
XEP-0095: Stream Initiation

Thomas Muldowney
mailto:temas@jabber.org
xmpp:temas@jabber.org

Matthew Miller
mailto:linuxwolf@outer-planes.net
xmpp:linuxwolf@outer-planes.net

Ryan Eatmon
mailto:reatmon@jabber.org
xmpp:reatmon@jabber.org

2017-11-29
Version 1.2

Status Type Short Name
Deprecated Standards Track si

This specification defines an XMPP protocol extension for initiating a data stream between any two
XMPP entities. The protocol includes the ability to include metadata about the stream and provides a
pluggable framework so that various profiles of stream initiation can be defined for particular use cases
(such as file transfer).

mailto:temas@jabber.org
xmpp:temas@jabber.org
mailto:linuxwolf@outer-planes.net
xmpp:linuxwolf@outer-planes.net
mailto:reatmon@jabber.org
xmpp:reatmon@jabber.org

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2018 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Requirements 1

3 Use Case 1
3.1 Discovery . 1
3.2 Negotiating Profile and Stream . 2
3.3 Preparing the Transfer . 4

4 Formal Definition 5
4.1 <si/> Root Element . 5
4.2 Error Codes . 5

5 Implementation Notes 6
5.1 Profiles . 6
5.2 Stream Interaction . 7

6 Security Considerations 7

7 IANA Considerations 7

8 XMPP Registrar Considerations 8
8.1 Protocol Namespaces . 8
8.2 Registries . 8

8.2.1 Profiles Registry . 8

9 XML Schema 8

3 USE CASE

1 Introduction
As the Jabber protocols are extended beyond basic messaging and presence, the need has
arisen for a generic protocol that can be used to negotiate content streams between any
two entities. Such streams might be in-band, but more likely will be out-of-band, binary
streams used in applications such as file transfer, voice chat, and video conferencing. This
document provides a method for negotiating such streams, including meta-information about
the intended usage of the stream.

2 Requirements
• The defined protocol will allow for negotiation of a common stream.

• The defined protocol will allow for meta-information to be sent about the stream usage.

• The defined protocol will not be required for stream usage.

3 Use Case
The process for stream negotiation is as follows:

1. Sender discovers if Receiver implements the desired profile. [E1]

2. Sender offers a stream initiation. [E2]

3. Receiver accepts stream initiation.

4. Sender and receiver prepare for using negotiated profile and stream, EUC

Error Conditions:

1. The Receiver does not support the desired profile, EUC

2. Receiver rejects the stream initiation, EUC

3.1 Discovery
Before a Stream Initiation is attempted the Sender should be sure that the Receiver supports
both Stream Initiation and the specific profile that they wish to use. This is typically accom-
plished using Service Discovery (XEP-0030) 1:

1XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

1

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

3 USE CASE

Listing 1: Requesting Disco Information From Receiver
<iq type=’get’

to=’receiver@jabber.org/resource ’
from=’sender@jabber.org/resource ’
id=’info1 ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

The Receiver advertises the ”http://jabber.org/protocol/si” namespace as a feature to
represent that they implement this document. The specific profiles are also announced this
way; they can be found by looking for ”http://jabber.org/protocol/si/profile/profile-name”.
Shown in the result is a potential file transfer profile:

Listing 2: Receiver Disco Information Result
<iq type=’result ’

to=’sender@jabber.org/resource ’
from=’receiver@jabber.org/resource ’
id=’info1 ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
...
<feature var=’http: // jabber.org/protocol/si’/>
<feature var=’http: // jabber.org/protocol/si/profile/file -transfer ’

/>
...

</query >
</iq>

3.2 Negotiating Profile and Stream
Once support is determined, the Sender starts the negotiation with the Receiver by sending an
<iq/> stanza of type ”set”, such as in the following example from SI File Transfer (XEP-0096) 2:

Listing 3: Offer Stream Initiation
<iq type=’set’ id=’offer1 ’ to=’receiver@jabber.org/resource ’>

<si xmlns=’http: // jabber.org/protocol/si’
id=’a0’
mime -type=’text/plain ’
profile=’http: // jabber.org/protocol/si/profile/file -transfer ’>

<file xmlns=’http: // jabber.org/protocol/si/profile/file -transfer ’
name=’test.txt’
size=’1022’>

<desc>This is info about the file.</desc>
</file>

2XEP-0096: SI File Transfer <https://xmpp.org/extensions/xep-0096.html>.

2

https://xmpp.org/extensions/xep-0096.html
https://xmpp.org/extensions/xep-0096.html

3 USE CASE

<feature xmlns=’http: // jabber.org/protocol/feature -neg’>
<x xmlns=’jabber:x:data ’ type=’form’>

<field var=’stream -method ’ type=’list -single ’>
<option ><value >http:// jabber.org/protocol/bytestreams </value

></option >
<option ><value >jabber:iq:oob </value ></option >
<option ><value >http:// jabber.org/protocol/ibb</value ></

option >
</field >

</x>
</feature >

</si>
</iq>

At this point the Receiver can view the profile and other information to decide if they wish
to accept the Stream Initiation. If acceptable the Receiver MUST select one of the presented
stream types to use.

Listing 4: Accept Stream Initiation
<iq type=’result ’ to=’sender@jabber.org/resource ’ id=’offer1 ’>

<si xmlns=’http: // jabber.org/protocol/si’>
<feature xmlns=’http: // jabber.org/protocol/feature -neg’>

<x xmlns=’jabber:x:data ’ type=’submit ’>
<field var=’stream -method ’>

<value >http:// jabber.org/protocol/bytestreams </value >
</field >

</x>
</feature >

</si>
</iq>

If the profile describes data to be sent back in the result it MUST be present as described in
the profile’s specification.

Listing 5: Accept Stream Initiation with Profile
<iq type=’result ’ to=’sender@jabber.org/resource ’ id=’offer1 ’>

<si xmlns=’http: // jabber.org/protocol/si’>
<file xmlns=’http: // jabber.org/protocol/si/profile/profile -name’>

<value >returned value </value >
</file>
<feature xmlns=’http: // jabber.org/protocol/feature -neg’>

<x xmlns=’jabber:x:data ’ type=’submit ’>
<field var=’stream -method ’>

<value >http:// jabber.org/protocol/bytestreams </value >
</field >

</x>
</feature >

3

3 USE CASE

</si>
</iq>

If none of the stream types are acceptable, or if the profile is not understood, the Receiver
MUST reply with a ”bad request” error:

Listing 6: No Valid Streams
<iq type=’error ’ to=’sender@jabber.org/resource ’ id=’offer1 ’>

<error code=’400’ type=’cancel ’>
<bad -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<no -valid -streams xmlns=’http: // jabber.org/protocol/si’/>

</error >
</iq>

Listing 7: Profile not understood
<iq type=’error ’ to=’sender@jabber.org/resource ’ id=’offer1 ’>

<error code=’400’ type=’cancel ’>
<bad -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<bad -profile xmlns=’http: // jabber.org/protocol/si’/>

</error >
</iq>

If the Receiver rejects the request, they reply with a ”forbidden” error:

Listing 8: Rejecting Stream Initiation
<iq type=’error ’ to=’sender@jabber.org/resource ’ id=’offer1 ’>

<error code=’403’ type=’cancel ’>
<forbidden xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<text xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’>Offer Declined </

text>
</error >

</iq>

3.3 Preparing the Transfer
At this point, the Sender and Receiver make any preparations necessary for the stream to be
used. The exact process is specific to each protocol, and is beyond the scope of this document.
This step now marks the end of SI’s responsibilities.

4

4 FORMAL DEFINITION

4 Formal Definition
4.1 <si/> Root Element
The <si/> element is the root element for this protocol. It is an identifiable container for
all the information necessary for negotiation and signalling. It contains attributes for the
identifier, intended MIME-type, and profile. The contents convey stream-negotation and
profile information.
The ”id” attribute is an opaque identifier. This attribute MUST be present on type=’set’, and
MUST be a valid string. This SHOULD NOT be sent back on type=’result’, since the <iq/> ”id”
attribute provides the only context needed. This value is generated by the Sender, and the
same value MUST be used throughout a session when talking to the Receiver.
The ”mime-type” attribute identifies the MIME-type for the data across the stream. This at-
tribute MUST be a valid MIME-type as registered with the Internet Assigned Numbers Author-
ity (IANA) 3 (specifically, as listed at <http://www.iana.org/assignments/media-types>).
During negotiation, this attribute SHOULD be present, and is otherwise not required. If not
included during negotiation, its value is assumed to be ”application/octet-stream”.
The ”profile” attribute defines the SI profile in use. This value MUST be present during
negotiation, and is the namespace of the profile to use.
When the Sender first negotiates a Stream Initiation, all of the attributes SHOULD be present,
and the id” and ”profile” MUST be present. The contents MUST contain one profile, in the
namespace declared in the ”profile” attribute, and the feature negotiation for the stream. The
feature negotiation MUST contain at least one option and use the field var ”stream-method”.
When the Receiver accepts a Stream Initiation, the <si/> element SHOULD NOT possess any
attributes. The selected stream MUST be in the feature negotiation for the stream. There
MUST only be one selected stream.

4.2 Error Codes
To simplify the discussion on error conditions, this document uses the following mapping
between namespace URIs and namespace prefixes4.

Prefix URI
xmpp urn:ietf:params:xml:ns:xmpp-stanzas
si http://jabber.org/protocol/si

3The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

4This mapping is provided for the purpose of simplifying this discussion, and is not intended to be used in the
actual protocol.

5

http://www.iana.org/
http://www.iana.org/
http://www.iana.org/assignments/media-types
http://www.iana.org/

5 IMPLEMENTATION NOTES

Below are the most common errors that can result.

Error Code Error Type General Condi-
tion

Specific Condi-
tion

Description

400 cancel <xmpp:bad-
request/>

<si:no-valid-
streams/>

Noneof the avail-
able streams are
acceptable.

400 modify <xmpp:bad-
request/>

<si:bad-profile/> The profile is not
understoodor in-
valid. The pro-
file MAY supply
a profile-specific
error condition.

403 cancel <xmpp:forbidden/> NONE The stream is re-
jected.

For further information about the relationship between XMPP error handling and ”legacy”
(HTTP-style) error codes, refer to Error Condition Mappings (XEP-0086) 5.

5 Implementation Notes
5.1 Profiles
Stream Initiation on its own is of limited use; the Receiver almost always requires some reason
for SI. Knowing this allows the Receiver to make a more educated choice about whether or not
to accept the stream. This information is provided in Stream Initiation via a profile. A profile
is a collection of information that describes the reason for and structure of the stream data,
including what the data represents and what stream protocols are expected to be supported.
The initial request for Stream Initiation MUST have only one profile, and this profile is in its
own namespace. The profile is indicated not only by the presence of a ”root” element in that
particular namespace, but also be the ”profile” attribute in <si/> The SUGGESTED format for
profile namespaces is:

http:// jabber.org/protocol/si/profile/profile -name

The information that the profile presents SHOULD be defined in an official XEP. The XEP
defining the profile SHOULD contain explanations of what the profile consists of and MUST
define the profile in a complete manner using DTD, Schema or another appropiate definition
language.

5XEP-0086: Error Condition Mappings <https://xmpp.org/extensions/xep-0086.html>.

6

https://xmpp.org/extensions/xep-0086.html
https://xmpp.org/extensions/xep-0086.html

7 IANA CONSIDERATIONS

A profile SHOULD define what stream protocols MUST be supported, and MUST define what
stream protocols MAY be supported. If a profile specifies only a single stream protocol that
MUST be supported (even if others MAY also be supported), the ”fneg” for the stream protocol
may be omitted from the initial <si/>; the receiving entity then assumes the stream protocol
that MUST be supported is the one to use.
This document does not define any profiles, nor does it place any restrictions on what type of
information a profile should detail. Other specifications will define profiles to be used with
Stream Initiation.

5.2 Stream Interaction
While Stream Initiation is not directly required for stream usage, it does provide many
benefits. In order to fully appreciate these benefits, streams must link the Stream Initiation
to the stream. The ”id” attribute transported on the <si/> element is intended to do this. Once
a session is fully negotiated, the value of the <si/> ”id” attribute is used during the actual
stream negotiation as the protocol’s stream identifier attribute.
To be compatible to this document, a stream protocol MUST define a stream identifier (typi-
cally ”sid”), which MUST have a unique string representation. The stream protocol MUST be
able to use any string identifier chosen during Stream Initiation, as long as the sending party
does not use the same identifier more than once.

6 Security Considerations
Data security concerns are left to the profiles to define. Wire security concerns are left to the
stream definitions.

7 IANA Considerations
This document uses the MIME types as recorded by the IANA, but no direct interaction with
the IANA is necessary.

7

9 XML SCHEMA

8 XMPP Registrar Considerations
8.1 Protocol Namespaces
The XMPP Registrar 6 includes the ’http://jabber.org/protocol/si’ namespace in its registry
of protocol namespaces.

8.2 Registries
8.2.1 Profiles Registry

The XMPP Registrar shall maintain a registry of stream initiation profiles, located at
<https://xmpp.org/registrar/si-profiles.html>. Any such profile defined in a XMPP
Extension Protocol specification MUST be submitted to the XMPP Registrar; profiles defined
in non-standard protocol extensions SHOULD be submitted to the XMPP Registrar.
In order to submit new values to this registry, the registrant shall define an XML fragment of
the following form and either include it in the relevant XMPP Extension Protocol or send it to
the email address <registrar@xmpp.org>:

<profile >
<name>The profile name</name>
<doc>The specification that defines the profile </doc>
<desc>A natural -language description of the profile </desc>

</profile >

9 XML Schema

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’http: // jabber.org/protocol/si’
xmlns=’http: // jabber.org/protocol/si’
elementFormDefault=’qualified ’>

<xs:import
namespace=’http: // jabber.org/protocol/feature -neg’
schemaLocation=’http: //www.xmpp.org/schemas/feature -neg.xsd’/>

<xs:annotation >
<xs:documentation >

6The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

8

https://xmpp.org/registrar/
https://xmpp.org/registrar/si-profiles.html
https://xmpp.org/registrar/

9 XML SCHEMA

The protocol documented by this schema is defined in
XEP -0095: http://www.xmpp.org/extensions/xep -0095. html

</xs:documentation >
</xs:annotation >

<xs:element name=’si’>
<xs:annotation >

<xs:documentation >
This is the root content element. All other elements in
this namespace are for communicating error information.

</xs:documentation >
</xs:annotation >
<xs:complexType >

<xs:sequence xmlns:fneg=’http: // jabber.org/protocol/feature -neg’
>

<xs:any namespace=’## other ’ minOccurs=’0’/>
<xs:element ref=’fneg:feature ’/>

</xs:sequence >
<xs:attribute name=’id’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’mime -type’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’profile ’ type=’xs:string ’ use=’optional ’/>

</xs:complexType >
</xs:element >

<xs:element name=’bad -profile ’ type=’empty ’/>
<xs:element name=’no -valid -streams ’ type=’empty ’/>

<xs:simpleType name=’empty ’>
<xs:restriction base=’xs:string ’>

<xs:enumeration value=’’/>
</xs:restriction >

</xs:simpleType >

</xs:schema >

9

	Introduction
	Requirements
	Use Case
	Discovery
	Negotiating Profile and Stream
	Preparing the Transfer

	Formal Definition
	<si/> Root Element
	Error Codes

	Implementation Notes
	Profiles
	Stream Interaction

	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	Registries
	Profiles Registry

	XML Schema

