XVIPP

XEP-0083: Nested Roster Groups

Rachel Blackman
mailto:rcb@ceruleanstudios.com
xmpp: sparks@jabber.org

2004-10-11
Version 1.0

Status Type Short Name
Active Informational nestedgroups

This document defines an XMPP protocol extension that enables nested sub-groups to exist within the
Jabber roster, while retaining backwards compatibility and ensuring that the roster remains usable by all
clients.

mailto:rcb@ceruleanstudios.com
xmpp:sparks@jabber.org

Legal

Copyright

This XMPP Extension Protocol is copyright © 1999 - 2018 by the XMPP Standards Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
"Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https: //xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents

1

2

Introduction
roster:delimiter Namespace

Use Cases
3.1 Querying for the delimiter
3.2 Retrieving the Roster . . .

Security Considerations
IANA Considerations

XMPP Registrar Considerations
6.1 Protocol Namespaces . . .

Schema

.............................

/'3 USECASES

1 Introduction

In many modern instant messaging clients, client authors implement a way to nest contact
groups within other contact groups. Usually this is implemented on the client side, since
many instant messaging networks do not support nesting contact groups in this manner.
The limitation of this system is that if the user changes from one client to another, or even a
second installation of the same client, the user loses all of his or her sub-group information.
This document aims to solve that problem within Jabber, by providing for a way to store
sub-groups on the Jabber roster without breaking existing clients.

2 roster:delimiter Namespace

Jabber already provides a useful method for storing client data on the server using Private
XML Storage (XEP-0049) !. All we need to do is create a new roster element and a namespace
to store the delimiter for nested groups, roster:delimiter. This element MUST contain XML
character data that defines a string to be used as a delimiter in the roster groups.

A single-character roster delimiter (e.g., ”/”) would make client implementation easier, but
be more limiting to the end-user in terms of choices for naming roster groups, so a string
is ideal. Therefore, the delimiter SHOULD contain multiple characters in order to avoid
inconveniencing the user, but single-character delimiters MUST be honored by the client.
The exception is if the delimiter is a single alphanumeric character (a-z, A-Z, 0-9); in this case
compliant clients MUST treat the situation as if nesting were disabled, to avoid malicious use
of this element by setting e’ or 'm’ or some other common single character as a delimiter.

A compliant client SHOULD ask for the nested delimiter before requesting the user’s roster,
in order to know whether or not to parse the roster 'group’ fields accordingly. If there is no
delimiter stored, a client MAY set a delimiter but MUST either prompt the user for a delimiter,
or use a user-configurable default.

3 Use Cases

Use cases for this extension are straightforward, and are shown below as examples.

3.1 Querying for the delimiter

All compliant clients SHOULD query for an existing delimiter at login.

'XEP-0049: Private XML Storage <https://xmpp.org/extensions/xep-0049.html>.
’If the element does not contain XML character data, a compliant client SHOULD assume that nested groups are
disabled for the user’s account.

https://xmpp.org/extensions/xep-0049.html
https://xmpp.org/extensions/xep-0049.html
https://xmpp.org/extensions/xep-0049.html

/'3 USECASES

Listing 1: Querying for the Delimiter

CLIENT:
<ig type=’get’
id="1">

<query xmlns=’jabber:iq:private’>
<roster xmlns='roster:delimiter’/>
</query>
</ig>

SERVER:
<iq type=’'result’
id="1"
from="bill@shakespeare.lit/Globe’
to=’bill@shakespeare.lit/Globe’>
<query xmlns=’jabber:iq:private’>
<roster xmlns=’roster:delimiter’>::</roster>
</query>
</ig>

3.2 Retrieving the Roster

Now that the client has a delimiter, we can retrieve and parse the roster properly.

Listing 2: Retrieving a Roster with Nested Groups

CLIENT:
<iq type=’'get’
id=’2">
<query xmlns=’jabber:iq:roster’/>
</iqg>
SERVER:

<iq type=’'result’
to=’bill@shakespeare.lit/Globe’
id=’2">
<query xmlns=’jabber:iq:roster’>

<item jid=’bottom@athens.gr’ subscription=’both’>
<group>Midsummer: :Actors</group>

</item>

<item jid=’quince@athens.gr’ subscription=’both’>
<group>Midsummer::Actors</group>

</item>

<item jid=’snug@athens.gr’ subscription=’both’>
<group>Midsummer::Actors</group>

</item>

<item jid=’theseus@athens.gr’ subscription=’both’>
<group>Midsummer::Royalty</group>

</item>

/5 [ANA CONSIDERATIONS

<item jid=’hippolyta@athens.gr’ subscription=’both’>
<group>Midsummer::Royalty</group>

</item>

<item jid=’robin@faeries.underhill.org’ subscription=’both’>
<group>Midsummer</group>

</item>

<item jid=’hamlet@denmark.net’ subscription=’both’>
<group>Hamlet</group>

</item>

<item jid=’gertrude@denmark.net’ subscription=’'both’>
<group>Hamlet</group>

</item>

</query>
</ig>

Bottom, Quince and Snug should be grouped together in a group ’Actors’ underneath the
group 'Midsummer’. Theseus and Hippolyta should be grouped together in a group 'Royalty’
under 'Midsummer’. Robin Goodfellow, meanwhile, being in a class unto himself, is a plain
contact under the 'Midsummer’ group rather than in an actual sub-group. The group Hamlet,
containing only one melancholy prince and his mother, contains no sub-groups at all.

As should be apparent, a client which does not support the delimiter will instead create a
separate group -- such as 'Midsummer::Actors’ -- and thus will still have each set of contacts
grouped with the other appropriate contacts.

4 Security Considerations

There are no security features or concerns related to this proposal above and beyond those
specified for roster management in XMPP IM * and for private XML storage in XEP-0049.

5 IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (TANA)
4

*RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc6121>.

“The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>

http://tools.ietf.org/html/rfc6121
http://www.iana.org/
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121
http://www.iana.org/

/7 SCHEMA

6 XMPP Registrar Considerations

6.1 Protocol Namespaces

The XMPP Registrar ° includes 'roster:delimiter’ in its registry of protocol namespaces.

7 Schema

<?xml version=’1.0’ encoding=’UTF-8’7?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="roster:delimiter’
xmlns="roster:delimiter’>

<xs:annotation>
<xs:documentation>
The protocol documented by this schema is defined in
XEP-0083: http://www.xmpp.org/extensions/xep-0083.html
</xs:documentation>
</xs:annotation>

<xs:element name=’roster’ type=’xs:string’/>

</xs:schema>

>The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

https://xmpp.org/registrar/
https://xmpp.org/registrar/

	Introduction
	roster:delimiter Namespace
	Use Cases
	Querying for the delimiter
	Retrieving the Roster

	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces

	Schema

