
XEP-0085: Chat State Notifications

Peter Saint-Andre
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org

https://stpeter.im/

Dave Smith
mailto:dizzyd@jabber.org
xmpp:dizzyd@jabber.org

2009-09-23
Version 2.1

Status Type Short Name
Final Standards Track chatstates

This document defines an XMPP protocol extension for communicating the status of a user in a chat
session, thus indicating whether a chat partner is actively engaged in the chat, composing a message,
temporarily paused, inactive, or gone. The protocol can be used in the context of a one-to-one chat session
or a multi-user chat room.

mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/
mailto:dizzyd@jabber.org
xmpp:dizzyd@jabber.org

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2020 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Definitions 1

3 State Chart 3

4 Determining Support 3

5 Business Rules 4
5.1 Generation of Notifications . 4
5.2 Support Requirements . 4
5.3 Repetition . 5
5.4 Context of Usage . 5
5.5 Use in Groupchat . 5
5.6 Syntax of Notifications . 6
5.7 Threads . 6
5.8 Server Handling of Notifications . 7

6 A Simple Example 7

7 A Detailed Conversation 8

8 Implementation Notes 12

9 Security Considerations 13

10 IANA Considerations 13

11 XMPP Registrar Considerations 13
11.1 Protocol Namespaces . 13

12 XML Schema 13

2 DEFINITIONS

1 Introduction
Many instant messaging systems include notifications about the state of one’s conversation
partner in a one-to-one chat (or, sometimes, in a many-to-many chat). Usually these are
limited to notification that one’s partner is currently typing -- e.g., the Composing event in
the older (deprecated) Message Events (XEP-0022) 1 protocol. However, a composing event
is essentially information about a person’s participation in or involvement with the chat
”session” and therefore is really a session-level state rather than a per-message event (in
contrast to the Delivered and Displayed events in XEP-0022). While the composing event
is interesting, the concept of a session-level state can be extended to answer a variety of
questions about the participation of a person in a real-time chat conversation, such as:

• Has this person paused the composition?

• Is this person actively paying attention to the chat?

• Is this person temporarily inactive (i.e., not paying attention right now)?

• Is this person simply gone (i.e., no longer participating in the chat)?

To answer such questions, this document supplements the traditional composing state by
defining four additional chat states (paused, active, inactive, gone), for a total of five states
that (it is hoped) together fully describe the possible states of a person’s participation in or
involvement with a chat conversation. 2

2 Definitions
In essence, chat state notifications can be thought of as a form of chat-specific presence. For
example, consider what might happen if a user ”loses” a chat window on his desktop; the
user might still be interacting with his messaging client (thus never automatically changing
his basic presence to ”away”), but the user’s state with regard to the chat session might
change progressively from active to inactive to gone. This information would help the user’s
conversation partner understand why she has not received a response to her messages in the
chat session.
Chat state notifications can appear in two kinds of <message/> stanzas:

1XEP-0022: Message Events <https://xmpp.org/extensions/xep-0022.html>.
2These states do not necessarily refer to the state of the client interface and certainly not to the disposition of a
particular message. However, the user’s involvement with the system, device, chat session interface, or input
interface can provide important clues regarding the user’s involvement with the chat session; these clues can
be used by the client in determining when to generate chat state notifications.

1

https://xmpp.org/extensions/xep-0022.html
https://xmpp.org/extensions/xep-0022.html

2 DEFINITIONS

• A ”content message” -- that is, a message stanza whose primary meaning is contained
in standard messaging content such as the XMPP <body/> or any other properly-
namespaced child element(s) other than those defined for chat state notifications in this
specification.

• A ”standalone notification” -- that is, a message stanza that does not contain standard
messaging content but instead is intended to specify only the chat state since it contains
only a child element qualified by the ”http://jabber.org/protocol/chatstates” names-
pace (or possibly also the XMPP <thread/> element; see the Threads section below).

The five chat states specified in this document are described below. The suggested triggers
are simply that: suggestions. It is up to the implementation to determine when to generate
chat state notifications and which notifications to generate.

State Definition Suggested Triggers
<active/> User is actively participating in the

chat session.
User accepts an initial content mes-
sage, sends a contentmessage, gives
focus to the chat session interface
(perhaps after being inactive), or is
otherwise paying attention to the
conversation.

<inactive/> User has not been actively partici-
pating in the chat session.

User has not interacted with the
chat session interface for an inter-
mediate period of time (e.g., 2 min-
utes).

<gone/> User has effectively ended their
participation in the chat session.

User has not interacted with the
chat session interface, system, or
device for a relatively long period of
time (e.g., 10 minutes).

<composing/> User is composing a message. User is actively interacting with a
message input interface specific to
this chat session (e.g., by typing in
the input area of a chat window).

<paused/> User had been composing but now
has stopped.

User was composing but has not in-
teracted with the message input in-
terface for a short period of time
(e.g., 30 seconds).

Note that the <active/>, <inactive/>, and <gone/> states refer to the overall chat session in-
terface whereas the <composing/> and <paused/> states refer to the message input interface
(and are in some sense a subset of <active/>). Some implementations might support only
events related to the message input interface, some implementations might support only

2

4 DETERMINING SUPPORT

events related to the overall chat session interface, and some implementations might support
both kinds of events.

3 State Chart
The following figure attempts to capture the most common state transitions in visual form
(all four of the states shown can also transition to the GONE state).

o (start)
|
|

INACTIVE <--> ACTIVE <--> COMPOSING <--> PAUSED
| |
| |
+---<---<---<---<---<---<---<---<---<---+

Note: Other transitions are not forbidden if the developers of an implementation feel that
such transitions are desirable (e.g., INACTIVE to PAUSED if a user returns to a chat session
interface containing an unfinished message).

4 Determining Support
If an entity supports the Chat State Notifications protocol, it MUST advertise that fact in its
responses to Service Discovery (XEP-0030) 3 information (”disco#info”) requests by returning
a feature of ”http://jabber.org/protocol/chatstates”:

Listing 1: A disco#info query
<iq from=’romeo@shakespeare.lit/orchard ’

id=’disco1 ’
to=’juliet@capulet.com/balcony ’
type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

Listing 2: A disco#info response
<iq from=’juliet@capulet.com/balcony ’

id=’disco1 ’
to=’romeo@shakespeare.lit/orchard ’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>

3XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

3

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

5 BUSINESS RULES

<feature var=’http: // jabber.org/protocol/chatstates ’/>
</query >

</iq>

In order for an application to determine whether an entity supports this protocol, where
possible it SHOULD use the dynamic, presence-based profile of service discovery defined in
Entity Capabilities (XEP-0115) 4. However, if an application has not received entity capabilities
information from an entity, it SHOULD use explicit service discovery instead.

5 Business Rules
5.1 Generation of Notifications
Before generating chat state notifications, a User SHOULD explicitly discover whether the
Contact supports the protocol defined herein (as described in the Discovering Support section
of this document) or explicitly negotiate the use of chat state notifications with the Contact
(e.g., via Stanza Session Negotiation (XEP-0155) 5).
In the absence of explicit discovery or negotiation, the User MAY implicitly request and
discover the use of chat state notifications in a one-to-one chat session by adhering to the
following business rules:

1. If the User desires chat state notifications, themessage(s) that it sends to the Contact be-
fore receiving a reply MUST contain a chat state notification extension, which SHOULD
be <active/>.

2. If the Contact replies but does not include a chat state notification extension, the User
MUST NOT send subsequent chat state notifications to the Contact.

3. If the Contact replies and includes an <active/> notification (or sends a standalone no-
tification to the User), the User and Contact SHOULD send subsequent notifications for
supported chat states (as specified in the next subsection) by including an <active/> noti-
fication in each contentmessage and sending standalone notifications for the chat states
they support (at a minimum, the <composing/> state).

The foregoing rules imply that the sending of chat state notifications is bidirectional (i.e.,
both User and Contact will either send or not send chat state notifications) rather than
unidirectional (i.e., one of the conversation partners will send chat state notifications but the
other will not); this is by design.

5.2 Support Requirements

4XEP-0115: Entity Capabilities <https://xmpp.org/extensions/xep-0115.html>.
5XEP-0155: Stanza Session Negotiation <https://xmpp.org/extensions/xep-0155.html>.

4

https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0155.html
https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0155.html

5 BUSINESS RULES

Chat State Requirement
<active/> MUST
<composing/> MUST
<paused/> SHOULD
<inactive/> SHOULD
<gone/> SHOULD

A client MUST allow users to configure whether they want to send chat state notifications.
Note: Support for only <active/> and <composing/> is functionally equivalent to supporting
the Composing event from XEP-0022.

5.3 Repetition
Even if the user types continuously for a long time (e.g., while composing a lengthy reply),
the client MUST NOT send more than one standalone <composing/> notification in a row.
More generally, a client MUST NOT send a second instance of any given standalone notifi-
cation (i.e., a standalone notification MUST be followed by a different state, not repetition
of the same state). However, every contentmessage SHOULD contain an <active/> notification.

5.4 Context of Usage
1. This protocol MUST NOT be used with stanzas other than <message/>.

2. This protocol SHOULD NOT be used with message types other than ”chat” or
”groupchat”.

3. The ’type’ attribute for content messages and standalone notifications SHOULD be set to
a value of ”chat” (for one-to-one sessions) or ”groupchat” (for many-to-many sessions).

4. A chat sessionMAY spanmultiple user sessions (i.e., chat state is orthogonal to the pres-
ence of one’s conversation partner), although this is unlikely given the suggested timing
of event triggers.

5.5 Use in Groupchat
Chat state notifications MAY be sent in the context of groupchat rooms (e.g., as defined in
Multi-User Chat (XEP-0045) 6). The following business rules apply:

1. A client MAY send chat state notifications even if not all room occupants do so.

6XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>.

5

https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html

5 BUSINESS RULES

2. A client SHOULD NOT generate <gone/> notifications.

3. A client SHOULD ignore <gone/> notifications received from other room occupants.

Note: Use of chat state notifications in the context of groupchat can result in multicasting of
such notifications. Forewarned is forearmed.

5.6 Syntax of Notifications
1. A message stanza MUST NOT contain more than one child element qualified by the

’http://jabber.org/protocol/chatstates’ namespace.

2. A message stanza that contains standard instant messaging content SHOULD NOT con-
tain a chat state notification extension other than <active/>, where ”standard instant
messaging content” is taken to mean the <body/>, <subject/>, and <thread/> child ele-
ments defined in XMPP IM 7 or any other child element that would lead the recipient to
treat the stanza as an instantmessage as explained inMessage Stanza Profiles (XEP-0226)
8.

3. A message stanza that does not contain standard messaging content and is intended to
specify only the chat state MUST NOT contain any child elements other than the chat
state notification extension, which SHOULD be a state other than <active/>; however,
if threads are used (see below) then the standalone notification MUST also contain the
<thread/> element.

5.7 Threads
While chat state notifications provide a mechanism for managing chat threads as commu-
nicated by inclusion of the XMPP <thread/> element, support for threads is OPTIONAL (for
further information about threads, refer to Best Practices for Message Threads (XEP-0201)
9). However, if all of the clients participating in a chat both support and use threads, the
following additional business rules apply:

1. Clients MUST copy back Thread IDs (i.e., the value of the <thread/> element) in any
replies.

2. When a client terminates a one-to-one chat session (e.g., when a user closes the chat
session interface), it MUST generate a <gone/> event.

3. Upon receiving a <gone/> event, a clientMUSTNOT re-use the sameThread ID andMUST
generate a new Thread ID for any subsequent chat messages sent to the conversation
partner.

7RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc6121>.

8XEP-0226: Message Stanza Profiles <https://xmpp.org/extensions/xep-0226.html>.
9XEP-0201: Best Practices for Message Threads <https://xmpp.org/extensions/xep-0201.html>.

6

http://tools.ietf.org/html/rfc6121
https://xmpp.org/extensions/xep-0226.html
https://xmpp.org/extensions/xep-0201.html
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121
https://xmpp.org/extensions/xep-0226.html
https://xmpp.org/extensions/xep-0201.html

6 A SIMPLE EXAMPLE

5.8 Server Handling of Notifications
Servers in constrained network environments (e.g., serving small-footprint clients via Jabber
HTTP Polling (XEP-0025) 10 or BOSH (XEP-0124) 11) and services that rebroadcast message
stanzas (e.g., Multi-User Chat services) MAY process standalone notifications differently
from other messages. In particular, a server or service MAY refuse to deliver standalone
notifications to its users, and SHOULD NOT store them offline. In contrast to XEP-0022, chat
state notifications are completely the responsibility of the client, andMUST NOT be generated
by a server or service.

6 A Simple Example
In the following conversation, both User <bernardo@shakespeare.lit> and Contact <fran-
cisco@shakespeare.lit> support chat state notifications.

Listing 3: User Sends Initial Content Message With <active/> Notification
<message

from=’bernardo@shakespeare.lit/pda’
to=’francisco@shakespeare.lit’
type=’chat’>

<body>Who’s␣there?</body >
␣␣<active␣xmlns=’http:// jabber.org/protocol/chatstates ’/>
</message >

Listing 4: Contact’s Client Sends Content Message Reply With <active/> Notification
<message

from=’francisco@shakespeare.lit/elsinore ’
to=’bernardo@shakespeare.lit/pda’
type=’chat’>

<body>Nay , answer me: stand , and unfold yourself.</body>
<active xmlns=’http: // jabber.org/protocol/chatstates ’/>

</message >

Because the User now knows that the Contact supports chat state notifications, the User can
send other notification types.

Listing 5: User Sends Standalone <composing/> Notification
<message

from=’bernardo@shakespeare.lit/pda’
to=’francisco@shakespeare.lit/elsinore ’

10XEP-0025: Jabber HTTP Polling <https://xmpp.org/extensions/xep-0025.html>.
11XEP-0124: Bidirectional-streams Over Synchronous HTTP <https://xmpp.org/extensions/xep-0124.html>.

7

https://xmpp.org/extensions/xep-0025.html
https://xmpp.org/extensions/xep-0025.html
https://xmpp.org/extensions/xep-0124.html
https://xmpp.org/extensions/xep-0025.html
https://xmpp.org/extensions/xep-0124.html

7 A DETAILED CONVERSATION

type=’chat’>
<composing xmlns=’http: // jabber.org/protocol/chatstates ’/>

</message >

Listing 6: User Sends a Content Message Reply With <active/> Notification
<message

from=’bernardo@shakespeare.lit/pda’
to=’francisco@shakespeare.lit/elsinore ’
type=’chat’>

<body>Long live the king!</body>
<active xmlns=’http: // jabber.org/protocol/chatstates ’/>

</message >

And so forth.

7 A Detailed Conversation
The following conversation flow illustrates in more detail the workings of chat state notifica-
tions (in this case also using threads) between a User <romeo@shakespeare.lit> and a Contact
<juliet@capulet.com>.

Listing 7: User Sends Initial Content Message
<message

from=’romeo@shakespeare.lit/orchard ’
to=’juliet@capulet.com’
type=’chat’>

<thread >act2scene2chat1 </thread >
<body>

I take thee at thy word:
Call me but love , and I’ll␣be␣new␣baptized;

␣␣␣␣Henceforth␣I␣never␣will␣be␣Romeo.
␣␣ </body >
␣␣<active␣xmlns=’http:// jabber.org/protocol/chatstates ’/>
</message >

At this point Juliet’s client knows that Romeo’s client supports chat state notifications. Thus
she replies to the content message and her client includes a notification that her state is
<active/>:

Listing 8: Contact’s Client Sends Content Message Reply With <active/> Notification
<message

from=’juliet@capulet.com/balcony ’
to=’romeo@shakespeare.lit/orchard ’

8

7 A DETAILED CONVERSATION

type=’chat’>
<thread >act2scene2chat1 </thread >
<body>

What man art thou that thus bescreen ’d␣in␣night
␣␣␣␣So␣stumblest␣on␣my␣counsel?
␣␣ </body >
␣␣<active␣xmlns=’http:// jabber.org/protocol/chatstates ’/>
</message >

And so the conversation continues. After a while, Juliet asks a question that brings Romeo up
short:

Listing 9: Contact Sends Another Message
<message

from=’juliet@capulet.com/balcony ’
to=’romeo@shakespeare.lit/orchard ’
type=’chat’>

<thread >act2scene2chat1 </thread >
<body>Art thou not Romeo , and a Montague?</body>

</message >

Romeo begins composing a reply to Juliet’s heartfelt question, and his client notifies Juliet
that he is composing a reply.

Listing 10: User’s Client Sends Standalone <composing/> Notification
<message

from=’romeo@montague.net/orchard ’
to=’juliet@capulet.com/balcony ’
type=’chat’>

<thread >act2scene2chat1 </thread >
<composing xmlns=’http: // jabber.org/protocol/chatstates ’/>

</message >

Romeo realizes his reply is too rash and pauses to choose the right words; after some (config-
urable) time period, his client senses the delay and sends a state of <paused/>.

Listing 11: User’s Client Sends Standalone <paused/> Notification
<message

from=’romeo@montague.net/orchard ’
to=’juliet@capulet.com/balcony ’
type=’chat’>

<thread >act2scene2chat1 </thread >
<paused xmlns=’http: // jabber.org/protocol/chatstates ’/>

</message >

9

7 A DETAILED CONVERSATION

Romeo starts composing again, and his Jabber client sends a <composing/> notification to
Juliet’s client.

Listing 12: User’s Clients Sends Standalone <composing/> Notification
<message

from=’romeo@montague.net/orchard ’
to=’juliet@capulet.com/balcony ’
type=’chat’>

<thread >act2scene2chat1 </thread >
<composing xmlns=’http: // jabber.org/protocol/chatstates ’/>

</message >

Romeo finally sends his reply.

Listing 13: User Replies
<message

from=’romeo@montague.net/orchard ’
to=’juliet@capulet.com/balcony ’
type=’chat’>

<thread >act2scene2chat1 </thread >
<body>Neither , fair saint , if either thee dislike.</body>
<active xmlns=’http: // jabber.org/protocol/chatstates ’/>

</message >

The conversation ebbs and flows, waxes and wanes, until Juliet is called away by her Nurse...

Listing 14: Contact’s Client Sends Content Message
<message

from=’juliet@capulet.com/balcony ’
to=’romeo@shakespeare.lit/orchard ’
type=’chat’>

<thread >act2scene2chat1 </thread >
<body>

I hear some noise within; dear love , adieu!
Anon , good nurse! Sweet Montague , be true.
Stay but a little , I will come again.

</body>
<active xmlns=’http: // jabber.org/protocol/chatstates ’/>

</message >

We suppose that Juliet minimizes the chat window, so her client generates an <inactive/>
notification:

Listing 15: Contact’s Client Sends Standalone <inactive/> Notification

10

7 A DETAILED CONVERSATION

<message
from=’juliet@capulet.com/balcony ’
to=’romeo@shakespeare.lit/orchard ’
type=’chat’>

<thread >act2scene2chat1 </thread >
<inactive xmlns=’http: // jabber.org/protocol/chatstates ’/>

</message >

When she returns and brings the window up again, her client generates an <active/> notifica-
tion:

Listing 16: Contact’s Client Sends Standalone <active/> Notification
<message

from=’juliet@capulet.com/balcony ’
to=’romeo@shakespeare.lit/orchard ’
type=’chat’>

<thread >act2scene2chat1 </thread >
<active xmlns=’http: // jabber.org/protocol/chatstates ’/>

</message >

The conversation continues, but Juliet is called away again by that nagging Nurse:

Listing 17: Contact’s Client Sends Content Message
<message

from=’juliet@capulet.com/balcony ’
to=’romeo@shakespeare.lit/orchard ’
type=’chat’>

<thread >act2scene2chat1 </thread >
<body>

A thousand times good night!
</body>
<active xmlns=’http: // jabber.org/protocol/chatstates ’/>

</message >

We suppose that Juliet closes the chat window, so her client generates a <gone/> notification:

Listing 18: Contact’s Client Sends Standalone <gone/> Notification
<message

from=’juliet@capulet.com/balcony ’
to=’romeo@shakespeare.lit/orchard ’
type=’chat’>

<thread >act2scene2chat1 </thread >
<gone xmlns=’http: // jabber.org/protocol/chatstates ’/>

</message >

11

8 IMPLEMENTATION NOTES

Romeo’s client now considers the chat thread to be over and generates a new Thread ID when
he sends a new message:

Listing 19: User’s Client Sends Content Message with New Thread ID
<message

from=’romeo@shakespeare.lit/orchard ’
to=’juliet@capulet.com/balcony ’
type=’chat’>

<thread >act2scene2chat2 </thread >
<body>

A thousand times the worse , to want thy light.
Love goes toward love , as schoolboys from their books ,
But love from love , toward school with heavy looks.

</body>
<active xmlns=’http: // jabber.org/protocol/chatstates ’/>

</message >

When Juliet returns to her computer on the balcony, she finds the new message from Romeo.
When she finishes her reply, her client includes both an <active/> notification and the new
Thread ID with the body of her reply:

Listing 20: Contact’s Client Sends Content Message
<message

from=’juliet@capulet.com/balcony ’
to=’romeo@shakespeare.lit/orchard ’
type=’chat’>

<thread >act2scene2chat2 </thread >
<body>

Hist! Romeo , hist! O, for a falconer ’s␣voice ,....
␣␣ </body >
␣␣<active␣xmlns=’http:// jabber.org/protocol/chatstates ’/>
</message >

And so forth.
My, these star-crossed lovers do go on, don’t they?

8 Implementation Notes
A client that receives a chat state notification might never receive another message or chat
state notification from the other entity (e.g., because the other entity crashes or goes offline)
and needs to plan accordingly.

12

12 XML SCHEMA

9 Security Considerations
The states of a chat thread can reveal information about a user’s interaction with his or
her computer, including his or her physical presence; such information SHOULD NOT be
revealed to conversation partners who are not trusted to know such information. Client
implementations MUST provide a mechanism that enables the user to disable chat state
notifications if desired.

10 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
12.

11 XMPP Registrar Considerations
11.1 Protocol Namespaces
The XMPP Registrar 13 includes ’http://jabber.org/protocol/chatstates’ in its registry of
protocol namespaces.

12 XML Schema

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’http: // jabber.org/protocol/chatstates ’
xmlns=’http: // jabber.org/protocol/chatstates ’
elementFormDefault=’qualified ’>

<xs:annotation >
<xs:documentation >

The protocol documented by this schema is defined in
XEP -0085: http://www.xmpp.org/extensions/xep -0085. html

</xs:documentation >

12The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

13The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

13

http://www.iana.org/
https://xmpp.org/registrar/
http://www.iana.org/
https://xmpp.org/registrar/

12 XML SCHEMA

</xs:annotation >

<xs:element name=’active ’ type=’empty ’/>
<xs:element name=’composing ’ type=’empty ’/>
<xs:element name=’gone’ type=’empty ’/>
<xs:element name=’inactive ’ type=’empty ’/>
<xs:element name=’paused ’ type=’empty ’/>

<xs:simpleType name=’empty ’>
<xs:restriction base=’xs:string ’>

<xs:enumeration value=’’/>
</xs:restriction >

</xs:simpleType >

</xs:schema >

14

	Introduction
	Definitions
	State Chart
	Determining Support
	Business Rules
	Generation of Notifications
	Support Requirements
	Repetition
	Context of Usage
	Use in Groupchat
	Syntax of Notifications
	Threads
	Server Handling of Notifications

	A Simple Example
	A Detailed Conversation
	Implementation Notes
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces

	XML Schema

