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2 TERMINOLOGY

1 Introduction
HTTP (see RFC 2616 1) is a nearly-ubiquitous mechanism for the publication and retrieval of
information over the Internet. Sometimes it is appropriate for an HTTP Server to allow access
to that information only if the HTTP Client first provides authentication credentials. While
there exist several standardized HTTP authentication schemes (see RFC 2617 2), it may be
useful in some applications to enforce verification of an HTTP request by requiring an XMPP
entity (normally an IM user) to confirm that it made the request. This request verification can
be combined with native HTTP authentication to provide a stronger association between the
request and a particular user, as well as to take advantage of the strong user authentication
provided in XMPP (see XMPP Core 3).

2 Terminology
2.1 HTTP Terms
This document inherits terminology about the HyperText Transfer Protocol from RFC 2616
and RFC 2617.

2.2 Entities

Term Definition
HTTP Client A client that implements the HyperText Transfer Protocol (HTTP)
HTTP Server A server that implements the HyperText Transfer Protocol (HTTP)
XMPP Client A client that implements the Extensible Messaging and Presence Protocol

(XMPP) or its antecedents
XMPP Server A server that implements the Extensible Messaging and Presence Protocol

(XMPP) or its antecedents

Note well that an XMPP Client can simultaneously be an HTTP Client (or vice-versa), and
that an XMPP Server can simultaneously be an HTTP Server (or vice-versa). However, for
the purposes of this discussion, we assume that these entities are logically if not physically
separate and distinct.

1RFC 2616: Hypertext Transport Protocol -- HTTP/1.1 <http://tools.ietf.org/html/rfc2616>.
2RFC 2617: HTTP Authentication: Basic and Digest Access Authentication <http://tools.ietf.org/html/rf
c2617>.

3RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
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4 USE CASE

3 Requirements
The motivations for this document are to:

• Use an existing XMPP connection to associate an HTTP request with an XMPP entity.

• Require confirmation of the request by the XMPP entity before allowing access.

• Ensure that the HTTP request was generated by the principal controlling the XMPP en-
tity.

4 Use Case
The process flow for this protocol is as follows:

1. HTTP Client requests object via HTTP.

2. HTTP Server sends Authenticate Response via HTTP.

3. HTTP Client sends Authorization Request via HTTP (E1).

4. HTTP Server processes request and forwards it to XMPP Server.

5. XMPP Server requests confirmation via XMPP (E2).

6. XMPP Client confirms request via XMPP.

7. XMPP Server delivers confirmation to HTTP Server.

8. HTTP Server allows HTTP Client to access object (E3).

Error cases:

• E1: HTTP Client does not understand the presented authentication scheme.

• E2: HTTP Server does not recognize or understand the request.

• E3: HTTP Server denies access.

This process flow is described in more detail in the following sections.
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4 USE CASE

4.1 HTTP Client Sends Request via HTTP
Let us stipulate that an XMPP user (say, <juliet@capulet.com>) learns of an HTTP URL (e.g.,
<https://files.shakespeare.lit:9345/missive.html>). The user then attempts to retrieve the
URL using her HTTP Client, which opens a TCP connection to the appropriate port of the host
and sends an HTTP request as defined in RFC 2616. The request method MAY be any valid
HTTP request method, including user-defined methods.
An example is provided below:

Listing 1: HTTP Client Makes Request (No Credentials)
GET https: // files.shakespeare.lit:9345/missive.html HTTP /1.1

In order to avoid a round trip, the initial request MAY contain HTTP authorization credentials
as described below.

4.2 HTTP Server Returns Authenticate Response via HTTP
If the user did not provide authorization credentials in the initial request, the HTTP Server
then MUST respond with a (401) Authenticate response as defined in RFC 2616. The response
MUST contain an HTTP 401 error and oneWWW-Authenticate header for each authentication
scheme recognized by the HTTP Server. In order to provide verification via XMPP, at least
one of these headers MUST specify a realm of ”xmpp” (case-sensitive).

Listing 2: HTTP Server Returns Authenticate Response
401 Unauthorized HTTP /1.1
WWW -Authenticate: Basic realm=”xmpp”
WWW -Authenticate: Digest realm=”xmpp”,

domain=”files.shakespeare.lit”,
stale=false ,
nonce=”ec2cc00f21f71acd35ab9be057970609”,
qop=”auth”,
algorithm=”MD5”

4.3 HTTP Client Sends Authorization Request via HTTP
The HTTP Client responds with an Authorization Request as defined in RFC 2616. The follow-
ing rules apply:

1. The requestMUST include the Jabber Identifier (JID) of the usermaking the request. This
SHOULD be the full JID (<user@host/resource>) of a client that supports the protocol
defined herein, although it MAY be the user’s bare JID (<user@host>) instead.
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2. The request MUST include a transaction identifier for the request. This identifier MUST
be unique within the context of the HTTP Client’s interaction with the HTTP Server.
If the HTTP request is generated by the XMPP Client (e.g., because the HTTP URL was
discovered via Out-of-Band Data (XEP-0066) 4) then the transaction identifier SHOULD
be generated by the client; if not, the transaction identifier SHOULD be provided by the
human user who controls the HTTP Client.

The Authorization Request process is described in the following subsections.

4.3.1 Basic Access Authentication Scheme

The Basic Access Authentication scheme is defined in RFC 2617. This scheme specifies that the
authorization information shall consist of a userid and password, separated by a ’:’ character
and then encoded using Base64. When the realm is ”xmpp”, the profile defined herein
further specifies that the userid MUST be a valid JID as described above, that the password
entity MUST be a transaction identifier as described above, that any character in the JID or
transaction identifier that is outside the range of the US-ASCII coded character set MUST be
transformed into a percent-encoded octet as specified in Section 2.1 of RFC 3986 5 prior to
Base64 encoding, and that Base64 encoding MUST adhere to Section 4 of RFC 4648 6.
(Refer to RFC 2617 for specification of the syntax of the Basic Access Authentication scheme;
that information is not duplicated here.)

Listing 3: HTTP Client Makes Basic Authorization Request
Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ ==

4.3.2 Digest Access Authentication Scheme

The Digest Access Authentication scheme is defined in RFC 2617. This scheme specifies that
the authorization information shall consist of the MD5 checksum of the username, a cnonce
generated by the client, a nonce value provided in the challenge, the HTTP method, and the
requested URL. When the realm is ”xmpp”, the profile defined herein further specifies that
prior to creating the MD5 checksum the username MUST be a valid JID as described above,
that the cnonce MUST be a transaction identifier as described above, and that any character
in the JID or transaction identifier that is outside the range of the US-ASCII coded character
set MUST be transformed into a percent-encoded octet as specified in Section 2.1 of RFC 3986.
(Refer to RFC 2617 for specification of the syntax of the Digest Access Authentication scheme;
that information is not duplicated here.)

4XEP-0066: Out of Band Data <https://xmpp.org/extensions/xep-0066.html>.
5RFC 3986: Uniform Resource Identifiers (URI): Generic Syntax <http://tools.ietf.org/html/rfc3986>.
6RFC 4648: The Base16, Base32, and Base64 Data Encodings <http://tools.ietf.org/html/rfc4648>.
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Listing 4: HTTP Client Makes Digest Authorization Request
Authorization: Digest username=”juliet@capulet.com”,

realm=”xmpp”,
nonce=”ec2cc00f21f71acd35ab9be057970609”,
uri=”missive.html”,
qop=auth ,
nc=00000001 ,
cnonce=”0a4f113b”,
response=”6629 fae49393a05397450978507c4ef1”,
opaque=”5ccc069c403ebaf9f0171e9517f40e41”

4.3.3 Additional Authentication Schemes

The HTTP Server MAY offer any other valid authentication scheme, instead of or in addition
to the Basic and Digest schemes mentioned above, as long as the scheme makes it possible to
specify a userid (JID) and transaction identifier as described above. However, it is RECOM-
MENDED to implement both the Basic and Digest authentication schemes.

4.4 HTTP Server Processes Request
Once the HTTP Client has communicated the JID and transaction identifier to the HTTP Server,
the HTTP Server MUST verify that the JID is authorized to access the HTTP resource. This
may involve JID-level or domain-level access checks, or (depending on local service policies)
potentially no access checks at all if only verification is required.
If the JID is authorized to access the HTTP resource, the HTTP Server MUST pass the URL,
method, JID, and transaction identifier to the XMPP Server for confirmation. Exactly how
this is done is up to the implementation. It is RECOMMENDED for the HTTP Server to connect
to the XMPP Server as a trusted server component and to itself generate the confirmation
request as described below.

4.5 XMPP Server Requests Confirmation via XMPP
Upon receiving the JID and transaction identifier from the HTTP Server, the XMPP Server
MUST send a confirmation request (via XMPP) to the XMPP Client (or route the confirmation
request generated by the HTTP Server acting as a trusted XMPP server component).
The confirmation request shall consist of an empty <confirm/> element qualified by the
’’http://jabber.org/protocol/http-auth’ namespace. This element MUST possess a ’method’
attribute whose value is themethod of the HTTP request, MUST possess a ’url’ attribute whose
value is the full HTTP URL that was requested, and MUST possess an ’id’ attribute whose value
is the transaction identifier provided in the HTTP Authorization Request.
If the JID provided was a full JID, the confirmation request SHOULD be sent in an <iq/> stanza
of type ”get” whose ’to’ attribute is set to the full JID, but MAY be sent in a <message/> stanza.
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If the JID provided was a bare JID, the confirmation request MUST be sent in a <message/>
stanza whose ’to’ attribute is set to the bare JID; this enables delivery to the ”most available”
resource for the user (however ”most available” is determined by the XMPP Server). The
<message/> stanza SHOULD include a <thread/> element for tracking purposes and MAY
include a <body/> element that provides human-readable information or instructions. If it
however provides a <body/>, the server SHOULD be able to handle a plaintext reply from the
client, in the case where it does not support this XEP.

Listing 5: Confirmation Request Sent via IQ
<iq type=’get’

from=’files.shakespeare.lit’
to=’juliet@capulet.com/balcony ’
id=’ha000 ’>

<confirm xmlns=’http: // jabber.org/protocol/http -auth’
id=’a7374jnjlalasdf82 ’
method=’GET’
url=’https: // files.shakespeare.lit:9345/missive.html’/>

</iq>

Listing 6: Confirmation Request Sent via Message
<message type=’normal ’

from=’files.shakespeare.lit’
to=’juliet@capulet.com’>

<thread >e0ffe42b28561960c6b12b944a092794b9683a38 </thread >
<body>

Someone (maybe you) has requested the following file:

https: //files.shakespeare.lit:9345/missive.html.

The transaction identifier is:

a7374jnjlalasdf82

If you wish to confirm the request , please reply
to this message by typing ”OK”. If not , please
reply with ”No”.

</body>
<confirm xmlns=’http: // jabber.org/protocol/http -auth’

id=’a7374jnjlalasdf82 ’
method=’GET’
url=’https: // files.shakespeare.lit:9345/missive.html’/>

</message >
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4.6 XMPP Client Confirms Request via XMPP
If the confirmation request was provided via an <iq/> stanza, the XMPP Client MUST respond
to the request by sending an <iq/> stanza back to the XMPP Server. If the user wishes to
confirm the request, the <iq/> response stanza MUST be of type ”result” and MAY contain the
original <confirm/> child element (although this is not necessary since the XMPP ’id’ attribute
can be used for tracking purposes):

Listing 7: XMPP Client Confirms Request via IQ
<iq type=’result ’

from=’juliet@capulet.com/balcony ’
to=’files.shakespeare.lit’
id=’ha000 ’/>

If the user wishes to deny the request, the <iq/> response stanza MUST be of type ”error”,
MAY contain the original <confirm/> child element (although this is not necessary since the
XMPP ’id’ attribute can be used for tracking purposes), and MUST specify an error, which
SHOULD be <not-authorized/>:

Listing 8: XMPP Client Denies Request via IQ
<iq type=’error ’

from=’juliet@capulet.com/balcony ’
to=’files.shakespeare.lit’
id=’ha000 ’>

<confirm xmlns=’http: // jabber.org/protocol/http -auth’
id=’a7374jnjlalasdf82 ’
method=’GET’
url=’https: // files.shakespeare.lit:9345/missive.html’/>

<error code=’401’ type=’auth’>
<not -authorized xmlns=’urn:ietf:params:xml:xmpp -stanzas ’/>

</error >
</iq>

If the confirmation request was provided via a <message/> stanza and the <message/> contains
a human-readable <body/> or does not contain a <body/> but the XMPP Client understands
the ’http://jabber.org/protocol/http-auth’ namespace, the XMPP Client SHOULD respond to
the request by sending a <message/> stanza back to the XMPP Server. If the user wishes to
confirm the request, the <message/> response stanza SHOULD be of type ”normal”, MUST
mirror the <thread/> ID (if provided by the XMPP Server), and MUST contain the original
<confirm/> child element:

Listing 9: XMPP Client Confirms Request via Message
<message from=’juliet@capulet.com/balcony ’

to=’files.shakespeare.lit’>
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<thread >e0ffe42b28561960c6b12b944a092794b9683a38 </thread >
<confirm xmlns=’http: // jabber.org/protocol/http -auth’

id=’a7374jnjlalasdf82 ’
method=’GET’
url=’https: // files.shakespeare.lit:9345/missive.html’/>

</message >

If the user wishes to deny the request, the <message/> response stanza MUST be of type
”error”, MUST mirror the <thread/> ID (if provided by the XMPP Server), MUST contain
the original <confirm/> child element, and MUST specify an error, which SHOULD be <not-
authorized/>:

Listing 10: XMPP Client Denies Request via Message
<message type=’error ’

from=’juliet@capulet.com/balcony ’
to=’files.shakespeare.lit’>

<thread >e0ffe42b28561960c6b12b944a092794b9683a38 </thread >
<confirm xmlns=’http: // jabber.org/protocol/http -auth’

id=’a7374jnjlalasdf82 ’
method=’GET’
url=’https: // files.shakespeare.lit:9345/missive.html’/>

<error code=’401’ type=’auth’>
<not -authorized xmlns=’urn:ietf:params:xml:xmpp -stanzas ’/>

</error >
</message >

4.7 HTTP Server Allows HTTP Client to Access Object
Once the XMPP Client has successfully confirmed the request, the XMPP Server forwards that
confirmation to the HTTP Server, which allows access:

Listing 11: HTTP Server Allows Access to Object
200 OK HTTP /1.1
Content -Type: text/html
Content -Length: 3032

...

If the XMPP Client denied the request, the HTTP Server MUST return a Forbidden error:

Listing 12: HTTP Server Denies Access to Object
403 Forbidden HTTP /1.1

8



6 SECURITY CONSIDERATIONS

5 Implementation Notes
5.1 Interaction of HTTP methods
For the HEAD and OPTIONS methods, the credentials SHOULD be usable for a subsequent
request from the same entity. This enables an entity to both determine support for the
mechanism defined herein and start the authentication process.
For the POST and PUT methods (or any method containing a message body), clients MUST
send all data with each request (if needed, the client should obtain credentials with a previous
HEAD or OPTIONS method).

6 Security Considerations
6.1 Association of Request
In order to associate the HTTP request with the XMPP confirmation, a transaction identifier
MUST be provided by the user in the HTTP Authorization Request, then passed unchanged
to the XMPP Client as the value of the <confirm/> element’s ’id’ attribute. If the XMPP Client
generated the HTTP request, it MUST check the transaction identifier against the requests
it has made to verify that the request has not yet been confirmed. If the XMPP Client did
not generate the HTTP request, it MUST present the transaction identifier to the user for
confirmation. If the XMPP Client or User confirms the request, the XMPP Client MUST then
return a confirmation to the XMPP Server for delivery to the HTTP Server.

6.2 Channel Encryption
To reduce the likelihood of man-in-the-middle attacks, channel encryption SHOULD be used
for both the XMPP channel and the HTTP channel. In particular:

1. The channel used for HTTP requests and responses SHOULD be encrypted via SSL (secure
HTTP via https: URLs) or TLS (RFC 2817 7).

2. If the standard binding of XMPP to TCP is used, TLS SHOULD be negotiated for the XMPP
channel in accordance with RFC 6120.

3. If a binding of XMPP to HTTP is used (e.g., as specified in XEP-0124), exchanges between
theXMPPClient andXMPP Server (connectionmanager) SHOULD be sent over a channel
that is encrypted using SSL or TLS.

7RFC 2817: Upgrading to TLS Within HTTP/1.1 <http://tools.ietf.org/html/rfc2817>.
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6.3 End-to-End Encryption
For added security, the XMPP Server and XMPP Client may wish to communicate using
end-to-end encryption. Methods for doing so are outside the scope of this proposal.

7 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
8.

8 XMPP Registrar Considerations
8.1 Protocol Namespaces
The XMPP Registrar 9 includes ”http://jabber.org/protocol/http-auth” in its registry of
protocol namespaces.

9 XML Schema

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’http: // jabber.org/protocol/http -auth’
xmlns=’http: // jabber.org/protocol/http -auth’
elementFormDefault=’qualified ’>

<xs:annotation >
<xs:documentation >

The protocol documented by this schema is defined in
XEP -0070: http://www.xmpp.org/extensions/xep -0070. html

</xs:documentation >
</xs:annotation >

<xs:element name=’confirm ’>
<xs:complexType >

8The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

9The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.
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<xs:simpleContent >
<xs:extension base=’empty ’>

<xs:attribute name=’id’ use=’required ’ type=’xs:string ’/>
<xs:attribute name=’method ’ use=’required ’ type=’xs:NCName ’/

>
<xs:attribute name=’url’ use=’required ’ type=’xs:anyURI ’/>

</xs:extension >
</xs:simpleContent >

</xs:complexType >
</xs:element >

<xs:simpleType name=’empty ’>
<xs:restriction base=’xs:string ’>

<xs:enumeration value=’’/>
</xs:restriction >

</xs:simpleType >

</xs:schema >
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