
XEP-0072: SOAP Over XMPP

Fabio Forno
mailto:fabio.forno@gmail.com
xmpp:ff@jabber.bluendo.com

Peter Saint-Andre
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org

https://stpeter.im/

2022-03-22
Version 1.0.1

Status Type Short Name
Draft Standards Track soap

This specification defines methods for transporting SOAP messages over XMPP. Although the proto-
col supports only the request-response message exchange pattern, the protocol is formally defined as a
SOAP Protocol Binding in accordance with version 1.2 of theW3C SOAP specification. In addition, a WSDL
definition is defined for the purpose of advertising the availability of this protocol binding.

mailto:fabio.forno@gmail.com
xmpp:ff@jabber.bluendo.com
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2020 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Architectural Assumptions 1

3 Use Cases 2
3.1 Discovering Support . 2
3.2 Exchanging SOAP Messages . 3

3.2.1 Exchanging SOAP Messages Using XMPP IQ Stanzas 3
3.2.2 Exchanging SOAP Messages Using XMPP Message Stanzas 7

3.3 Sending Associated Data . 7
3.3.1 File Transfer . 10
3.3.2 Including Links . 12

3.4 Specifying a WSDL Definition . 15

4 SOAP XMPP Binding 17
4.1 Binding Name . 17
4.2 Supported Features . 17
4.3 Supported Message Exchange Patterns . 18
4.4 Operation of Request-Response Message Exchange Pattern 18

4.4.1 Behavior of Requesting SOAP Node . 19
4.4.2 Behavior of Responding SOAP Node . 21

5 W3C Considerations 24
5.1 W3C Review . 24
5.2 SOAP Versioning . 25
5.3 XML Versioning . 25

6 Error Handling 25

7 Business Rules 26
7.1 Encoding . 26

8 Security Considerations 26

9 IANA Considerations 27

10 XMPP Registrar Considerations 27
10.1 Protocol Namespaces . 27
10.2 Service Discovery Identity . 27

11 XML Schema 27
11.1 SOAP Envelope . 27
11.2 Application-Specific XMPP Errors . 28

12 Implementation Notes 28

13 Acknowledgements 30

2 ARCHITECTURAL ASSUMPTIONS

1 Introduction
SOAP 1 is a lightweight protocol that defines a method for the exchange of messages inde-
pendently from the programming language and platform. For interoperability, the SOAP
specification is also agnostic about possible transport protocols, though almost all existing
implementations use mainly HTTP.
The primary limitation of HTTP consists in the fact that HTTP-basedmessage exchanges allow
only synchronous request-response semantics. To overcome this limitation, SMTP is often
used to carry asynchronous messages, but it is a complex protocol and inefficient for passing
short and frequent messages that should be delivered in close to real time.
Thus XMPP (see XMPP Core 2) can be the ideal transport protocol for many of the application
fields of web services, since it can carry efficiently and reliably both types of messages,
synchronous and asynchronous. Moreover, XMPP-based web services will not need complex
support protocols, such as WS-Routing and WS-Referral, in order to deliver messages to
entities that cannot be identified by static public IP addresses. Therefore, this document
defines a binding of SOAP to XMPP as an alternative to the existing HTTP and SMTP bindings.
(Note: The main body of this document provides descriptive text suitable for use by XMPP
developers. A formal description of the SOAP XMPP Binding itself is provided in the section
of this document entitled SOAP XMPP Binding.)

2 Architectural Assumptions
The usual architecture of XMPP is described in RFC 6120. In essence, XMPP is most commonly
deployed using a client-server (or logical peer-to-peer) architecture quite similar to that of
the email system, except that XMPP does not have multiple hops between servers, enforces
domain names to prevent address spoofing, and enables channel encryption (via TLS) and
authentication (via SASL) between client and server as well as among servers.
The binding of SOAP to XMPP assumes that most SOAP-enabled XMPP entities will be imple-
mented as XMPP clients that communicate with other entities as logical peers. However, in
order to deploy more scalable services, such entities could also be implemented as server-side
components (see Jabber Component Protocol (XEP-0114) 3) or even as special-purpose XMPP
servers.
The SOAP specification defines the concepts of ”SOAP intermediary” and ”ultimate SOAP
receiver” (see Section 1.5.3 of SOAP Version 1.2 Part 1). In general, this specification assumes
that XMPP entities that support the SOAP XMPP Binding will be ultimate SOAP receivers,
since SOAP intermediaries tend to be artifacts of the existing SOAP bindings (HTTP and SMTP)
rather than applicable to all possible bindings. SOAP intermediaries are usually deployed
in order to (1) cross trust boundaries in protocols that do not enforce domain names or
authenticate end-points, (2) ensure scalability, (3) secure messages sent over unencrypted

1SOAP <http://www.w3.org/TR/SOAP/>.
2RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
3XEP-0114: Jabber Component Protocol <https://xmpp.org/extensions/xep-0114.html>.

1

http://www.w3.org/TR/SOAP/
http://tools.ietf.org/html/rfc6120
https://xmpp.org/extensions/xep-0114.html
http://www.w3.org/TR/SOAP/
http://tools.ietf.org/html/rfc6120
https://xmpp.org/extensions/xep-0114.html

3 USE CASES

channels, and (4) provide message tracing. However, these issues are addressed natively in
XMPP (e.g., channel encryption is defined in RFC 6120), in XMPP extensions (e.g., message
tracing is defined in Advanced Message Processing (XEP-0079) 4), or in deployment decisions
such as business level agreements between XMPP domains. One final justification for SOAP
intermediaries is to act as gateways between different transport mechanisms (e.g., between
HTTP and SMTP), and XMPP entities may well be SOAP intermediaries for that reason.
For further details about gateways between XMPP and other SOAP bindings, refer to the
Implementation Notes section of this document.

3 Use Cases
3.1 Discovering Support
In order to determine whether a potential responding entity supports the SOAP XMPP Bind-
ing, a requesting entity SHOULD send a Service Discovery (XEP-0030) 5 information request to
the potential responding entity:

Listing 1: Requester queries responder regarding protocol support
<iq from=’requester@example.com/soap -client ’

to=’responder@example.com/soap -server ’
id=’disco1 ’
type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

If the responding entity supports the SOAP XMPP Binding and the requesting entity is
not blocked from communicating with the responding entity, the responding entity MUST
include a feature of ”http://jabber.org/protocol/soap” in its reply and SHOULD specify a
service discovery identity of ”automation/soap”.

Listing 2: Responder replies regarding protocol support
<iq from=’responder@example.com/soap -server ’

to=’requester@example.com/soap -client ’
id=’disco1 ’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
<identity category=’automation ’ type=’soap’/>
<feature var=’http: // jabber.org/protocol/soap’/>

</query >
</iq>

4XEP-0079: Advanced Message Processing <https://xmpp.org/extensions/xep-0079.html>.
5XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

2

https://xmpp.org/extensions/xep-0079.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0079.html
https://xmpp.org/extensions/xep-0030.html

3 USE CASES

3.2 Exchanging SOAP Messages
When a requesting entity wants to interact with a responding entity via the SOAP XMPP
Binding, it faces a fundamental choice: to use <iq/> stanzas or to use <message/> stanzas. The
following guidelines may prove useful:

1. <iq/> stanzas SHOULD be used when more formal request-response semantics are
needed or when an immediate answer is required.

2. <message/> stanzas SHOULD be used when less formal request-response semantics are
acceptable or when store-and-forward (”offline message”) delivery is needed (e.g., be-
cause the intended recipient may be temporarily unavailable).

Examples of both approaches are provided below, encapsulating the SOAP message examples
(a travel reservation flow) to be found in SOAP Version 1.2 Part 0 6.

3.2.1 Exchanging SOAP Messages Using XMPP IQ Stanzas

The transport with <iq/> stanzas is performed in a way similar to that described for XML-RPC
in Jabber-RPC (XEP-0009) 7. Request envelopes are carried by <iq/> stanzas of type ”set”, and
answer envelopes by <iq/> stanzas of type ”result”. SOAP errors are encoded with standard
SOAP envelopes, and returned in stanzas of type ”error” with appropriate codes in order to
distinguish them from errors specific to the XMPP transport layer (see Error Handling for
details).
Each <iq/> stanza of type ”set” MUST contain a SOAP envelope as the first-level child el-
ement, since it already represents a properly namespaced XML subtree qualified by the
’http://www.w3.org/2003/05/soap-envelope’ namespace.

Listing 3: Requesting entity sends IQ-set
<iq from=’requester@example.com/soap -client ’

id=’soap1 ’
to=’responder@example.com/soap -server ’
type=’set’>

<env:Envelope xmlns:env=”http: //www.w3.org /2003/05/ soap -envelope”>
<env:Header >

<m:reservation
xmlns:m=”http: // travelcompany.example.org/reservation”
env:role=”http: //www.w3.org /2003/05/ soap -envelope/role/next”
env:mustUnderstand=”true”>

<m:reference >uuid:093a2da1 -q345 -739r-ba5d -pqff98fe8j7d </
m:reference >

<m:dateAndTime >2001 -11 -29 T13:20:00 .000 -05 :00</m:dateAndTime >

6SOAP Version 1.2 Part 0: Primer <http://www.w3.org/TR/soap12-part0>.
7XEP-0009: Jabber-RPC <https://xmpp.org/extensions/xep-0009.html>.

3

http://www.w3.org/TR/soap12-part0
https://xmpp.org/extensions/xep-0009.html
http://www.w3.org/TR/soap12-part0
https://xmpp.org/extensions/xep-0009.html

3 USE CASES

</m:reservation >
<n:passenger

xmlns:n=”http: // mycompany.example.com/employees”
env:role=”http: //www.w3.org /2003/05/ soap -envelope/role/next”
env:mustUnderstand=”true”>

<n:name >Ake Jogvan Ovind </n:name >
</n:passenger >

</env:Header >
<env:Body >

<p:itinerary xmlns:p=”http: // travelcompany.example.org/
reservation/travel”>

<p:departure >
<p:departing >New York</p:departing >
<p:arriving >Los Angeles </p:arriving >
<p:departureDate >2001 -12 -14</p:departureDate >
<p:departureTime >late afternoon </p:departureTime >
<p:seatPreference >aisle </p:seatPreference >

</p:departure >
<p:return >

<p:departing >Los Angeles </p:departing >
<p:arriving >New York</p:arriving >
<p:departureDate >2001 -12 -20</p:departureDate >
<p:departureTime >mid -morning </p:departureTime >
<p:seatPreference/>

</p:return >
</p:itinerary >
<q:lodging xmlns:q=”http: // travelcompany.example.org/reservation

/hotels”>
<q:preference >none</q:preference >

</q:lodging >
</env:Body >

</env:Envelope >
</iq>

If the responding entity does not support the SOAP XMPP Binding, it SHOULD return a
<service-unavailable/> error:

Listing 4: Responding entity reports that it cannot handle SOAP messages
<iq type=’result ’ to=’requester@example.com/soap -client ’ id=’soap1 ’>

<error code=’503’ type=’cancel ’>
<service -unavailable xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

If a SOAP-related fault occurs, the mappings in Error Handling SHOULD be used.

Listing 5: Responding entity indicates SOAP fault

4

3 USE CASES

<iq type=’error ’ to=’requester@example.com/soap -client ’ id=’soap1 ’>
<env:Envelope

xmlns:env=’http: //www.w3.org /2003/05/ soap -envelope ’
xmlns:rpc=’http: //www.w3.org /2003/05/ soap -rpc’>

<env:Body >
<env:Fault >

<env:Code >
<env:Value >env:Sender </env:Value >
<env:Subcode >

<env:Value >rpc:BadArguments </env:Value >
</env:Subcode >

</env:Code >
<env:Reason >

<env:Text xml:lang=’en -US’>Processing error </env:Text >
</env:Reason >

</env:Fault >
</env:Body >

</env:Envelope >
<error code=’500’ type=’modify ’>

<undefined -condition xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<Sender xmlns=’http: // jabber.org/protocol/soap#fault ’/>

</error >
</iq>

If the responding entity does not return an error, it MUST respond with an IQ of type ”result”:

Listing 6: Responding entity returns IQ-result
<iq from=’responder@example.com/soap -server ’

id=’soap1 ’
to=’requester@example.com/soap -client ’
type=’result ’>

<env:Envelope xmlns:env=”http: //www.w3.org /2003/05/ soap -envelope”>
<env:Header >

<m:reservation xmlns:m=”http: // travelcompany.example.org/
reservation”
env:role=”http: //www.w3.org /2003/05/ soap -envelope/role/next”
env:mustUnderstand=”true”>

<m:reference >uuid:093a2da1 -q345 -739r-ba5d -pqff98fe8j7d </
m:reference >

<m:dateAndTime >2001 -11 -29 T13:35:00 .000 -05 :00</m:dateAndTime >
</m:reservation >
<n:passenger xmlns:n=”http: // mycompany.example.com/employees”

env:role=”http: //www.w3.org /2003/05/ soap -envelope/role/next”
env:mustUnderstand=”true”>

<n:name >Ake Jogvan Ovind </n:name >
</n:passenger >

</env:Header >
<env:Body >

5

3 USE CASES

<p:itineraryClarification xmlns:p=”http: // travelcompany.example.
org/reservation/travel”>

<p:departure >
<p:departing >

<p:airportChoices >JFK LGA EWR</p:airportChoices >
</p:departing >

</p:departure >
<p:return >

<p:arriving >
<p:airportChoices >JFK LGA EWR</p:airportChoices >

</p:arriving >
</p:return >

</p:itineraryClarification >
</env:Body >

</env:Envelope >
</iq>

At this point the requesting entity could send another IQ-set:

Listing 7: Requesting entity sends another IQ-set
<iq from=’requester@example.com/soap -client ’

id=’soap2 ’
to=’responder@example.com/soap -server ’
type=’set’>

<env:Envelope xmlns:env=”http: //www.w3.org /2003/05/ soap -envelope”>
<env:Header >

<m:reservation
xmlns:m=”http: // travelcompany.example.org/reservation”
env:role=”http: //www.w3.org /2003/05/ soap -envelope/role/next”
env:mustUnderstand=”true”>

<m:reference >uuid:093a2da1 -q345 -739r-ba5d -pqff98fe8j7d </
m:reference >

<m:dateAndTime >2001 -11 -29 T13:36:50 .000 -05 :00</m:dateAndTime >
</m:reservation >
<n:passenger xmlns:n=”http: // mycompany.example.com/employees”

env:role=”http: //www.w3.org /2003/05/ soap -envelope/role/next”
env:mustUnderstand=”true”>

<n:name >Ake Jogvan Ovind </n:name >
</n:passenger >

</env:Header >
<env:Body >

<p:itinerary xmlns:p=”http: // travelcompany.example.org/
reservation/travel”>

<p:departure >
<p:departing >LGA</p:departing >

</p:departure >
<p:return >

<p:arriving >EWR</p:arriving >

6

3 USE CASES

</p:return >
</p:itinerary >

</env:Body >
</env:Envelope >

</iq>

3.2.2 Exchanging SOAP Messages Using XMPP Message Stanzas

The process for exchanging SOAP messages using the XMPP <message/> stanza type is
effectively no different from the use with <iq/> stanzas, except that message stanzas may be
sent to bare JIDs (user@host) rather than full JIDs (user@host/resource), message stanzas
may be stored for later delivery, etc. The following business rules apply:

1. The message stanza containing a request MUST carry one SOAP envelope as a first-level
child element.

2. The ’id’ attribute MUST be used to track the XMPP messages and eventually associate
errors or answers with the related requests (this is for tracking at the XMPP level, not
the SOAP level).

3.3 Sending Associated Data
SOAP messages may contain associated (usually binary) data, and XMPP stanzas that en-
capsulate such SOAP messages could invoke bandwidth restriction settings (commonly
called ”karma” in XMPP) tuned for normal text chats. The problem could be bypassed by
servers having special karma settings for larger messages, or by SOAP-enabled entities being
implemented as components rather than XMPP nodes; however, server-to-server communi-
cations risk becoming a serious bottleneck, especially in terms of latency and responsiveness
when too many large messages are sent. Therefore, it is desirable to support the sending of
attachments or files in order to exchange large amounts of binary data associated with SOAP
requests and responses. As summarized in the following table, here are four possiblemethods:

7

3 USE CASES

Method Description Recommendation Reasoning
File Transfer Negotiate file trans-

fer using SI File
Transfer (XEP-
0096) XEP-0096:
SI File Transfer
<https://xmpp.org/extensions/xep-
0096.html>. and
Publishing Stream
Initiation Re-
quests (XEP-0137)
XEP-0137: Pub-
lishing Stream
Initiation Requests
<https://xmpp.org/extensions/xep-
0137.html>..

SHOULD Recommended ap-
proach for file trans-
fer over XMPP (e.g.,
see Intermediate
IM Protocol Suite
(XEP-0117) XEP-
0117: Intermediate
IM Protocol Suite
<https://xmpp.org/extensions/xep-
0117.html>.).

Include Link Represent the
binary data as a
file, publish it to
an accessible file
server (e.g., HTTP
or FTP URL), and
insert a link to the
file directly into
the XMPP message
stanza (via Out-of-
Band Data (XEP-
0066) XEP-0066:
Out of Band Data
<https://xmpp.org/extensions/xep-
0066.html>.) or into
the SOAP enve-
lope (via Resource
Representation
SOAP Header
Block Resource
Representation
SOAP Header Block
<http://www.w3.org/TR/soap12-
rep>.).

MAY Fallback if file trans-
fer is not possible
(not all clients
can publish to file
servers).

8

3 USE CASES

Method Description Recommendation Reasoning
Alternate Transports Send SOAP XML

plus binary data
over alternate
transports such as
WS-Attachments
WS-Attachments
<http://www.watersprings.org/pub/id/draft-
nielsen-dime-soap-
01.txt> (work in
progress). or
SOAP-over-BEEP as
defined in RFC 4227
RFC 4227: Using
the Simple Object
Access Protocol
(SOAP) in Blocks
Extensible Exchange
Protocol (BEEP)
<http://tools.ietf.org/html/rfc4227>..

SHOULD NOT These methods are
just other trans-
port protocols and
would needlessly
complicate imple-
mentations of SOAP
over XMPP.

MIME Encode SOAP
envelopes and at-
tachments as MIME
multipart mes-
sages using SOAP
1.2 Attachment
Feature SOAP 1.2
Attachment Feature
<http://www.w3.org/TR/soap12-
af/>. (or, more
recently, SOAP
Message Transmis-
sion Optimization
Mechanism SOAP
Message Trans-
mission Optimiza-
tion Mechanism
<http://www.w3.org/TR/soap12-
mtom>. and
XML-binary Op-
timized Packaging
XML-binary Opti-
mized Packaging
<http://www.w3.org/TR/xop10/>.).

MUST NOT XML streams are
pure XML and are
not MIME-aware.

9

3 USE CASES

The recommended approaches (file transfer and including a link) are described more fully
below.

3.3.1 File Transfer

The recommended method for sending associated data is to use the file transfer protocol
described in XEP-0096. Because this is the common and standardized method for XMPP
entities to transfer large or binary files outside the XMPP band, it SHOULD be used.
In particular, the entity that has the file SHOULD advertise the availability of the associated
stream using XEP-0137 by including the SI-pub data extension along with the XMPP <mes-
sage/> stanza with which the data is associated: 8

Listing 8: Sender sends message with SI-pub
<message from=’requester@example.com/soap -client ’

id=’soap2 ’
to=’responder@example.com/soap -server ’>

<env:Envelope xmlns:env=”http: //www.w3.org /2003/05/ soap -envelope”>
<env:Header >

<m:reservation
xmlns:m=”http: // travelcompany.example.org/reservation”
env:role=”http: //www.w3.org /2003/05/ soap -envelope/role/next”
env:mustUnderstand=”true”>

<m:reference >uuid:093a2da1 -q345 -739r-ba5d -pqff98fe8j7d </
m:reference >

<m:dateAndTime >2001 -11 -29 T13:36:50 .000 -05 :00</m:dateAndTime >
</m:reservation >
<n:passenger xmlns:n=”http: // mycompany.example.com/employees”

env:role=”http: //www.w3.org /2003/05/ soap -envelope/role/next”
env:mustUnderstand=”true”>

<n:name >Ake Jogvan Ovind </n:name >
</n:passenger >

</env:Header >
<env:Body >

<p:itinerary xmlns:p=”http: // travelcompany.example.org/
reservation/travel”>

<p:departure >
<p:departing >LGA</p:departing >

</p:departure >
<p:return >

<p:arriving >EWR</p:arriving >
</p:return >

</p:itinerary >

8In accordance with RFC 6120, an <iq/> stanza MUST NOT include multiple payload child elements; therefore, a
<message/> stanza must be used when sending associated data.

10

3 USE CASES

</env:Body >
</env:Envelope >
<sipub xmlns=’http: // jabber.org/protocol/sipub ’

id=’publish -2345 ’
mime -type=’image/png’
profile=’http: // jabber.org/protocol/si/profile/file -transfer ’

>
<file xmlns=’http: // jabber.org/protocol/si/profile/file -transfer ’

name=’me.png’
size=’4238’
date=’2005 -11 -01 T23:11Z ’/>

</sipub >
</message >

The entity that is to receive the file SHOULD initiate the file transfer process sending an IQ-get
to the sender, using the <start xmlns=’http://jabber.org/protocol/sipub’/> element. This
element contains the ’id’ attribute to specify which published stream to retrieve:

Listing 9: Receiver requests start of stream
<iq type=’get’

id=’sipub -request -0’
from=’responder@example.com/soap -server ’
to=’requester@example.com/soap -client ’>

<start xmlns=’http: // jabber.org/protocol/sipub ’
id=’publish -2345 ’/>

</iq>

If the sender accepts the request, it responds with an IQ-result containing a <starting/>
element. This element indicates the stream initiation identifier to be used:

Listing 10: Sender accepts request to start stream
<iq type=’result ’

id=’sipub -request -0’
from=’requester@example.com/soap -client ’
to=’responder@example.com/soap -server ’>

<starting xmlns=’http: // jabber.org/protocol/sipub ’
sid=’session -87651234 ’/>

</iq>

Then the sender begins the stream initiation negotiation:

Listing 11: Sender starts negotiation
<iq type=’set’

id=’sipub -set -1’
from=’requester@example.com/soap -client ’
to=’responder@example.com/soap -server ’>

11

3 USE CASES

<si xmlns=’http: // jabber.org/protocol/si’
id=’session -87651234 ’

mime -type=’image/png’
profile=’http: // jabber.org/protocol/si/profile/file -transfer ’>

<file xmlns=’http: // jabber.org/protocol/si/profile/file -transfer ’
name=’me.png’
size=’4238’
date=’2005 -11 -01 T23:11Z ’/>

</si>
</iq>

For details regarding file transfer and advertising of file transfer stream initiation requests,
refer to XEP-0096 and XEP-0137.

3.3.2 Including Links

If the file transfer method is not possible (e.g., because file transfer is not implemented
or transfer attempts fails), the entity that is sending the associated data MAY as a fallback
publish the associated data as a file (e.g., at an HTTP or FTP URL) and include a link to the
file as out-of-band content by including the out-of-band data extension along with the XMPP
<message/> stanza with which the data is associated: 9

Listing 12: Sender sends message with out-of-band data
<message from=’requester@example.com/soap -client ’

id=’soap2 ’
to=’responder@example.com/soap -server ’>

<env:Envelope xmlns:env=”http: //www.w3.org /2003/05/ soap -envelope”>
<env:Header >

<m:reservation
xmlns:m=”http: // travelcompany.example.org/reservation”
env:role=”http: //www.w3.org /2003/05/ soap -envelope/role/next”
env:mustUnderstand=”true”>

<m:reference >uuid:093a2da1 -q345 -739r-ba5d -pqff98fe8j7d </
m:reference >

<m:dateAndTime >2001 -11 -29 T13:36:50 .000 -05 :00</m:dateAndTime >
</m:reservation >
<n:passenger xmlns:n=”http: // mycompany.example.com/employees”

env:role=”http: //www.w3.org /2003/05/ soap -envelope/role/next”
env:mustUnderstand=”true”>

<n:name >Ake Jogvan Ovind </n:name >
</n:passenger >

</env:Header >
<env:Body >

9As above, in accordance with RFC 6120, an <iq/> stanza MUST NOT include multiple payload child elements;
therefore, a <message/> stanza must be used when sending associated data.

12

3 USE CASES

<p:itinerary xmlns:p=”http: // travelcompany.example.org/
reservation/travel”>

<p:departure >
<p:departing >LGA</p:departing >

</p:departure >
<p:return >

<p:arriving >EWR</p:arriving >
</p:return >

</p:itinerary >
</env:Body >

</env:Envelope >
<x xmlns=’jabber:x:oob ’>

<url>http: // example.org/me.png</url>
<desc>John Q. Public </desc>

</x>
</message >

Alternatively, if all else fails, the file may be included as a SOAP representation header:

Listing 13: IQ-set with SOAP representation header
<iq from=’requester@example.com/soap -client ’

id=’soap2 ’
to=’responder@example.com/soap -server ’
type=’set’>

<env:Envelope xmlns:env=’http: //www.w3.org /2003/05/ soap -envelope ’
xmlns:rep=’http: //www.w3.org /2004/08/ representation ’
xmlns:xmlmime=’http: //www.w3.org /2004/11/ xmlmime ’>

<env:Header >
<rep:Representation resource=’http: // example.org/me.png’>

<rep:Data xmlmime:contentType=’image/png’>/aWKKapGGyQ=</
rep:Data >

</rep:Representation >
<m:reservation

xmlns:m=”http: // travelcompany.example.org/reservation”
env:role=”http: //www.w3.org /2003/05/ soap -envelope/role/next”
env:mustUnderstand=”true”>

<m:reference >uuid:093a2da1 -q345 -739r-ba5d -pqff98fe8j7d </
m:reference >

<m:dateAndTime >2001 -11 -29 T13:36:50 .000 -05 :00</m:dateAndTime >
</m:reservation >
<n:passenger xmlns:n=”http: // mycompany.example.com/employees”

env:role=”http: //www.w3.org /2003/05/ soap -envelope/role/next”
env:mustUnderstand=”true”>

<n:name >Ake Jogvan Ovind </n:name >
</n:passenger >

</env:Header >
<env:Body >

13

3 USE CASES

<p:itinerary xmlns:p=”http: // travelcompany.example.org/
reservation/travel”>

<p:departure >
<p:departing >LGA</p:departing >

</p:departure >
<p:return >

<p:arriving >EWR</p:arriving >
</p:return >

</p:itinerary >
<x:MyData xmlns:x=’http: // example.org/mystuff ’>

<x:name >John Q. Public </x:name >
<x:img src=’http: // example.org/me.png’/>

</x:MyData >
</env:Body >

</env:Envelope >
</iq>

Naturally, in order to maximize the likelihood that the receiver will be able to retrieve the
file, the sender MAY include the SI-pub extension, out-of-band-data extension, and SOAP
representation header in the message stanza:

Listing 14: Sender sends message with SI-pub, OOB, and representation header
<message from=’requester@example.com/soap -client ’

id=’soap2 ’
to=’responder@example.com/soap -server ’>

<env:Envelope xmlns:env=”http: //www.w3.org /2003/05/ soap -envelope”
xmlns:rep=”http: //www.w3.org /2004/08/ representation”
xmlns:xmlmime=”http: //www.w3.org /2004/11/ xmlmime”>

<env:Header >
<rep:Representation resource=’http: // example.org/me.png’>

<rep:Data xmlmime:contentType=’image/png’>/aWKKapGGyQ=</
rep:Data >

</rep:Representation >
<m:reservation

xmlns:m=”http: // travelcompany.example.org/reservation”
env:role=”http: //www.w3.org /2003/05/ soap -envelope/role/next”
env:mustUnderstand=”true”>

<m:reference >uuid:093a2da1 -q345 -739r-ba5d -pqff98fe8j7d </
m:reference >

<m:dateAndTime >2001 -11 -29 T13:36:50 .000 -05 :00</m:dateAndTime >
</m:reservation >
<n:passenger xmlns:n=”http: // mycompany.example.com/employees”

env:role=”http: //www.w3.org /2003/05/ soap -envelope/role/next”
env:mustUnderstand=”true”>

<n:name >Ake Jogvan Ovind </n:name >
</n:passenger >

</env:Header >
<env:Body >

14

3 USE CASES

<p:itinerary xmlns:p=”http: // travelcompany.example.org/
reservation/travel”>

<p:departure >
<p:departing >LGA</p:departing >

</p:departure >
<p:return >

<p:arriving >EWR</p:arriving >
</p:return >

</p:itinerary >
<x:MyData xmlns:x=’http: // example.org/mystuff ’>

<x:name >John Q. Public </x:name >
<x:img src=’http: // example.org/me.png’/>

</x:MyData >
</env:Body >

</env:Envelope >
<sipub xmlns=’http: // jabber.org/protocol/sipub ’

id=’publish -2345 ’
mime -type=’image/png’
profile=’http: // jabber.org/protocol/si/profile/file -transfer ’

>
<file xmlns=’http: // jabber.org/protocol/si/profile/file -transfer ’

name=’me.png’
size=’4238’
date=’2005 -11 -01 T23:11Z ’/>

</sipub >
<x xmlns=’jabber:x:oob ’>

<url>http: // example.org/me.png</url>
<desc>John Q. Public </desc>

</x>
</message >

3.4 Specifying a WSDL Definition
WSDL 10 provides a machine-readable, formal description of web services operations, protocol
bindings, and end points (i.e., network addresses). WSDL definitions attempt to specify a loose
coupling of SOAP envelopes and their transports in order to maintain their independence and
flexibility.
The definition of an XMPP SOAP transport in WSDL is straightforward. The following rules
apply:

1. The ’transport’ attribute of the <soap:binding> element MUST be set to
”http://jabber.org/protocol/soap”.

2. The ’style’ attribute of the <soap:binding> element SHOULD be set to ”document”.

10WSDL 1.1 Specification <http://www.w3.org/TR/wsdl>.

15

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

3 USE CASES

3. The ’soapAction’ attribute of the <soap:operation> elementMAYbeused; if so, it SHOULD
be transported in an appropriate env:Header element for compatibility with the HTTP
transport.

4. A valid XMPP URI/IRI (see RFC 5122 11) MUST be used for the ’location’ attribute in the
<soap:address> element.

The following is an example of a WSDL definition for an endpoint that supports the SOAP
XMPP binding: a mythical service that translates Shakespearean English into selectedmodern
languages and dialects.

Listing 15: Example ofWSDL definition for a translation service that supports SOAP over XMPP
<definitions

name=’ShakespeareTranslation ’
targetNamespace=’http: //www.example.org/services/BabelFishService.

wsdl’>
xmlns=’http: // schemas.xmlsoap.org/wsdl/’
xmlns:soap=’http: // schemas.xmlsoap.org/wsdl/soap/’
xmlns:tns=’http: // shakespeare.lit/translation.wsdl’>

<binding name=’ShakespeareTranslationSoap ’ type=’
tns:TranslationPortType ’>

<soap:binding style=’document ’ transport=’http: // jabber.org/
protocol/soap’/>

<operation name=’Translate ’>
<input >...</input >
<output >...</output >

</operation >
</binding >

<service name=’ShakespeareTranslationService ’>
<documentation >Translates Shakespearean text.</documentation >
<port name=’TranslationPort ’ binding=’

tns:ShakespeareTranslationSoap ’>
<soap:address location=’xmpp:translation@shakespeare.lit’/>

</port>
</service >

</definitions >

Although there is no standard procedure for publishing WSDL documents, usually they are
made available through HTTP at some URL discoverable with public registries such as UDDI
servers. WSDL descriptions for XMPP bindings MAY follow the same publishing process, or
MAY be discoverable through Jabber/XMPP specific mechanisms such as Service Discovery

11RFC5122: InternationalizedResource Identifiers (IRIs) andUniformResource Identifiers (URIs) for the Extensible
Messaging and Presence Protocol (XMPP) <http://tools.ietf.org/html/rfc5122>.

16

http://tools.ietf.org/html/rfc5122
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

4 SOAP XMPP BINDING

(XEP-0030) 12 or Publish-Subscribe (XEP-0060) 13.

4 SOAP XMPP Binding
Section 4 of SOAP Version 1.2 Part 1 14 defines a SOAP Protocol Binding Framework; two
instantiations of that framework are the SOAP HTTP Binding (specified in Section 7 of SOAP
Version 1.2 Part 2 15) and the SOAP Email Binding 16. (Additionally, a binding to BEEP is de-
scribed in RFC 4227.) As an alternative to the HTTP and Email bindings, this section formally
defines the SOAP XMPP Binding in accordance with the SOAP Protocol Binding Framework.
Note: The SOAP XMPP Binding is optional, and SOAP nodes are not required to implement it.
A SOAP node that correctly and completely implements the SOAP XMPP Binding as described
herein may be said to ”conform to the SOAP 1.2 XMPP Binding”.

4.1 Binding Name
The SOAP XMPP Binding is identified by the following URI:

• http://jabber.org/protocol/soap

4.2 Supported Features
XMPP is a pure XML streaming protocol used to exchange snippets of structured data called
”XML stanzas” (see RFC 6120) between any two network endpoints.
Because XMPP is a direct messaging protocol, it does not possess the equivalent of web
methods such as the HTTP GET, PUT, POST, and DELETE methods. Therefore, it is NOT
RECOMMENDED for a SOAP node that supports only the SOAP XMPP Binding to provide the
”SOAP Web Method Feature” described in Section 6.4 of SOAP Version 1.2 Part 2. (A SOAP
gateway between XMPP and HTTP should support the SOAP Web Method Feature in order to
ensure interoperability; however, description of such gateways is outside the scope of this
document.)
Because XMPP is a pure XML protocol, it does not use MIME types (RFC 2045 17) or XML
media types (RFC 3023 18), but rather sends XML directly over the wire. Therefore, it is NOT
RECOMMENDED for a SOAP node that supports only the SOAP XMPP Binding to provide
the ”SOAP Action Feature” described in Section 6.5 of SOAP Version 1.2 Part 2. (A SOAP
12XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.
13XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.
14SOAP Version 1.2 Part 1: Messaging <http://www.w3.org/TR/soap12-part1>.
15SOAP Version 1.2 Part 2: Adjuncts <http://www.w3.org/TR/soap12-part2>.
16SOAP Version 1.2 Email Binding <http://www.w3.org/TR/soap12-email>.
17RFC 2045: Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies <http:

//tools.ietf.org/html/rfc2045>.
18RFC 3023: XML Media Types <http://tools.ietf.org/html/rfc3023>.

17

https://xmpp.org/extensions/xep-0060.html
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2
http://www.w3.org/TR/soap12-part2
http://www.w3.org/TR/soap12-email
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc3023
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0060.html
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2
http://www.w3.org/TR/soap12-email
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc3023

4 SOAP XMPP BINDING

gateway between XMPP and HTTP should support the SOAP Action Feature in order to ensure
interoperability; however, description of such gateways is outside the scope of this document.)

4.3 Supported Message Exchange Patterns
XMPP inherently provides request-response semantics via the <iq/> stanza type and
<message/> stanza type, where the <iq/> stanza type requires more formality regarding
preservation of request-response semantics in the context of synchronous communications,
whereas the <message/> stanza provides a looser mapping to request-response semantics as
well as the ability to ensure store-and-forward capabilities similar to those provided by email
(see the Implementation Notes section of this document). Because both stanza types support
request-response semantics, an implementation of the SOAP XMPP Binding MUST support
only the followingmessage exchange pattern (MEP) defined in the core SOAP 1.2 specification:

• http://www.w3.org/2003/05/soap/mep/request-response/

4.4 Operation of Request-Response Message Exchange Pattern
The request-response message exchange pattern is described in Section 6.2 of SOAP Version
1.1 Part 2. For binding instances conforming to the specification of the SOAP XMPP Binding:

• A SOAP node instantiated at an XMPP entity may assume the role (i.e., the
http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role prop-
erty) of ”RequestingSOAPNode”.

• A SOAP node instantiated at an XMPP entity may assume the role (i.e., the
http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role prop-
erty) of ”RespondingSOAPNode”.

The remainder of this section describes the message exchange pat-
tern (MEP) state machine and its relation to XMPP as described in RFC
6120. For the sake of brevity, relative URIs are used (the base URI being
http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role),
the string ”fail:” is used as a conventional prefix for the names-
pace http://www.example.org/2001/12/soap/mep/FailureReasons/, and
the string ”reqresp:” is used as a conventional prefix for the names-
pace http://www.example.org/2001/12/soap/mep/request-response/. In
the state tables below, the states are defined as values of the
http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/State property
(see Section 6.2 of SOAP Version 1.2 Part 2) and are of type xs:anyURI.

18

4 SOAP XMPP BINDING

4.4.1 Behavior of Requesting SOAP Node

The overall flow of the behavior of a Requesting SOAP Node follows the outline state machine
description contained in Section 6.2 of SOAP Version 1.2 Part 2. The following subsections
describe each state in more detail, where ”Requesting SOAP Node” is to be understood as
a logical entity made up of the binding and the local SOAP node associated with the XMPP
entity that generates a SOAP request.
The following table formally describes the ”Init” state of the Requesting SOAP Node in the
SOAP XMPP Binding:

Feature Value / Description
State Name Init
Description Formulate and send request message
Pre-Conditions Control of the outbound transport message exchange context is trans-

ferred from the local SOAP node to the binding
Actions Formulate and send XMPP <iq/> or <message/> request stanza (see ta-

ble ”Init: XMPP Fields (Requesting)”) that encappsulates SOAP envelope
transferred from local SOAP node to binding

Post-Conditions None
Transitions See table ”Init: Transitions (Requesting)”

In the ”Init” state, an XMPP stanza (either <iq/> or <message/>) is formulated by the Request-
ing SOAP Node according to the following table:

Field Value / Description
XMPP Method For XMPP <iq/> stanzas, the value of the XMPP ’type’ at-

tribute MUST be ”set”; does not apply to XMPP <mes-
sage/> stanzas

Originator The XMPP address (JID) carried in the re-
qresp:ImmediateSender property of the message
exchange context is encapsulated as the value of the
XMPP ’from’ attribute; normally this is set by the XMPP
server to which the originator connects

Destination The XMPP address (JID) carried in the re-
qresp:ImmediateDestination property of the message
exchange context is encapsulated as the value of the
XMPP ’to’ attribute

Correlation Request Message ID As required for XMPP <iq/> stanzas in general and re-
quired for XMPP <message/> stanzas sent in the context
of the SOAP XMPP Binding, a correlation request mes-
sage ID is generated by the sender and encapsulated as
the value of the XMPP ’id’ attribute

19

4 SOAP XMPP BINDING

Field Value / Description
XMPP Stanza Contents The XML of the SOAP envelope carried in the re-

qresp:OutboundMessage property of the transport mes-
sage exchange context is encapsulated as a direct child
element of the XMPP <iq/> or <message/> stanza

The following table summarizes the transitions from the ”Init” state of the Requesting SOAP
Node:

Event / Condition Next State Failure Reason
Request Successfully Sent Requesting N/A
Failure to Send Request Fail fail:TransmissionFailure

The following table formally describes the ”Requesting” state of the Requesting SOAP Node in
the SOAP XMPP Binding:

Feature Value / Description
State Name Requesting
Description Waiting for correlatedXMPP response (RequestMessage completely sent

on exit from Init state)
Pre-Conditions Completion of Init state
Actions Wait for a receive XMPP response stanza
Post-Conditions Instantiate or replace the reqresp:ImmediateSender property with an

XMPP address (JID) that denotes the sender of the XMPP response stanza
Transitions See table ”Requesting: Transitions”

The following table summarizes the transitions from the ”Requesting” state of the Requesting
SOAP Node:

Event / Condition Next State Failure Reason
Received Correlated XMPP Response Sending+Receiving N/A
Reception Failure (various XMPP errors) Fail fail:ReceptionFailure

20

4 SOAP XMPP BINDING

For a listing of relevant XMPP error conditions, refer to RFC 6120.
The following table formally describes the ”Sending+Receiving” state of the Requesting SOAP
Node in the SOAP XMPP Binding:

Feature Value / Description
State Name Sending+Receiving
Description Receive correlated XMPP response including SOAP envelope
Pre-Conditions Completion of Receiving state
Actions Process XMPP <iq/> or <message/> response stanza and included SOAP

envelope, instantiating or replacing the reqresp:InboundMessage prop-
erty with an infoset representation of the SOAP envelope contained in
the XMPP response stanza

Post-Conditions Control of the inbound transport message exchange context is trans-
ferred from the binding to the local SOAP node

Transitions See table ”Sending+Receiving: Transitions”

The following table summarizes the transitions from the ”Sending+Receiving” state of the
Requesting SOAP Node:

Event / Condition Next State Failure Reason
Received Well-Formed Response Message Success N/A
Reception Failure (various XMPP errors) Fail fail:ReceptionFailure
Malformed Response Message (invalid SOAP envelope) Fail fail:BadRequestMessage

For a listing of relevant XMPP error conditions, refer to RFC 6120.
A given instance of a request-response transport message exchange terminates when the
state ”Success” or ”Fail” is reached; control over the transport message exchange context
returns to the Requesting SOAP Node.

4.4.2 Behavior of Responding SOAP Node

The overall flow of the behavior of a Responding SOAP Node follows the outline state machine
description contained in Section 6.2 of SOAP Version 1.2 Part 2. The following subsections
describe each state in more detail, where ”Responding SOAP Node” is to be understood as
a logical entity made up of the binding and the local SOAP node associated with the XMPP
entity that responds to a SOAP request.
The following table formally describes the ”Init” state of the Responding SOAP Node in the

21

4 SOAP XMPP BINDING

SOAP XMPP Binding:

Feature Value / Description
State Name Init
Description Receive request message
Pre-Conditions None
Actions Receive and validate inbound XMPP <iq/> or <message/> request stanza;

instantiate or replace the reqresp:ImmediateSender property with an
XMPP address (JID) that denotes the sender of the XMPP request; instan-
tiate or replace the reqresp:InboundMessage property with an infoset
representation of the included SOAP envelope

Post-Conditions Control of the inbound transport message exchange context is trans-
ferred from the binding to the local SOAP node

Transitions See table ”Init: Transitions (Responding)”

The following table summarizes the transitions from the ”Init” state of the Responding SOAP
Node:

Event / Condition Next State Failure Reason
Received Well-Formed Request Message Receiving N/A
Reception Failure (various XMPP errors) Fail fail:ReceptionFailure
Malformed Response Message (invalid SOAP envelope) Fail fail:BadRequestMessage

For a listing of relevant XMPP error conditions, refer to RFC 6120.
The following table formally describes the ”Receiving” state of the Responding SOAP Node in
the SOAP XMPP Binding:

Feature Value / Description
State Name Receiving
Description Waiting for local SOAP node to return response message
Pre-Conditions Completion of Init state
Actions None
Post-Conditions Control of the outbound transport message exchange context is trans-

ferred from the local SOAP node to the binding
Transitions See table ”Receiving: Transitions”

22

4 SOAP XMPP BINDING

The following table summarizes the transitions from the ”Receiving” state of the Responding
SOAP Node:

Event / Condition Next State Failure Reason
Response Message Becomes Available Receiving+Sending N/A

The following table formally describes the ”Receiving+Sending” state of the Responding SOAP
Node in the SOAP XMPP Binding:

Feature Value / Description
State Name Receiving+Sending
Description Waiting for local SOAP node to return response message
Pre-Conditions Completion of Receiving state
Actions Formulate and sendXMPP<iq/> or <message/> response stanza (see table

”Receiving+Sending: XMPP Fields”)
Post-Conditions None
Transitions See table ”Receiving+Sending: Transitions”

In the ”Receiving+Sending” state, an XMPP stanza (either <iq/> or <message/>) is formulated
by the Responding SOAP Node according to the following table:

Field Value / Description
XMPP Method For XMPP <iq/> stanzas, the value of the XMPP ’type’ at-

tribute MUST be ”result”; does not apply to XMPP <mes-
sage/> stanzas

Originator The XMPP address (JID) carried in the re-
qresp:ImmediateSender property of the message
exchange context is encapsulated as the value of the
XMPP ’from’ attribute; normally set by the XMPP server
to which the originator connects

Destination The XMPP address (JID) carried in the re-
qresp:ImmediateDestination property of the message
exchange context is encapsulated as the value of the
XMPP ’to’ attribute

23

5 W3C CONSIDERATIONS

Field Value / Description
Correlation Request Message ID As required for XMPP <iq/> stanzas in general and re-

quired for XMPP <message/> stanzas sent in the context
of the SOAP XMPP Binding, the correlation request mes-
sage ID is copied from the ID of the request and encapsu-
lated as the value of the XMPP ’id’ attribute

XMPP Stanza Contents The XML of the SOAP envelope carried in the re-
qresp:OutboundMessage property of the transport mes-
sage exchange context is encapsulated as a direct child
element of the XMPP <iq/> or <message/> stanza

The following table summarizes the transitions from the ”Receiving+Sending” state of the
Responding SOAP Node:

Event / Condition Next State Failure Reason
Response Message Successfully Sent Success N/A
Failure to Send Response Message Fail fail:TransmissionFailure

A given instance of a request-response transport message exchange terminates when the
state ”Success” or ”Fail” is reached; from the perspective of the Responding SOAP Node, the
transport message exchange has completed.

5 W3C Considerations
The main body of text that addresses the requirements of the W3C with regard to SOAP
bindings is provided in the SOAP XMPP Binding section of this document. The current
section addresses only the topic of organizational interaction between theW3C and the XMPP
Standards Foundation (XSF) 19 regarding the SOAP XMPP Binding.

5.1 W3C Review
As was done with XHTML-IM (XEP-0071) 20, the SOAP XMPP Binding defined herein has
been reviewed informally by one or more appropriate experts from the W3C before the

19The XMPP Standards Foundation (XSF) is an independent, non-profit membership organization that develops
open extensions to the IETF’s Extensible Messaging and Presence Protocol (XMPP). For further information,
see <https://xmpp.org/about/xmpp-standards-foundation>.

20XEP-0071: XHTML-IM <https://xmpp.org/extensions/xep-0071.html>.

24

https://xmpp.org/about/xmpp-standards-foundation
https://xmpp.org/about/xmpp-standards-foundation
https://xmpp.org/extensions/xep-0071.html
https://xmpp.org/about/xmpp-standards-foundation
https://xmpp.org/extensions/xep-0071.html

6 ERROR HANDLING

XMPP Council 21 advanced it to a status of Draft within the XSF’s standards process. Before
this specification proceeds to a status of Final within the XSF’s standards process, it should
undergo a formal review through communication with the W3C’s XML Protocol Working
Group. To that end, revised versions of this specification will be announced on the W3C’s
public xml-dist-app@w3.org mailing list.

5.2 SOAP Versioning
This specification addresses SOAP 1.2 only. This specification may be superseded or supple-
mented in the future by a XMPP Extension Protocol specification that defines methods for
encapsulating content defined by future versions of SOAP as published by the W3C.

5.3 XML Versioning
Per RFC 6120, XMPP supports XML 1.0 only. If future versions of XMPP support XML 1.1 or
subsequent versions, this specificationmay bemodified to address handling of SOAPmessages
that are encoded in versions other than XML 1.0.

6 Error Handling
SOAP provides its own encoding scheme for errors due to message processing or application
execution, and it uses SOAP envelopes for reporting. In the SOAP HTTP Binding, these errors
aremapped to corresponding HTTP status codes. In the SOAP XMPP Binding, they aremapped
to the catch-all XMPP error of <undefined-condition/> along with application-specific error
condition elements qualified by the ’http://jabber.org/protocol/soap#fault’ namespace (this
is consistent with RFC 6120, see also Error Condition Mappings (XEP-0086) 22). The element
names of these application-specific error conditions map directly to the SOAP fault codes
specified in Section 5.4.6 of SOAP Version 1.2 Part 1.
The following table provides a mapping between SOAP, HTTP, and application-specific XMPP
errors.

SOAP Fault HTTP Status Code XMPP Application Error
env:DataEncodingUnknown 500 <DataEncodingUnknown/>
env:MustUnderstand 500 <MustUnderstand/>
env:Receiver 500 <Receiver/>
env:Sender 400 <Sender/>

21The XMPP Council is a technical steering committee, authorized by the XSF Board of Directors and elected by
XSF members, that approves of new XMPP Extensions Protocols and oversees the XSF’s standards process. For
further information, see <https://xmpp.org/about/xmpp-standards-foundation#council>.

22XEP-0086: Error Condition Mappings <https://xmpp.org/extensions/xep-0086.html>.

25

https://xmpp.org/about/xmpp-standards-foundation#council
http://www.w3.org/2000/xp/Group/
http://www.w3.org/2000/xp/Group/
https://xmpp.org/extensions/xep-0086.html
https://xmpp.org/about/xmpp-standards-foundation##council
https://xmpp.org/extensions/xep-0086.html

8 SECURITY CONSIDERATIONS

SOAP Fault HTTP Status Code XMPP Application Error
env:VersionMismatch 500 <VersionMismatch/>

Note: When errors are due to the XMPP transport protocol alone and not to the application
layer defined by SOAP, errors MUST be reported with standard XMPP error codes only instead
of the XMPP <undefined-condition/> condition plus application-specific condition.

7 Business Rules
7.1 Encoding
Because XMPP does not require the parsing of arbitrary and complete XML documents and
does not require implementations to support the full XML specification, transported SOAP
envelopes MUST comply with the XML restrictions specified in RFC 6120. In particular, all
envelope elements MUST be properly namespaced (SOAP allows elements within the default
namespace, but they are deprecated since SOAP 1.2).
SOAP envelopes may contain arbitrary data encoded in valid XML as well as byte arrays
encoded with SOAP-specific elements. The SOAP specification recommends to encode byte
arrays in Base 64 (see RFC 3548 23), with the result that envelopes with binary data can be
transported within regular XMPP stanzas. All the remaining PCDATA MUST be encoded as
UTF-8 in order to match the XML stream encoding.

8 Security Considerations
SOAP has been supplemented by several support protocols that help ensure message integrity
and confidentiality (WS-Security 24) as well as transaction management for failing message
exchanges (see WS-Transaction). These protocols are all based on SOAP messages and take
into account that the underlying protocols can be unreliable and not trusted, thus there are
no arguments against their application with XMPP. Alternatively, implementations MAY use
native XMPP security such as XMPP E2E 25.

23RFC 3548: The Base16, Base32, and Base64 Data Encodings <http://tools.ietf.org/html/rfc3548>.
24WS-Security <http://msdn.microsoft.com/ws/2002/04/Security/>.
25RFC 3923: End-to-End Signing andObject Encryption for the ExtensibleMessaging and Presence Protocol (XMPP)

<http://tools.ietf.org/html/rfc3923>.

26

http://tools.ietf.org/html/rfc3548
http://tools.ietf.org/html/rfc3923
http://tools.ietf.org/html/rfc3548
http://msdn.microsoft.com/ws/2002/04/Security/
http://tools.ietf.org/html/rfc3923

11 XML SCHEMA

9 IANA Considerations
No interaction with the Internet Assigned Numbers Authority (IANA) 26 is required by this
document.

10 XMPP Registrar Considerations
10.1 Protocol Namespaces
The XMPP Registrar 27 includes ’http://jabber.org/protocol/soap’ and
’http://jabber.org/protocol/soap#fault’ in its registry of protocol namespaces.

10.2 Service Discovery Identity
The XMPP Registrar includes a Service Discovery type of ”soap” within the ”automation”
category.
The registry submission is as follows:

<category >
<name>automation </name>
<type>

<name>soap</name>
<desc>A SOAP receiver (either intermediate or ultimate).</desc>
<doc>XEP -0072 </doc>

</type>
</category >

11 XML Schema
11.1 SOAP Envelope
Because the SOAP envelope is included as a first-level child element of an <iq/> or
<message/> stanza via standard XMPP extension mechanisms, an XML schema is not re-
quired for this document. An XML schema for the SOAP envelope element is provided at
<http://www.w3.org/2003/05/soap-envelope/>.

26The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

27The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

27

http://www.iana.org/
https://xmpp.org/registrar/
http://www.w3.org/2003/05/soap-envelope/
http://www.iana.org/
https://xmpp.org/registrar/

12 IMPLEMENTATION NOTES

11.2 Application-Specific XMPP Errors

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’http: // jabber.org/protocol/soap#fault ’
xmlns=’http: // jabber.org/protocol/soap#fault ’
elementFormDefault=’qualified ’>

<xs:annotation >
<xs:documentation >

The protocol documented by this schema is defined in
XEP -0072: http://www.xmpp.org/extensions/xep -0072. html

</xs:documentation >
</xs:annotation >

<xs:element name=’DataEncodingUnknown ’ type=’empty ’/>
<xs:element name=’MustUnderstand ’ type=’empty ’/>
<xs:element name=’Receiver ’ type=’empty ’/>
<xs:element name=’Sender ’ type=’empty ’/>
<xs:element name=’VersionMismatch ’ type=’empty ’/>

<xs:simpleType name=’empty ’>
<xs:restriction base=’xs:string ’>

<xs:enumeration value=’’/>
</xs:restriction >

</xs:simpleType >

</xs:schema >

12 Implementation Notes
This section is non-normative.
An XMPP entity that supports the SOAP XMPP binding could function as a ”SOAP interme-
diary” that hands a SOAP message off to some other deployment for subsequent processing
(HTTP, email, a specialized enterprise messaging platform, etc.) rather than functioning as
the ”ultimate SOAP receiver” for the message (as these terms are defined in Section 1.5.3
of SOAP Version 1.2 Part 1). If the intended recipient functions as a SOAP intermediary,
implementations should be aware that subsequent processing may alter the representation
of SOAP messages.
As an example, consider a component that functions as a gateway between XMPP-based and
HTTP-based web services. Its purpose might be to mix HTTP and XMPP for web services and
to invoke any web services already accessible through HTTP from XMPP clients.
WS-Routing, whose aim is to dynamically compose SOAP message paths and processing
sequences, can be used in order to reference web services outside of an XMPP network from

28

12 IMPLEMENTATION NOTES

within it. WS-Routing extends SOAP Envelope Headers with the <path/> element, which
specifies the following for the message: the sender’s URL (<from/>), the final destination’s
URL (<to/>), a forward (<forward/>) path with an arbitrary number of intermediaries (<via/>),
and an optional return path (<reverse/>). Each intermediary MUST process the <path/>
header and update it accordingly to the already performed path; moreover it MAY process
the Body of the message.
A SOAP message originated by an XMPP entity (’xmpp:orig@A.example.com/soap’), and
directed to an end point accessible through HTTP (’http://C.example.net/some/endpoint’),
could be built using a <path/> header having:

1. the <to/> element set to ’http://C.example.net/some/endpoint’

2. one <via/> element set to an HTTP<->XMPP gateway, such as
’xmpp:soapgw@B.example.org/soap’, in the forward path

3. an appropriate SOAP action in the <action> element of the <path/> header (this may be
required by the HTTP end point)

4. a blank return path

Then the SOAP message can be sent within an <iq/> stanza to the gateway’s JID. The gateway
processes the SOAP headers, and looking through the headers it discovers that it must act
only as intermediary. From the <to/> element it reads the URL of the final end point, extracts
the SOAP action, changes the path removing the step already performed, and issues an HTTP
request with the modified envelope and appropriate HTTP headers. Once it has received a
response, it prepares a new <iq/> stanza of type ”result” or ”error” and sends its reply to the
original requester. The following example shows the possible SOAP headers of the described
process.

Listing 16: Gateway-generated SOAP headers
<S:Envelope xmlns:S=’http: //www.w3.org /2003/05/ soap -envelope ’>

<S:Header >
<m:path xmlns:m=’http: //www.soap.org/path’>

<m:action >http://im.example.org/chat</m:action >
<m:to>http://C.example.net/some/endpoint </m:to>
<m:forward >

<m:via >xmpp:soapgw@B.example.org/soap</m:via >
</m:forward >
<m:reverse >

<m:via/>
</m:reverse >
<m:from >xmpp:orig@A.example.com/soap</m:from >
<m:id>uuid:84b9f5d0 -33fb -4a81 -b02b -5 b760641c1d6 </m:id>

</m:path >
</S:Header >
<S:Body >

29

13 ACKNOWLEDGEMENTS

...
</S:Body >

</S:Envelope >

Generic XMPP routers that conform to RFC 6120 may also ”store and forward” Jabber mes-
sages. This feature is usually called ”offline message handling”: the router makes a decision
as to whether to deliver the message to the local intended recipient based on the recipient’s
presence, and if the recipient is offline when the router processes the message then it may
store the message for delivery when the recipient next comes online (rather than returning
an error to the sender). Although it is possible to write an XMPP router that directly supports
the SOAP XMPP binding and implements the SOAP processing model, generic XMPP routers
do not contain such support. Accordingly, generic XMPP routers will not forward an XMPP
message to an alternate SOAP transport such as HTTP or SMTP, or provide other functions of
a SOAP intermediary or ultimate receiver. When a generic XMPP router delivers a message
to the intended recipient (whether immediately or as delayed in ”offline storage”) and the
intended recipient supports the SOAP XMPP binding, SOAP processing is performed; such an
intended recipient MAY act either as a SOAP intermediary or as an ultimate SOAP receiver.
With regarding to exchange of associated data, an XMPP entity that functions as a gateway
to other SOAP bindings it SHOULD use W3C-recommended protocols for transporting SOAP
attachments over non-XMPP SOAP bindings (e.g., HTTP and SMTP) when communicating
with non-XMPP entities.

13 Acknowledgements
Many thanks to Noah Mendelsohn for his assistance regarding SOAP binding definitions and
conformance issues. Thanks also to Michael Mahan and Rich Salz for their comments.
Some text in the SOAP XMPP Binding section of this document is closely modelled on Section
7 of SOAP Version 1.2 Part 2 and on SOAP Version 1.2 Email Binding.

30

	Introduction
	Architectural Assumptions
	Use Cases
	Discovering Support
	Exchanging SOAP Messages
	Exchanging SOAP Messages Using XMPP IQ Stanzas
	Exchanging SOAP Messages Using XMPP Message Stanzas

	Sending Associated Data
	File Transfer
	Including Links

	Specifying a WSDL Definition

	SOAP XMPP Binding
	Binding Name
	Supported Features
	Supported Message Exchange Patterns
	Operation of Request-Response Message Exchange Pattern
	Behavior of Requesting SOAP Node
	Behavior of Responding SOAP Node

	W3C Considerations
	W3C Review
	SOAP Versioning
	XML Versioning

	Error Handling
	Business Rules
	Encoding

	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	Service Discovery Identity

	XML Schema
	SOAP Envelope
	Application-Specific XMPP Errors

	Implementation Notes
	Acknowledgements

