set
the BND.ADDR and BND.PORT to the DST.ADDR and DST.PORT values provided by the client in
the connection request.

6.3.3 Target Acknowledges Bytestream

After the Target has established a SOCKS5 connection with the Proxy, it replies to the initiate
request with an 1Q-result whose <query/> element contains a <streamhost-used/> child that
specifies which StreamHost was used (in this case, the Proxy).

Listing 20: Target Notifies Requester of Bytestream

<ig from=’target@example.org/bar’
id="npg71g53”’
to="requester@example.com/foo’
type=’result’>
<query xmlns=’http://jabber.org/protocol/bytestreams’
sid="vxf9n471bn46’ >
<streamhost-used jid=’streamer.example.com’/>
</query>
</ig>

At this point, the Requester knows which StreamHost was used by the Target.

YRFC 6122: Extensible Messaging and Presence Protocol (XMPP): Address Format <http://tools.ietf.org/htm
1/rfc6122>,
RFC 1928: SOCKS Protocol Version 5 <http://tools.ietf.org/html/rfc1928>,

14

http://tools.ietf.org/html/rfc6122
http://tools.ietf.org/html/rfc1928
http://tools.ietf.org/html/rfc6122
http://tools.ietf.org/html/rfc6122
http://tools.ietf.org/html/rfc1928

/6 MEDIATED CONNECTION

6.3.4 Requester Establishes SOCKS5 Connection with StreamHost

Here, unlike the direct connection case described above, the Requester also needs to establish
a SOCKS5 connection to the Proxy before the parties are able to use the Proxy to exchange
data over the bytestream. Therefore the Requester will establish a connection to the SOCKS5
proxy in the same way the Target did (passing the same value for the CONNECT request), as
shown in the following examples.

Listing 21: Requester Connects to StreamHost

CMD = X’01’

ATYP = X’03’

DST.ADDR = SHA1 Hash of: (SID + Requester JID + Target JID)
DST.PORT 0

Listing 22: StreamHost Acknowledges Connection to Requester

STATUS = X’00’

6.3.5 Activation of Bytestream

Next the Requester needs to activate the bytestream with the Proxy. This is done by sending
an 1Q-set to the Proxy, including an <activate/> element whose XML character data specifies
the full or bare JID of the Target.

Listing 23: Requester Requests Activation of Bytestream

<ig from=’requester@example.com/foo’
id="oqgx6t1c9’
to=’streamer.example.com’
type=’'set’>
<query xmlns=’http://jabber.org/protocol/bytestreams’
sid="vxf9n471bn46’>
<activate>target@example.org/bar</activate>
</query>
</iqg>

Using this information, with the SID and from address on the packet, the Proxy is able to
activate the stream by hashing the SID + Requester JID + Target JID and comparing the result
against the DST.ADDR it has received from the Target and Receiver. Although this provides
a reasonable level of trust that the activation request came from the Requester, it does not
guard against active or even passive attacks against the bytestreams negotiation (see the
Security Considerations for information about potential hijacking of the negotiation).

If the Proxy can fulfill the request, it MUST respond to the Requester with an IQ-result.

15

\J 7 USE WITH MULTI-USER CHAT

Listing 24: Proxy Informs Requester of Activation

<ig from=’streamer.example.com’
id="oqgx6t1c9’
to=’requester@example.com/foo’
type=’result’/>

At this point the parties can begin exchanging data over the bytestream.
If the Proxy cannot fulfill the request, it MUST return an IQ-error to the Requester; the
following conditions are defined:

« <item-not-found/> if the 'from’ address does not match that of the Requester’s full JID

« <not-allowed/> if only one party (either Requester or Recipient, but not both) is con-
nected to the Proxy

+ <not-authorized/> if the hashes do not match

» <internal-server-error/> if the proxy cannot activate the bytestream because of some
internal malfunction

7 Use with Multi-User Chat

When one occupant of a Multi-User Chat (XEP-0045) 2! conference sends an S5B invitation to
another occupant, often the MUC room obscures the real JID of the Target from the Requester
and the real JID of the Requester from the Target. This means that the two parties might not
have the same view of the information needed to calculate the DST.ADDR. To overcome this
problem, the Requester SHOULD calculate the DST.ADDR based on the SID, its real JID, and
the room JID (room@host/nick) of the Target, then include the calculated hash as the value
of a ’dstaddr’ attribute on the <query/> element. The Requester then sends the 1Q-set to the
Target’s room JID because it does not know the Target’s real JID.

An example follows.

Listing 25: Requester Initiates Negotiation Through MUC Room

<ig from=’requester@example.com/foo’

id="npq71g53”’

to=’room@conference.example.net/Tget’

type=’'set’>

<query xmlns=’http://jabber.org/protocol/bytestreams’

dstaddr="416781edf1ae50badd1cb8509ba35b43952bc345"’
sid=’yia72g3v49j7’>

<streamhost
host="24.24.24.1"
jid=’streamer.example.com’

' XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>

16

https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html

/'8 OPTIONAL UDP SUPPORT

port="7625"/>
</query>
</ig>

The MUC room will then forward the 1Q-set to the Target’s real JID with a 'from’ address of
the Requester’s room JID.

Listing 26: MUC Room Forwards Initiation Request

<ig from=’room@conference.example.net/Rter’
id="npg71g53”’
to=’target@example.org/bar’
type=’"set’>
<query xmlns=’http://jabber.org/protocol/bytestreams’
dstaddr="416781edf1ae50bad01cb8509ba35b43952bc345”’
sid="yia72g3v49j7’>
<streamhost
host="24.24.24.1"
jid=’streamer.example.com’
port="7625"/>
</query>
</iqg>

Now the parties can proceed as defined for the direct or mediated connection. See the
Security Considerations for information about potential hijacking of the negotiation.

8 Optional UDP Support

Support for UDP associations is strictly OPTIONAL. However, implementations that support
UDP associations MUST adhere to the profile described in this section.

8.1 Discovering UDP Support

If an implementation supports UDP associations, it MUST advertise that separately by re-
turning a feature of ’http://jabber.org/protocol/bytestreams#udp’ in response to Service
Discovery information requests.

Listing 27: Requester Sends Service Discovery Request to Target

<ig from=’requester@example.com/foo’
id="pys51v35’
to=’target@example.org/bar’
type=’get’>
<query xmlns=’http://jabber.org/protocol/disco#info’/>
</ig>

17

/'8 OPTIONAL UDP SUPPORT

If the Target supports UDP associations, it MUST include a feature of
"http://jabber.org/protocol/bytestreams#udp’ in the service discovery result.

Listing 28: Target Replies to Service Discovery Request

<ig from=’target@example.org/bar’
id="pys51v35’
to=’requester@example.com/foo’
type=’result’>
<query xmlns=’http://jabber.org/protocol/disco#info’>
<identity
category=’proxy’
type=’bytestreams’
name=’File_Transfer_Relay’/>
<feature var=’http://jabber.org/protocol/bytestreams’/>
<feature var=’http://jabber.org/protocol/bytestreams#udp’/>
</query>
</iqg>

8.2 Requesting UDP Mode

UDP associations are requested by setting the 'mode’ attribute to a value of "udp” rather than

”»

“tep”.

Listing 29: Initiation of Interaction (UDP)

<ig from=’requester@example.com/foo’
id=’xi2d1973"
to=’target@example.org/bar’
type=’set’>
<query xmlns=’http://jabber.org/protocol/bytestreams’
mode="udp’
sid="mySID’>
<streamhost
host=7192.168.4.1"
jid=’requester@example.com/foo’
port="5086"/>
</query>
</ig>

8.3 UDP Process

There is one main difference between UDP mode and TCP mode: rather than simply establish-
ing a TCP connection, the Target and/or Requester MUST (1) establish a UDP association and
then (2) initialize the UDP channel. In particular:

18

/'8 OPTIONAL UDP SUPPORT

« If direct connection is followed, Target MUST complete UDP association and initializa-
tion of the UDP channel before informing Requester of success via the <streamhost-
used/> element.

« If mediated connection is followed, (1) Target MUST complete UDP association and
initialization of the UDP channel before informing Requester of success via the
<streamhost-used/> element, and (2) Requester MUST complete UDP association and
initialization of the UDP channel before asking StreamHost to activate the bytestream.

The processes for establishing the UDP association and for initializing the UDP channel are
described below.

8.3.1 Establishing the UDP Association

Once the Target has successfully authenticated with the Proxy over TCP (as described under
Target Establishes SOCKS5 Connection with StreamHost), it MUST send a UDP ASSOCIATE
request (CMD = X'03’) to the host identified by the algorithm defined above.

Listing 30: Target Requests UDP Association with StreamHost

CMD = X’0@3’

ATYP = X’03’

DST.ADDR = SHA1 Hash of: (SID + Requester JID + Target JID)
DST.PORT 0

The StreamHost then acknowledges this request:

Listing 31: StreamHost Acknowledges Request

STATUS = X’00’

8.3.2 Initializing the UDP Channel

After connecting to the StreamHost, the Target (direct connection) or both Target and
Requester (mediated connection) MUST initialize the UDP channel. In order to do so, each
sending entity MUST send a SOCKS5 UDP packet to the StreamHost on the same port used for
the initial TCP connection (in the foregeoing example, a host of 192.168.4.1 and port of 5086),
with DST.PORT set to "1’ and DATA containing the sending entity’s JID (i.e, the JID of either the
Target or Requester).

Listing 32: Target or Requester Sends UDP Initialization Packet to StreamHost

ATYP = X’03’

DST.ADDR = SHA1 Hash of: (SID + Requester JID + Target JID)
DST.PORT = 1

DATA = Target or Requester JID

19

/'8 OPTIONAL UDP SUPPORT

Upon successful receipt by the StreamHost, the StreamHost MUST reply with a message
notification indicating success:

Listing 33: StreamHost Notifies Target or Requester of UDP Success

<message
from="streamer.example.com’
to="target@example.org/bar’
id=’zy3v29h6’>
<udpsuccess xmlns="http://jabber.org/protocol/bytestreams’
dstaddr="Value_of_Hash’/>
</message>

The <udpsuccess/> element indicates that the StreamHost has received a UDP initialization
packet. This element has a single attribute containing the DST.ADDR that was used in the UDP
packet.

If Target is unable to initialize the UDP channel, it MUST return a <remote-server-not-found/>
error to RequesteRequester.

Note: Since UDP is not reliable, the Target SHOULD resend the UDP packet if the reply
notification is not received within a short time (a 5-second retry is RECOMMENDED). The
StreamHost SHOULD ignore duplicate UDP initialization packets once it has replied with a
notification.

8.4 Exchanging UDP Packets

Once the UDP association is established, UDP packets can be exchanged with the StreamHost.
When a UDP packet is sent by either party, it MUST contain a 4-byte header (in addition to
other possible headers, such as that of SOCKS5), which consists of the source virtual port
and then the destination virtual port of the packet, both 16-bit values in network byte order.
This allows the peers to multiplex many packets for different purposes over one session.
The actual application data shall follow this header, and thus the payload size will always be
”Application Data Size +4”.

For all packets sent to the StreamHost, DST.PORT is set to 0, and DATA contains the payload.

Listing 34: Sending UDP to StreamHost

ATYP = X’03’

DST.ADDR = SHA1 Hash of: (SID + Requester JID + Target JID)
DST.PORT Q

DATA = (payload)

UDP packets sent from the StreamHost do not have any SOCKS5 headers, and so the payload
shall be delivered as-is.

The programming interface for a SOCKS5 Bytestreams-aware UDP MUST report an available
buffer space for UDP datagrams that is smaller than the actual space provided by the operating

20

/9 FORMAL DESCRIPTION

system and SOCKSS5 layer if applicable. In other words, 4 more octets smaller.

9 Formal Description

9.1 <query/> Element

The <query/> element is the container for all in-band communications. This element MUST
be qualified by the "http://jabber.org/protocol/bytestreams” namespace. Depending on the
use case, this element contains multiple <streamhost/> elements, a single <streamhost-used/>
element, or a single <activate/> element.

The ’sid’ attribute specifies the bytestream session identifier. The value of this attribute is
any character data. This attribute is REQUIRED.

The 'mode’ attribute specifies the mode to use, either "tcp” or "udp”. If this attribute is not
included, the default value of "tcp” MUST be assumed. This attribute is OPTIONAL.

The ’dstaddr’ attribute specifies the Requester’s calculated value for the DST.ADDR field and is
communicated from Requester to Target in certain situations (see Use with Multi-User Chat).
This attribute is OPTIONAL.

The <streamhost/> element conveys the network connection information. At least one
instance MUST be present in the initial IQ-set from the Requester to the Target. If multiple
instances of this element are present, each one MUST be a separate host/port combination.
The <streamhost-used/> element informs the Requester about the StreamHost to which the
Target has connected. It MUST be present in the IQ-set from the Target to the Requester, and
there MUST be only one instance.

The <activate/> element is used to request activation of a unidirectional or bidirectional
bytestream. It MUST be present in the 1Q-set sent from the Requester to the Proxy after the
Requester receives an 1Q-result from the Target, and there MUST be only one instance.

9.2 <streamhost/> Element

The <streamhost/> element contains the bytestream connection information. This element
has attributes for the StreamHost’s JID, network host/address, and network port. This element
MUST NOT contain any XML character data or child elements.

The 7jid” attribute specifies the StreamHost’s JID. This attribute MUST be present, and MUST
be a valid JID for communication over XMPP.

The "host” attribute specifies the host to connect to. This attribute MUST be present. The
value MUST be either an IPv4 or IPv6 address, or a resolvable DNS domain name.

The ”port” attribute specifies the port to connect to. This attribute MAY be present. The
value MUST be a valid port number in decimal form. If not specified, the port value is 71080”
(in accordance with RFC 1928 %2).

When communicating the available hosts, the Requester MUST include the host and port.

#2RFC 1928: SOCKS Protocol Version 5 <http://tools.ietf.org/html/rfc1928>.

21

http://tools.ietf.org/html/rfc1928
http://tools.ietf.org/html/rfc1928

\/ 10 IMPLEMENTATION NOTES

9.3 <streamhost-used/> Element

The <streamhost-used/> element informs the Requester about the StreamHost to which the
Target has connected. This element has a single attribute for the JID of the StreamHost to
which the Target connected. This element MUST NOT contain any XML character data or
child elements.

The "jid” attribute specifies the JID of the StreamHost. This attribute MUST be present, and
MUST be a valid JID for communication over XMPP.

9.4 <activate/> Element

The <activate/> element is sent from the Requester to the Proxy in order to formally start the
bytestream. This element has no defined attributes and its XML character data specifies the
JID of the target.

9.5 <udpsuccess/> Element

The <udpsuccess/> element is sent from the StreamHost to the Target or Requester to indicate
that the StreamHost has received a UDP initialization packet.

This element is always empty and has one defined attribute, ”dstaddr”, which specifies the
DST.ADDR that was used in the UDP datagram that the StreamHost received.

10 Implementation Notes

10.1 StreamHost Requirements

A StreamHost MUST support TCP connections.
A StreamHost SHOULD:

1. Allow bi-directional bytestreaming between the Requester and Target.

2. In the absence of explicit negotiation of multicasting with the Requester (methods
for which are out of scope in this document), allow only one Target to connect to a
bytestream.

3. Track sessions based on a combination of the StreamID and the Requester’s full or bare
JID, thus allowing a Requester to create more than one simultaneous session.

4. Ignore any bytes sent before the bytestream is activated.

22

\/ 11 SECURITY CONSIDERATIONS

A StreamHost MAY:

1. Support UDP associations in addition TCP connections.

2. Ignore the DST.ADDR and DST.PORT parameters if desired.

10.2 SOCKS5 Parameter Mapping

To facilitate the usage of SOCKS5, command parameters MUST be mapped to the appropri-
ate values. Parameters not specified in the table below SHOULD be used as defined in RFC 1928.

Parameter Value

CMD 1 (CONNECT)

ATYP Hardcoded to 3 (DOMAINNAME) in this usage
DST.ADDR SHA1 Hash of: (SID + Requester JID + Target JID)
DST.PORT 0

Parameter Value

CMD 3 (UDP ASSOCIATE)

ATYP Hardcoded to 3 (DOMAINNAME) in this usage
DST.ADDR SHA1 Hash of: (SID + Requester JID + Target JID)
DST.PORT O

Parameter Value

ATYP Hardcoded to 3 (DOMAINNAME) in this usage
DST.ADDR SHA1 Hash of: (SID + Requester JID + Target JID)
DST.PORT 0 or 1, for payload or initialization packets, respectively.

11 Security Considerations

11.1 Confidentiality and Integrity

This protocol does not include a method for securing or encrypting the data sent over a
SOCKS5 bytetream. If such security is desired, it MUST be negotiated over the bytestream
(once established) using standard protocols such as SSL or TLS. Negotiation of such security

23

/13 XMPP REGISTRAR CONSIDERATIONS

methods is outside the scope of this document.

11.2 Session Hijacking

In the absence of end-to-end encryption of the negotiation stanzas between the Requester
and the Target, a passive attacker (eavesdropper) could authenticate to the bytestream before
the Target, thus preventing the Target from connecting and also hijacking the data sent from
the Requester.

11.3 Denial of Service

A SOCKS5 Bytestreams Proxy can be subject to denial of service attacks (e.g., generating a
large number of session requests that are never activated). Proxy deployments are advised to
monitor usage from particular entities and block them if their usage is excessive.

11.4 Use of SHA-1

The use of the SHA-1 algorithm to hash the SID, Requester’s JID, and Target’s JID is not
security-critical. Therefore, the known weaknesses of SHA-1 are not of significant concern in
this protocol.

12 IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
23

However, it is possible that a future version of this document will request assignment of a
TCP/UDP port for SOCKS5 Bytestreams.

13 XMPP Registrar Considerations

13.1 Protocol Namespaces

The XMPP Registrar % includes ’http://jabber.org/protocol/bytestreams’ in its registry of
protocol namespaces.

“The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

**The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

24

http://www.iana.org/
https://xmpp.org/registrar/
http://www.iana.org/
https://xmpp.org/registrar/

\/ 14 SCHEMA

13.2 Service Discovery Features

The XMPP Registrar includes ’http://jabber.org/protocol/bytestreams#udp’ in its registry of
service discovery features.

13.3 Service Discovery Category/Type

The XMPP Registrar includes the "proxy” category and associated "bytestreams” type in the
Service Discovery registry. The registry submission is as follows:

<category>

<name>proxy</name>

<desc>Proxy servers or services</desc>

<type>
<name>bytestreams</name>
<desc>A proxy for SOCKS5 bytestreams</desc>
<doc>XEP-0065</doc>

</type>

</category>

14 Schema

<?xml version=’1.0’ encoding=’UTF-8’?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="http://jabber.org/protocol/bytestreams’
xmlns="http://jabber.org/protocol/bytestreams’
elementFormDefault="qualified’>

<xs:annotation>
<xs:documentation>
The protocol documented by this schema is defined in
XEP-0065: http://www.xmpp.org/extensions/xep-0065.html
</xs:documentation>
</xs:annotation>

<xs:element name=’query’>
<xs:complexType>
<xs:choice>
<xs:element ref=’streamhost’ minOccurs=’0’ maxOccurs=’
unbounded’ />
<xs:element ref=’streamhost-used’ minOccurs="0"/>

25

\/ 14 SCHEMA

<xs:element name=’activate’ type=’xs:string’ minOccurs=’0’/>
</xs:choice>
<xs:attribute name=’dstaddr’ type=’xs:string’ use=’optional’/>
<xs:attribute name=’mode’ use=’optional’ default=’tcp’>
<xs:simpleType>
<xs:restriction base=’xs:NCName’>
<xs:enumeration value=’tcp’/>
<xs:enumeration value=’udp’/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name=’sid’ type=’xs:string’ use=’required’/>
</xs:complexType>
</xs:element>

<xs:element name=’streamhost’>
<xs:complexType>
<xs:simpleContent>
<xs:extension base=’empty’>
<xs:attribute name=’jid’ type=’xs:string’ use=’required’/>
<xs:attribute name=’host’ type=’xs:string’ use=’required’/>
<xs:attribute name=’port’ type=’xs:string’ use=’optional’
default="1080"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

<xs:element name=’streamhost-used’>
<xs:complexType>
<xs:simpleContent>
<xs:extension base=’empty’>
<xs:attribute name=’jid’ type=’xs:string’ use=’required’/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

<xs:element name=’udpsuccess’>
<xs:complexType>
<xs:simpleContent>
<xs:extension base=’empty’>
<xs:attribute name=’dstaddr’ type=’xs:string’ use=’required’
/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

26

\/ 15 ACKNOWLEDGEMENTS

<xs:simpleType name=’'empty’>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’’/>
</xs:restriction>
</xs:simpleType>

</xs:schema>

15 Acknowledgements

Thanks to Marcus Lundblad, Henning Staib, and Matthew Wild for their feedback.

27

	Introduction
	Terminology
	Determining Support
	Discovering Proxies
	Direct Connection
	Process
	Flow
	Protocol
	Requester Initiates S5B Negotiation
	Target Establishes SOCKS5 Connection with StreamHost/Requester
	Target Acknowledges Bytestream

	Mediated Connection
	Process
	Flow
	Protocol
	Requester Initiates S5B Negotiation
	Target Establishes SOCKS5 Connection with Proxy
	Target Acknowledges Bytestream
	Requester Establishes SOCKS5 Connection with StreamHost
	Activation of Bytestream

	Use with Multi-User Chat
	Optional UDP Support
	Discovering UDP Support
	Requesting UDP Mode
	UDP Process
	Establishing the UDP Association
	Initializing the UDP Channel

	Exchanging UDP Packets

	Formal Description
	<query/> Element
	<streamhost/> Element
	<streamhost-used/> Element
	<activate/> Element
	<udpsuccess/> Element

	Implementation Notes
	StreamHost Requirements
	SOCKS5 Parameter Mapping

	Security Considerations
	Confidentiality and Integrity
	Session Hijacking
	Denial of Service
	Use of SHA-1

	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	Service Discovery Features
	Service Discovery Category/Type

	Schema
	Acknowledgements

