
XEP-0102: Security Extensions

Jean-Louis Seguineau
mailto:jean-louis.seguineau@antepo.com

xmpp:jlseguineau@im.antepo.com

2003-06-25
Version 0.1

Status Type Short Name
Deferred Standards Track Not yet assigned

Security extensions for Jabber/XMPP.

mailto:jean-louis.seguineau@antepo.com
xmpp:jlseguineau@im.antepo.com

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Terms and Definitions 1

3 Requirements And Considerations 3
3.1 Security Requirements . 3

3.1.1 Data Protection . 3
3.1.2 Data Classification . 3
3.1.3 End To End Protection . 4
3.1.4 Trust Issues . 4
3.1.5 Cryptosystem Design Considerations 4

3.2 2.2 Environmental Considerations . 5
3.3 Usability . 5
3.4 Development And Deployment . 5
3.5 XML Processing . 6

3.5.1 Transporting Binary Content . 6
3.5.2 Transporting Encrypted Content . 6
3.5.3 Performing HMAC Computation . 6
3.5.4 Performing Cryptographic Operations 7

4 xmpp:sec namespace 7
4.1 Elements within the extension . 7
4.2 Attributes . 8
4.3 Elements . 8
4.4 Attributes values . 10

5 Base Key Agreement 11
5.1 Overview . 11

5.1.1 Secure password registration . 12

6 Authenticated Key Agreement 13
6.1 Introduction . 13
6.2 Key Exchange Protocol . 15

6.2.1 Aggressive Mode Key Exchange . 16
6.2.2 Main Mode Key Exchange . 16
6.2.3 Deriving key material for Cryptographic Transforms 17

6.3 Authenticated Key Exchange Application . 18
6.3.1 Main Mode Key Exchange . 18
6.3.2 Aggressive Mode Key Exchange . 26

7 Key Transport 30
7.1 Conversation Key Transport . 30

7.1.1 Key transport exchange . 31

7.1.2 Generating And Sending a Conversation Key Transport PDU 31
7.1.3 Receiving and Processing the Conversation Key Transport PDU 33

7.2 Public Key Transport . 33
7.2.1 Certificate transport . 34
7.2.2 Other Public Keys Transport . 34

8 Message Protection 35
8.1 Overview . 35
8.2 Message Protection Mechanism . 35
8.3 Generating And Sending the Protected Message PDU 36
8.4 Receiving and Processing the Protected Message PDU 37

9 Algorithms 38

10 PKCS #3: Diffie-Hellman Key-Agreement Standard 39
10.1 Scope . 39
10.2 References . 39
10.3 Definitions . 39
10.4 Symbols and abbreviations . 40
10.5 General overview . 40
10.6 Parameter generation . 40

10.6.1 Notes . 41
10.7 Phase I . 41

10.7.1 Private-value generation . 41
10.7.2 Exponentiation . 41
10.7.3 Integer-to-octet-string conversion . 41

10.8 Phase II . 42
10.8.1 Octet-string-to-integer conversion . 42
10.8.2 Exponentiation . 42
10.8.3 Integer-to-octet-string conversion . 42

10.9 Object identifier . 43
10.10 Revision history . 43

10.10.1 Versions 1.0-1.2 . 43
10.10.2 Version 1.3 . 43
10.10.3 Version 1.4 . 43

10.11 Author’s address . 44

11 IKE Diffie-Hellman Groups 44
11.1 768-bit MODP - modp1 . 44
11.2 1024-bit MODP Group - modp2 . 44
11.3 1536-bit MODP Group - modp5 . 45
11.4 2048-bit MODP Group . 45
11.5 3072-bit MODP Group . 45
11.6 4096-bit MODP Group . 46

11.7 6144-bit MODP Group . 47
11.8 8192-bit MODP Group . 47

2 TERMS AND DEFINITIONS

1 Introduction
While the benefits of IM are clear and compelling, the risks associated with sharing sensitive
information in an IM environment are often overlooked. We need a mechanism that permits
communities of users to protect their IM conversations. This document presents an extension
protocol that can be incorporated into the existing XMPP protocol to provide such a mecha-
nism.
In addition to its ability to protect instant message data, the proposed protocol may also serve
as a foundation for securing other data transported via XMPP extensions.

2 Terms and Definitions

Term Definition
User A user is simply anyXMPP user. Users are uniquely identified by

a JID; they connect toXMPPhosts using aXMPPnode. Users pro-
duce and consume information, and we wish to provide them
with mechanisms that can be used to protect this information.

Community A community is a collection of users who wish to communicate
via XMPP. No restrictions or assumptions are made about the
size of communities or the geographical, organizational, or na-
tional attributes of the members. Communities are assumed to
be dynamic and ad-hoc. Users typically join communities by
the simple act of invitation. All members of a community are
assumed to be peers. The members of communities share infor-
mation among themselves, and we wish to provide them with
mechanisms that can permit information to only be shared by
community members.

Conversation A conversation is the set ofmessages that flows among themem-
bers of a community via some network. Conversations consist
of both the actual conversation data produced and consumed
by the various users as well as the XMPP protocol elements that
transport it. Members participate in a conversation when they
are the source or destination of this traffic.

Initiator The initiator is the user who requested a security session nego-
tiation. Initiator’s are identified by their JID.

Responder The responder is the user who responded to a security session
negotiation request. Responder’s are identified by their JID.

Concatentation operator The ’|’ character is used in character or octet string expressions
to indicate concatenation.

PFS Perfect Forward Secrecy. In cryptography, is said of a key-
establishment protocol in which the compromise of a session
key or long-termprivate key after a given session does not cause
the compromise of any earlier session.

1

2 TERMS AND DEFINITIONS

Term Definition
GRP The definition of a Diffie-Hellman group length
DHx The Diffie-Hellman ephemeral public keys for the initiator (x=i)

and the responder (x=r)
KEY The Diffie-Hellman ephemeral session secret that is agreed to

during a key exchange negotiation.
CKYx A 64 bits pseudo-random number or cookie generated by the

initiator (x=i) and responder (x=r) in the authenticated key ex-
change.

KEYID The concatenation of CKI-I and CKI-r and the domain of inter-
pretation. It is the name of the keying material.

sKEYID This is the keying material named by KEYID. It is never trans-
mitted but is used in the various calculations made by the ex-
changing parties.

EHAo A list of encryption/hash/authentication algorithms choices.
EHAs The selected reference encryption/hash/authentication choice.
Nx The nonces selected by the initiator (x=i) and the responder

(x=r)
JIDx The identities of the initiator (x=i) and the responder (x=r)
E{value}Kx The encryption of value with the public key of the initiator (x=i)

and the responder (x=r). Encryption is done using the algorithm
associated with the authentication method. Usually this will be
RSA

D{value}Kx The decryption of value with the public key of the initiator (x=i)
and the responder (x=r). Decryption is done using the algorithm
associated with the authentication method. Usually this will be
RSA

S{value}Kx The signature of value with the private key of the initiator (x=i)
and the responder (x=r). Signing is done using the algorithm
associated with the authentication method. Usually this will be
RSA or DSS

prf(a, b) The result of applying pseudo-random function ”a” to data ”b”.
One may think of ”a” as a key or as a value that characterizes
the function prf; in the latter case it is the index into a family
of functions. Each function in the family provides a ”hash” or
one-way mixing of the input.

prf(0, b) The application of a one-way function to data ”b”. The similar-
ity with the previous notation is deliberate and indicates that a
single algorithm, e.g. MD5, might will used for both purposes.
In the first case a ”keyed” MD5 transform would be used with
key ”a”; in the second case the transform would have the fixed
key value zero, resulting in a one-way function.

hmac(a, b) This indicates the HMAC algorithm. pseudo-random function
”a” to data ”b”.

2

3 REQUIREMENTS AND CONSIDERATIONS

3 Requirements And Considerations
The proposed protocol is designed to address the specific requirements and considerations
presented in this section.

3.1 Security Requirements
3.1.1 Data Protection

A secure IM system must permit conversation participants to preserve the following proper-
ties of their conversation data:

Property Description
confidentiality Conversation data must only be disclosed to authorized recip-

ients
integrity Conversation data must not be altered
data origin authentication Recipientsmust be able to determine the identity of the sender

and trust that the message did, in fact, come from the sender.
It is important to note that this requirement does not include
the requirement of a durable digital signature on conversation
data.

replay protection Recipientsmust be able to detect and ignore duplicate conver-
sation data.

These are established, traditional goals of information security applied to the conversation
data. In the IM environment, these goals protect against the following attacks:

• eavesdropping, snooping, etc.

• masquerading as a conversation participant

• forging messages

Preserving the availability of conversation data is not addressed by this protocol.
Finally, note that this protocol does not concern any authentication between an XMPP node
and an XMPP host.

3.1.2 Data Classification

A secure IM system must support a data classification feature through the use of security
labeling. Conversation participants must be able to associate a security label with each piece

3

3 REQUIREMENTS AND CONSIDERATIONS

of conversation data. This label may be used to specify a data classification level for the
conversation data.

3.1.3 End To End Protection

It is easy to imagine XMPP systems in which the servers play active, fundamental roles in the
protection of conversation data. Such systems could offer many advantages, like:

• allowing the servers to function as credential issuing authorities,

• allowing the servers to function as policy enforcement points.
Unfortunately, such systems have significant disadvantages when one considers the nature
of instant messaging:

• Many servers may be un-trusted, public servers.

• In many conversation communities, decisions of trust and membership can only be ad-
equately defined by the members themselves.

• Inmany conversation communities, membership in the community changes in real time
based upon the dynamics of the conversation.

• In many conversation communities, the data classification of the conversation changes
in real time based upon the dynamics of the conversation.

Furthermore, the use of gateways to external IM systems is a further complication.
Based on this analysis, we propose that security be entirely controlled in an end to end fashion
by the conversation participants themselves via their user agent software.

3.1.4 Trust Issues

Similarly, we believe that trust decisions are in the hands of the conversation participants. A
security protocol and appropriate user agents must provide a mechanism for them to make
informed decisions.

3.1.5 Cryptosystem Design Considerations

One of the accepted axioms of security is that people must avoid the temptation to start from
scratch and produce new, untested algorithms and protocols. History has demonstrated that
such approaches are likely to contain flaws and that considerable time and effort are required
to identify and address all of these flaws. Any new security protocol should be based on
existing, established algorithms and protocols.

4

3 REQUIREMENTS AND CONSIDERATIONS

3.2 2.2 Environmental Considerations
Any new IM security protocol must integrate smoothly into the existing IM environment, and
it must also recognize the nature of the transactions performed by conversation participants.
These considerations are especially important:

• dynamic communities. The members of a community are defined in near real time by
the existing members.

• dynamic conversations. Conversations may involve any possible subset of the entire set
of community members.

Addressing these considerations becomes especially crucial when selecting a conference
keying mechanism.

3.3 Usability
Given the requirement to place the responsibility for the protection of conversation data in
the hands of the participants, it is imperative to address some fundamental usability issues:

• Overall ease of use is a requirement. For protocol purposes, one implication is that
some form of authentication via passphrases is necessary. While we recognize that this
can have appalling consequences, especially when we realize that a passphrase may be
shared by all of the community members, we also recognize its utility.

• PKIs are well established inmany large organizations, and some communities will prefer
to rely on credentials issued from these authorities. We must allow the use of existing
PKI credentials and trust models rather than impose closed, XMPP-specific credentials.

• Performance must not be negatively impacted. This is particularly true if we consider
that most communities are composed of human users conversing in real time. For pro-
tocol purposes, one obvious implication is the desire to minimize computationally ex-
pensive public key operations.

3.4 Development And Deployment
To successfully integrate into the existing XMPP environment, an extension protocol for
security must satisfy the following:

• It must be an optional extension of the existing XMPP protocol.

• It must be transparent to existing XMPP servers.

• It must function gracefully in cases where some community members are not running a
user agent that supports the protocol.

5

3 REQUIREMENTS AND CONSIDERATIONS

• It must make good use of XML.

• It must avoid encumbered algorithms.

• It must be straightforward to implement using widely available cryptographic toolkits.

• It must not require a PKI.

3.5 XML Processing
Since cryptographic operations are applied to data that is transported within an XML stream,
the protocol defines a set of rules to ensure a consistent interpretation by all conversation
participants.

3.5.1 Transporting Binary Content

Binary data, such as the result of an HMAC, is always transported in an encoded form; the
only supported encoding scheme is base64.
Senders MAY include arbitrary white space within the character stream. Senders SHOULD
NOT include any other characters outside of the encoding set.
Receivers MUST ignore all characters not in the encoding set.

3.5.2 Transporting Encrypted Content

Encrypted data is always transported in an encoded form; the only supported encoding
scheme is base64.
Senders MAY include arbitrary white space within the character stream. Senders SHOULD
NOT include any other characters outside of the encoding set.
Receivers MUST ignore all characters not in the encoding set.

3.5.3 Performing HMAC Computation

HMACs are computed over a specific collection of attribute values and character data; when
computing an HMAC the following rules apply:

• All characters MUST be HMACed in their pure Unicode form encoded in UTF-16.

• The octets in each character MUST be processed in network byte order.

• For a given element, the attribute values that are HMACed MUST be processed in the
specified order regardless of the order in which they appear in the element tag.

6

4 XMPP:SEC NAMESPACE

• For each attribute value, the computation MUST only include characters from the an-
ticipated set defined in this specification; in particular, white space MUST always be
ignored.

• For character data that is represented in a base64 encoded form, the computationMUST
only include valid characters from the encoding set.

3.5.4 Performing Cryptographic Operations

The following algorithm is used to encrypt a character string:

• The character string MUST be represented in Unicode encoded in UTF-16.

• The octets in each character MUST be processed in network byte order.

• Appropriate cryptographic algorithm parameters, such as an IV for a block cipher, are
generated.

• The octet string derived from the character string is padded with up to 256 octets of
arbitrary padding data. There MUST be at least one padding octet. The last octet of
the padding MUST indicate the number of preceeding octets in the stream. All padding
octets except the last octet SHOULD be randomly generated. When block ciphers are
used, the padding MUST result in a stream of octets that is a multiple of the cipher’s
block size.

4 xmpp:sec namespace
4.1 Elements within the extension
When used to extend existing XMPP construct, the container element is an <x/> element.
Each <x/> element could have one <SecurityAssociation/> to refer to a particular security
session, one <KeyAgreement/> element which would contain the information for an an
exchange of keys. The <x/> element could have its content authenticated by one <Signature/>
element which contains the information about signature of information exchanged between
two nodes. The <x/> element may contains one <KeyTransport/> element which contains the
information about keys to be securely exchanged between two nodes.
When used in an IQ XMPP construct, the container element is a <query/> element. Each
<query/> element could have one <SecurityAssociation/> to refer to a particular security ses-
sion, one <KeyAgreement/> element which would contain the information for an an exchange
of keys. The <query/> element could have its content authenticated by one <Signature/>
element which contains the information about signature of information exchanged between
two nodes. The <query/> element may contains one <KeyTransport/> element which contains
the information about keys to be securely exchanged between two nodes.
Each <SecurityAssociation/> element may have <DigestMethod/>, <EncryptionMethod/> and

7

4 XMPP:SEC NAMESPACE

<SignatureMethod/> elements to specify the actual algorithms set that will be used in a key
exchange.
Each <KeyAgreement/> element may have a <DHKeyValue/> and a < DHParamters/> elements
to specify the actual data and parameters used in the key exchange. It may also contain a
<KA-Nonce/> element to specify a nonce to be used in a key exchange.

4.2 Attributes

Attribute Meaning
id The id attribute hold the agreement or security association ID, when present.
length The length attribute hold the require number of bits in the prime number used

to generate the DH key pair.

4.3 Elements

Element Meaning
SecurityAssociation The <SecurityAssociation/> tag is used to encapsulate Encryption-

Method, DigestMethod, SignatureMethod data. It is used as a con-
tainer for the different algorithm definition that are negotiated for
the session.

AgreementMethod The <AgreementMethod/> tag is an optional element that identifies
the key agreement algorithm to be applied to an object.

DigestMethod The <DigestMethod/> tag is an optional element that identifies the
digest algorithm to be applied to an object.

DigestValue The <DigestValue/> tag is an optional element that contains the en-
coded value of a digest.

EncryptionMethod The <EncryptionMethod/> tag is an optional element that describes
the encryption algorithm applied to the cipher data. If the element
is absent, the encryption algorithm must be known by the recipient
or the decryption will fail.

Signature The <Signature/> tag is used to encapsulate signature data. It is used
as a container of other XML structures that could come from any
namespace.

SignatureMethod The <SignatureMethod/> tag is an optional element that specifies the
algorithm used for signature generation and validation.

SignatureValue The <SignatureValue/> tag is an optional element that contains the
encoded value of a signature.

8

4 XMPP:SEC NAMESPACE

Element Meaning
SignedInfo The <SignedInfo/> tag includes the canonicalization algorithm, a

signature algorithm, and one or more references. The Signed-
Info element may contain an optional ID attribute that will allow
it to be referenced by other signatures and objects. It is in the
http://www.w3.org/2000/09/xmldsig# namespace.

KA-Nonce The <KA-Nonce/> tag is an optional element under <KeyAgreement/>
to assure that different keying material is generated even for re-
peated agreements using the same sender and recipient public keys.

KeyAgreement The <KeyAgreement/> tag is used to encapsulate key agreement data.
It is used as a container of other XML structures that could come from
external namespace.

KeyInfo The <KeyInfo/> tag is used to encapsulate key information data. It
enables the recipient to obtain the key needed to validate a signature.
<KeyInfo/> may contain keys, names, certificates and other public
key management information, such as in-band key distribution or
key agreement data. It is used as a container of other XML structures
that could come from external namespace.

OriginatorKeyInfo The <OriginatorKeyInfo/> tag is used to encapsulate originator key
information data in a key agreement. It is of type <KeyInfo/> and
used as a container of other XML structures that could come from
external namespace.

RecipientKeyInfo The <RecipientKeyInfo/> tag is used to encapsulate recipient key in-
formation data in a key agreement. It is It is of type <KeyInfo/> and
used as a container of other XML structures that could come from
external namespace.

KeyName The <KeyName/> tag is an optional element of <KeyInfo/> and con-
tains a string value (in which white space is significant) which may
be used to communicate a key identifiert to the recipient.

KeyValue The <KeyValue/> tag contains a single public key that may be useful
in validating a signature. The KeyValue element may include exter-
nally defined public keys values represented as PCDATA or element
types from an external namespace

KeyTransport The <KeyTransport/> tag is used to encapsulate transported key data.
It is used as a container of other XML structures that could come from
any namespace.

CarriedKeyName The <CarriedKeyName/> tag is optional and used to specified the
name of the transported key.

DHKeyValue The <DHKeyValue/> tag is used to encapsulate a Diffie-Hellman key
agreement content. It is designed to follow the XML digital signature
standard.

DHParameters The <DHParameters/> tag is used to to encapsulate a Diffie-Hellman
key exchange parameters.

Public The <Public/> tag is holding the actual content of a Diffie-Hellman
public key.

9

4 XMPP:SEC NAMESPACE

Element Meaning
X509Data The <X509Data/> tag is an optional element holding one or more

identifiers of keys or X509 certificates, or certificates’ identifiers or
a revocation list. It is in the http://www.w3.org/2000/09/xmldsig#
namespace.

PGPData The <PGPData/> tag is an optional element used to convey informa-
tion related to PGP public key pairs and signatures on such keys. It is
in the http://www.w3.org/2000/09/xmldsig# namespace.

DSAKeyValue The <DSAKeyValue/> tag is optional and defines a DSA
public key inside a <KeyInfo/> element. It is in the
http://www.w3.org/2000/09/xmldsig# namespace.

RSAKeyValue The <RSAKeyValue/> tag is optional and defines a RSA
public key inside a <KeyInfo/> element. It is in the
http://www.w3.org/2000/09/xmldsig# namespace.

4.4 Attributes values

Element Attribute Value Meaning
KeyAgreement id CDATA The agreement ID
length null CDATA The length of the

prime number to
be used by default
is 768 bits. The
length of the prime
number to be usedas
defined in the IKE
Diffie-Hellman
groups.

SecurityAssocitation id CDATA The security associa-
tion ID or cookie for
a party in the nego-
tiation.

AgreementMethod Algorithm CDATA The algorythm URI
for the key agree-
ment.

DigestMethod Algorithm CDATA The algorythm URI
for the digest.

EncryptionMethod Algorithm CDATA The algorythm URI
for the encryption.

SignatureMethod Algorithm CDATA The algorythm URI
for the signature.

10

5 BASE KEY AGREEMENT

5 Base Key Agreement
5.1 Overview
The base key agreement (BKE) is an implementation of the ”Diffie-Hellman Method For Key
Agreement” (DH). It allows two nodes to create and share a secret key.
DH is not an encryption mechanism as we normally think of them, in that we do not typically
use it to encrypt data. Instead, it is a method to securely exchange the keys that encrypt data.
DH accomplishes this secure exchange by creating a ”shared secret”, sometimes called a ”key
encryption key”, between two nodes. The shared secret then encrypts the symmetric key, or
”data encryption key” - DES, Triple DES, CAST, IDEA, Blowfish, etc, for secure transmission.
Two nodes intending to agree on a secret key shall employ the first phase of the agreement
independently to produce the public values outputs PV and PV’. The nodes shall exchange the
outputs.
The nodes shall then employ the second phase independently with the other nodes’s public
value as input. The mathematics of Diffie-Hellman key agreement ensure that the resulting
outputs SK of the second phase are the same for both entities.
1) First the nodes must get the ”Diffie-Hellman parameters”. A prime number, ’p’ (larger than
2) and ”base”, ’g’, an integer that is smaller than ’p’. They can either be hard coded or fetched
from a server.
Diffie-Hellman groups are used to determine the length of the base prime numbers used
during the key exchange. The strength of any key derived depends in part on the strength of
the Diffie-Hellman group the prime numbers are based on:

• Group 2 (medium) is stronger than Group 1 (low). Group 1 will provide 768 bits of keying
material, while Group 2 will provide 1,024 bits. If mismatched groups specified on each
peer, negotiation will fail. The group cannot be switched during the negotiation.

• A larger group results in more entropy and therefore a key which is harder to break.

2) The nodes each secretly generate a private number called ’x’, which is less than ”p - 1”.
3) The nodes next generate the ephemeral public keys, ’y’. They are created with the function:
y = gˆx mod p
4) The two nodes now exchange the public keys (’y’) and the exchanged numbers are con-
verted into a secret key, ’z’.
z = yˆx mod p
’z’ can now be used as the key for whatever encryptionmethod is used to transfer information
between the two nodes. Mathematically, the two nodes should have generated the same value
for ’z’.
z = (gˆx mod p)ˆx’ mod p = (gˆx’ mod p)ˆx mod p
All of these numbers are positve integers
xˆy means: x is raised to the y power

11

5 BASE KEY AGREEMENT

xmody means: x is divided by y and the remainder is returned
Suppose two nodes want to agree on a shared secret key to exchange information securely,
they will exchange their public keys in order to encrypt that information. To this goal, the
transport XMPP packet SHOULD include an extension of the form:

Listing 1: Key agreement Application
<x xmlns=”xmpp:sec”>
<KeyAgreement length=”1024”>
<DHKeyValue >
<Public> ;...</ Public >
</DHKeyValue >
</KeyAgreement >
</x>

In this extension, the only negotiable parameter is the key length that is passed in the
length attribute of the <KeyAgreement/> tag. The length attribute is used to retrieve the DH
parameter group and the associated prime and generator values. We are using DH groups
derived from the Internet Key Exchange protocol (IKE) which is used by IPSec. A summary of
these groups and the associated parameters are described later in this document.

5.1.1 Secure password registration

An example of using this agreement is to send encrypted password on the wire when regis-
tering a new user. Registration is the only time a password needs to be exchanged between
an XMPP server and a client. Once that has been carried out, then every authentication can
be done through digest.
The client uses an empty <x/> element in the request to signal that it supports the XMPP
security extension.
The flow between client and server will look like:

Listing 2: Client requests register parameters
<iq to=”domain” type=”get” id=”req -0”>
<x xmlns=”jabber:iq:register”>
<x xmlns=”xmpp:sec”>
<KeyAgreement length=”1024”/>
</x>
</query >
</iq>

The server will reply to the request by sending out its own ephemeral public key inside the
<x/> extension.

Listing 3: Server respond with register parameters

12

6 AUTHENTICATED KEY AGREEMENT

<iq from=”domain” type=”result” id=”req -0”>
<x xmlns=”jabber:iq:register”>
<username/>
<password/>
<x xmlns=”xmpp:sec”>
<KeyAgreement >
<DHKeyValue >
<Public >encoded server public key</Public >
</DHKeyValue >
</KeyAgreement >
</x>
</query >
</iq>

The client then generate its own public key, calcultate the shared secret according to the DH
method and uses it to encrypt the password accordingly. It includes its own ephemeral public
key into the reply to the server inside the <x/> extension.

Listing 4: Client sends register parameters
<iq to=”domain” type=”set” id=”req -1”>
<x xmlns=”jabber:iq:register”>
<username >username </username >
<password >encrypted password </password >
<x xmlns=”xmpp:sec”>
<KeyAgreement >
<DHKeyValue >
<Public >encoded client public key</Public >
</DHKeyValue >
</KeyAgreement >
</x>
</query >
</iq>

The server now calculates the shared secret according to the DH method and uses its private
key to decrypt the password.

Listing 5: Server acknowledge register
<iq to=”domain” type=”result” id=”req -1”/>

6 Authenticated Key Agreement
6.1 Introduction
The Diffie-Hellman key agreement algorithm provides a mechanism to allow key establish-
ment in a scalable and secure way. It allows two parties to agree on a shared value without

13

6 AUTHENTICATED KEY AGREEMENT

requiring encryption. An Authenticated Key Agreement (AKE) is a secure protocol ensuring
that in addition to securely sharing a secret, the two parties can be certain of each other’s
identities, even when an active attacker exists.
This AKE uses a hybrid protocol derived from the Internet Key Exchange (IKE) and the
OAKLEY key determination protocol. The purpose is to negotiate and provide authenticated
key material for security association (SA) in a protected manner. The basic mechanism is the
Diffie-Hellman Key Exchange. It provides the following addition to base key agreement:

• it uses weak address validation mechanism (cookies) to avoid denial of service attacks.

• it provides negotiation of mutually agreeable supporting algorithm for the protocol,
such as the encryption method, the key derivation method and the authentication
method.

• the authentication does not depend on encryption using the DH exponentials, but in-
stead validates the binding of the exponential to the identities of the parties.

• it does not require the computation of the shared exponential before the authentication.

• it provides additional security to the derivation of encryption keys, as it is made to de-
pendnot only of theDHalgorithmbut also on the cryptographicmethodused to securely
authenticate the parties to each other.

This key agreement protocol is used to establish a shared key with an assigned identifier
and associated identities for two parties. The resulting common keying information state
comprise a key name, secret keying material, the identification of the two parties, and three
algorithms for use during authentication:

• encryption for privacy,

• hashing for protecting the integrity of message and for authentication of message fields

• authentication to mutually authenticate the parties

The anti clogging tokens, or cookies, provide a weak form of source address identification
for both parties. The cookies exchange can be completed before they perform the expensive
computations later in the protocol. The cookies are used also for key naming.

• The construction of the cookies is implementation dependent. It is recommended to
make them the result of a one-way function applied to a secret value (changed period-
ically), and the local and remote addresses. In this way, the cookies remain stateless
and expire periodically. Note that this would cause the KEYID’s derived from the secret
value to also expire, necessitating the removal of any state information associated with
it.

14

6 AUTHENTICATED KEY AGREEMENT

• The encryption functions must be cryptographic transforms which guarantee privacy
and integrity for the message data. They include any that satisfy this criteria and are
defined for use with RFC 2406 1.

• The one-way hash functions must be cryptographic transform which can be used as ei-
ther keyed hash (pseudo-random) or non keyed transforms. They include any that are
defined for use with RFC2406.

• Where nonces are indicated they will be variable precision integers with an entropy
value that match the strength attribute of the DH group used in the exchange.

6.2 Key Exchange Protocol
The main exchange has three optional features:

• stateless cookie exchange,

• perfect forward secrecy for the keying material,

• use of signatures (for non-repudiation).

The two parties can use any combination of these features. The general outline of processing
is that the Initiator of the exchange begins by specifying as much information as he wishes in
his first message. The Responder replies, supplying as much information as he wishes. The
two sides exchangemessages, supplyingmore information each time, until their requirements
are satisfied.
The choice of how much information to include in each message depends on which options
are desirable. For example, if stateless cookies are not a requirement, and perfect forward
secrecy for the keying material are not requirements, and if non- repudiatable signatures are
acceptable, then the exchange can be completed in three messages. Additional features may
increase the number of roundtrips needed for the keying material determination.
The three components of the key determination are:

• Cookies exchange

• DH half key exchange

• Authentication

The initiator can supply as little information as a bare exchange request, carrying no addi-
tional information. On the other hand the initiator can begin by supplying all the necessary
information for the responder to authenticate the request and complete the key determina-
tion quickly, if the responder choose to accept this method. If not the responder can reply
with a minimum amount of information.

1RFC 2406: IP Encapsulating Security Payload (ESP) <http://tools.ietf.org/html/rfc2406>.

15

http://tools.ietf.org/html/rfc2406
http://tools.ietf.org/html/rfc2406

6 AUTHENTICATED KEY AGREEMENT

6.2.1 Aggressive Mode Key Exchange

The following example indicates how two parties can complete a key exchange in three
messages. The identities are not secret, the derived keying material is protected by PFS.
By using digital signatures, the two parties will have a proof of communication that can be
recorded and presented later to a third party.
The keying material implied by the group exponentials is not needed for completing the
exchange. If it is desirable to defer the computation, the implementation can save the ”x” and
”gˆy” values and mark the keying material as ”uncomputed”. It can be computed from this
information later.

Initiator Message content Responder
� GRP, CKYi, DHi, EHAo, JIDi, JIDr, Ni,

S{JIDi | JIDr | CKYi | 0 | Ni | 0 | GRP | DHi
| 0 | EHAo}Ki

�

� GRP, CKYr, DHr, EHAs, JIDi, JIDr, Nr,
S{JIDr | JIDi| | CKYr | CKYi | Nr | Ni | GRP
| DHr | DHi | EHAs}Kr

�

� GRP, CKYi, CKYr, DHi, EHAs, JIDi, JIDr,
Ni, Nr, S{JIDi | JIDr | CKYr | CKYi | Ni | Nr
| GRP | DHi | DHr | EHAs}KEY

�

The result of this exchange is a key with :

• KEYID = CKYi | CKYr

• sKEYID = prf(Ni | Nr, KEY | CKYi | CKYr).

The Aggressive Mode example is written to suggest that public key technology is used for the
signatures. However, a pseudorandom function can be used, if the parties have previously
agreed to such a scheme and have a shared key.
If the first proposal in the EHAo list is an ”existing key” method, then the KEYID named in
that proposal will supply the keying material for the ”signature” which is computed using the
”H” algorithm associated with the KEYID.

6.2.2 Main Mode Key Exchange

In this exchage the two parties are minimally aggressive; they use the cookie exchange to
delay creation of state, and they use perfect forward secrecy to protect the identities.
They use public key encryption for authentication; digital signatures or pre-shared keys can
also be used. The Main mode does not change the use of nonces, prf’s, etc., but it does change

16

6 AUTHENTICATED KEY AGREEMENT

how much information is transmitted in each message.
The responder considers the ability of the initiator to repeat CKYr as weak evidence that the
message originates from a ”live” correspondent on the network and the correspondent is
associated with the initiator’s network address.
The initiator makes similar assumptions when CKYi is repeated to the initiator. All messages
must have valid cookies or at least one zero cookie. If both cookies are zero, this indicates a
request for a cookie; if only the initiator cookie is zero, it is a response to a cookie request.
Information in messages violating the cookie rules cannot be used for any operations. Note
that the Initiator and Responder must agree on one set of EHA algorithms; there is not one set
for the Responder and one for the Initiator. The Initiator must include at least MD5 and DES
in the initial offer.

Initiator Message content Responder
� CKYi, DHi, EHAo, JIDi, JIDr �
� CKYr, DHr, EHAs, JIDi, JIDr �
� GRP, CKYi, CKYr, DHi, EHAs, JIDi, JIDr,

E{Ni}KEY
�

� GRP, CKYi, CKYr, DHr, JIDi, JIDr, E{Ni |
Nr}KEY, prf(Kir, JIDr | JIDi | GRP | DHr |
DHi | EHAs)

�

� GRP, CKYi, CKYr, DHi, JIDi, JIDr, prf(Kir,
JIDi | JIDr | GRP | DHi | DHr | EHAs)

�

Where Kir = prf(0, Ni | Nr)
The result of this exchange is a key with :

• KEYID = CKYi | CKYr

• sKEYID = prf(Kir, KEY | CKYi | CKYr).

6.2.3 Deriving key material for Cryptographic Transforms

The keying material computed by the key exchange should have at least 90 bits of entropy,
which means that it must be at least 90 bits in length. This may be more or less than is
required for keying the encryption and/or pseudorandom function transforms.
The transforms used should have auxiliary algorithms which take a variable precision integer
and turn it into keying material of the appropriate length. The result of either Main Mode or
Aggressive Mode is three groups of authenticated keying material:

17

6 AUTHENTICATED KEY AGREEMENT

Context Keying Material
Digest sKEYID_d = prf(sKEYID, KEY | CKYi | CKYi | 0)
Authentication sKEYID_a = prf(sKEYID, SKEYID_d | KEY | CKYi | CKYr | 1)
Encryption sKEYID_e = prf(sKEYID, SKEYID_a | KEY | CKYi | CKYr | 2)

and agreed upon policy to protect further communications. The values of 0, 1, and 2 above
are represented by a single octet. The key used for encryption is derived from sKEYID_e in an
algorithm-specific manner.
Encryption keys used to protect the SA are derived from sKEYID_e in an algorithm-specific
manner. When SKEYID_e is not long enough to supply all the necessary keying material an
algorithm requires, the key is derived from feeding the results of a pseudo-random function
into itself, concatenating the results, and taking the highest necessary bits.
For example, if the (ficticious) algorithm MYALGO requires 320-bits of key, and the prf used
to generate sKEYID_e only generates 120 bits of material, the key for MYALGO, would be the
first 320-bits of Ka, where:
Ka = K1 | K2 | K3 | ...

And

• K1 = prf(sKEYID_e, 0)

• K2 = prf(sKEYID_e, K1)

• K3 = prf(sKEYID_e, K2)

• ...

prf is the HMAC version of the negotiated hash function and 0 is represented by a single octet.
Each result of the prf provides 120 bits of material for a total of 360 bits. MYALGO would use
the first 320 bits of that 360 bit string.

6.3 Authenticated Key Exchange Application
6.3.1 Main Mode Key Exchange

The intitiator uses a <SecurityAssociation/> element in the request to list all the EHA algo-
rithms that it supports. In addition it provides its own DH ephemeral public key.

• The values of initiator and responder MUST be the JIDs of the two participants, respec-
tively.

18

6 AUTHENTICATED KEY AGREEMENT

• The initiator cookie is prepared by generating a string of 32 random octets (64 random
bits). The cookie resulting octets are then encoded into a string of hex characters. The
generated value is used as the originator key name for the security association.

• The available set of confidentiality and HMAC cryptographic algorithms is selected. The
manner in which these algorithms are selected and all related policy issues are outside
the scope of this specification.

• The available set of authentication algorithms is selected. The manner in which these
algorithms are selected and all related policy issues are outside the scope of this spec-
ification. When the digital signature form of authentication is selected, the relevant
end-entity certificate and, optionally, a chain of CA certificates representing a valida-
tion path, is assembled and encoded. A set of trusted CA certificates MAY optionally be
included via caCertificate elements; if so, the set MUST include the issuer of the initia-
tor’s end-entity certificate.

These values are then used to prepare the XML element; this element is transmitted via the
existing XMPP iq mechanism:

<iq from=”initiator@domain” to=”responder@domain” type=”get” id=”req -0
”>

<query xmlns=”xmpp:sec”>
<SecurityAssociation id=”SA@domain”>
<OriginatorKeyInfo >
<KeyName >A32F ...245A</KeyName >
</OriginatorKeyInfo >
<EncryptionMethod Algorithm=”des”/>
<EncryptionMethod Algorithm=”tripledes -cbc”/>
<EncryptionMethod Algorithm=”aes128”/>
<EncryptionMethod Algorithm=”aes129”/>
<EncryptionMethod Algorithm=”aes256”/>
<DigestMethod Algorithm=”hmac -md5”/>
<DigestMethod Algorithm=”hmac -sha1”/>
<DigestMethod Algorithm=”hmac -sha128”/>
<DigestMethod Algorithm=”hmac -sha256”/>
<DigestMethod Algorithm=”hmac -ripemd128”/>
<DigestMethod Algorithm=”hmac -ripemd160”/>
<SignatureMethod Algorithm=”dsa -sha1”/>
<SignatureMethod Algorithm=”rsa -sha1”/>
</SecurityAssociation >
</query >
</iq>

The responder will reply to the request by sending out its own selcted EHA algorithms that
will be used in the remainign transaction.

19

6 AUTHENTICATED KEY AGREEMENT

• The values of initiator and responder MUST be the JIDs of the two participants, respec-
tively.

• The responder cookie is prepared by generating a string of 32 random octets (64 random
bits). The cookie resulting octets are then encoded into a string of hex characters. The
generated value is used as the recipient key name for the security association..

• The algorithms attributes are checked against the values supported by the user agent.
If the receiver is not able to select one set out of the proposed algorithms, an error code
406-Unacceptable is returned.

• The desired confidentiality and HMAC cryptographic algorithms are selected from the
proposed set. The manner in which these algorithms are selected and all related policy
issues are outside the scope of this specification.

• The desired authentication algorithm is selected from the proposed set. The manner in
which this algorithm is selected and all related policy issues are outside the scope of this
specification. In the digital signature case, the responder’s end-entity certificate MUST
be issued by one of the trusted CAs listed in the session1 PDU or by the same issuer as the
initiator’s end-entity certificate. If the responder does not have acceptable credentials,
an error code of 401-Unuthorized occurs.

<iq from=”responder@domain” to=”initiator@domain” type=”result” id=”
req -0”>

<query xmlns=”xmpp:sec”>
<SecurityAssociation id=”SA@domain”>
<OriginatorKeyInfo >
<KeyName >A32F ...245A</KeyName >
</OriginatorKeyInfo >
<RecipientKeyInfo >
<KeyName >324A... BF24</KeyName >
</RecipientKeyInfo >
<EncryptionMethod Algorithm=”tripledes -cbc”/>
<DigestMethod Algorithm=”hmac -sha1”/>
<SignatureMethod Algorithm=”rsa -sha1”/>
</SecurityAssociation >
</query >
</iq>

The intitiator provides its own DH ephemeral public key.

• The values of initiator and responder MUST be the JIDs of the two participants, respec-
tively.

• The initator and responder cookies are used as the originator key name and the recipient
key name for the security association..

20

6 AUTHENTICATED KEY AGREEMENT

• A Diffie-Hellman group is selected. The appropriate values for g and p will be used to
generate the initiator’s public key.

• An ephemeral private key, x, is generated using g and p for the selected group. This key
MUST be generated using an appropriate random number source. The corresponding
public key, gˆx, is generated and encoded.

<iq from=”initiator@domain” to=”responder@domain” type=”get” id=”req -1
”>

<query xmlns=”xmpp:sec”>
<SecurityAssociation id=”SA@domain”>
<OriginatorKeyInfo >
<KeyName >A32F ...245A</KeyName >
</OriginatorKeyInfo >
<RecipientKeyInfo >
<KeyName >324A... BF24</KeyName >
</RecipientKeyInfo >
</SecurityAssociation >
<KeyAgreement length=”1024”>
<DHKeyValue >
<Public >
... encoded initiator public key
</Public >
</DHKeyValue >
</KeyAgreement >
</query >
</iq>

The responder check the validity of the parameters and eventualy replies with its own DH
ephemeral public key.

• The values of initiator and responder MUST be the JIDs of the two participants, respec-
tively.

• The initator and responder cookies are checked; a mismatch results in an error code of
406 - Unacceptable .

• The Diffie-Hellman group is checked against the values supported by the user agent. An
unsupported group results in an error code of 406 - Unacceptable

• An ephemeral private key, y, is generated using g and p for the group indicated by the
PDU. This key MUST be generated using an appropriate random number source. The
corresponding public key, gˆy, is generated and encoded.

<iq from=”responder@domain” to=”initiator@domain” type=”result” id=”
req -1”>

<query xmlns=”xmpp:sec”>

21

6 AUTHENTICATED KEY AGREEMENT

<SecurityAssociation id=”SA@domain”>
<OriginatorKeyInfo >
<KeyName >A32F ...245A</KeyName >
</OriginatorKeyInfo >
<RecipientKeyInfo >
<KeyName >324A... BF24</KeyName >
</RecipientKeyInfo >
</SecurityAssociation >
<KeyAgreement length=”1024”>
<DHKeyValue >
<Public >
... encoded initiator public key
</Public >
</DHKeyValue >
</KeyAgreement >
</query >
</iq>

The intitiator provides its nonce encrypted with the agreed algorithm and the public key of
the responder.

• The values of initiator and responder MUST be the JIDs of the two participants, respec-
tively.

• The initator and responder cookies are checked; a mismatch results in the procedure
being aborted.

• The initiator nonce is prepared by first generating a string of 20 random octets (160
random bits). The nonce is then encrypted using the selected encryption algorithm and
the shared secret key. The resulting octets are then encoded into a string of base64
characters.

<iq from=”initiator@domain” to=”responder@domain” type=”get” id=”req -1
”>

<query xmlns=”xmpp:sec”>
<SecurityAssociation id=”SA@domain”>
<OriginatorKeyInfo >
<KeyName >A32F ...245A</KeyName >
</OriginatorKeyInfo >
<RecipientKeyInfo >
<KeyName >324A... BF24</KeyName >
</RecipientKeyInfo >
</SecurityAssociation >
<KeyAgreement >
<KA -Nonce>
<EncryptedData xmlns=”http: //www.w3.org /2001/04/ xmlenc#”

Type=”http: //www.w3.org /2001/04/ xmlenc#Element”>
<CipherData >

22

6 AUTHENTICATED KEY AGREEMENT

<CipherValue >
... encoded encrypted initiator nonce
</CipherValue >
</CipherData >
</EncryptedData >
</KA -Nonce>
</KeyAgreement >
</query >
</iq>

The responder replies with the concatenation of its own nonce and the initiator nonce
encrypted with the agreed algorithm and the public key of the initiator. The packet is
authenticated using the agreed signature algorithm.

• The values of initiator and responder MUST be the JIDs of the two participants, respec-
tively.

• The initator and responder cookies are checked; a mismatch results in an error code of
401 - Unauthorized.

• The initiator nonce is decrypted using the responder private key.

• The responder nonce is prepared by first generating a string of 20 random octets (160
random bits). It is then apended to the initiator nonce and the result encrypted using
the selected encryption algorithm and the shared secret key. The resulting octets are
then encoded into a string of base64 characters.

• Based on the selected authentication algorithm, the responder’s authenticator is con-
structed. A digital signature requires calculating:

1. Kir = hmac (0, initiator’s nonce | responder’s nonce)

2. EHAs = (Encryption algorithm URI | Digest algorithm URI | Signature algorithm URI)

3. HASH_R = hmac (Kir, JID responder | JID initiator | length of DH group | responder DH
public key | initiator DH public key | EHAs)

• HASH_R is encoded in base64.

<iq from=”responder@domain” to=”initiator@domain” type=”result” id=”
req -1”>

<query xmlns=”xmpp:sec”>
<SecurityAssociation id=”SA@domain”>
<OriginatorKeyInfo >
<KeyName >A32F ...245A</KeyName >
</OriginatorKeyInfo >
<RecipientKeyInfo >
<KeyName >324A... BF24</KeyName >

23

6 AUTHENTICATED KEY AGREEMENT

</RecipientKeyInfo >
</SecurityAssociation >
<KeyAgreement >
<KA -Nonce>
<EncryptedData xmlns=”http: //www.w3.org /2001/04/ xmlenc#”

Type=”http: //www.w3.org /2001/04/ xmlenc#Element”>
<CipherData >
<CipherValue >
... encoded encrypted responder nonce
</CipherValue >
</CipherData >
</EncryptedData >
</KA -Nonce>
</KeyAgreement >
<Signature

xmlns=”http: //www.w3.org /2000/09/ xmldsig#”
xmlns:xsi=”http: //www.w3.org /2001/ XMLSchema -instance”
xsi:schemaLocation=”http: //www.w3.org /2000/09/ xmldsig#xmldsig -core

-schema.xsd”>
<SignaturetValue >
... encoded signature value
</SignatureValue >
</Signature >
</query >
</iq>

The initiator authenticate the keying material using the agreed signature algorithm.

• The values of initiator and responder MUST be the JIDs of the two participants, respec-
tively.

• The initator and responder cookies are checked; a mismatch results in the procedure
being aborted.

• The concatenation of the responder and initiator nonce is decrypted using the initiator
private key. The original initiator nonce is compared to the result. An invalid nonce
results in aborting the procedure. Otherwise the result is used to generate Kir

• Based on the selected authentication algorithm, the responder’s authenticator is con-
structed. A digital signature requires calculating:

1. Kir = hmac (0, initiator’s nonce | responder’s nonce)

2. EHAs = (Encryption algorithm URI | Digest algorithm URI | Signature algorithm URI)

3. HASH_R = hmac (Kir, JID responder | JID initiator | length of DH group | responder DH
public key | initiator DH public key | EHAs)

• The authenticator is verified. A failure results in aborting the procedure.

24

6 AUTHENTICATED KEY AGREEMENT

• Based on the selected authentication algorithm, the initiator’s authenticator is con-
structed. A digital signature requires calculating:

1. HASH_I = hmac (Kir, JID initiator | JID responder | length of DH group | initiator DH public
key | responder DH public key | EHAs)

<iq from=”initiator@domain” to=”responder@domain” type=”set” id=”req -2
”>

<query xmlns=”xmpp:sec”>
<SecurityAssociation id=”SA@domain”>
<OriginatorKeyInfo >
<KeyName >A32F ...245A</KeyName >
</OriginatorKeyInfo >
<RecipientKeyInfo >
<KeyName >324A... BF24</KeyName >
</RecipientKeyInfo >
</SecurityAssociation >
<Signature

xmlns=”http: //www.w3.org /2000/09/ xmldsig#”
xmlns:xsi=”http: //www.w3.org /2001/ XMLSchema -instance”
xsi:schemaLocation=”http: //www.w3.org /2000/09/ xmldsig#

xmldsig -core -schema.xsd”>
<SignaturetValue >
<p>... encoded signature value</p>
</SignatureValue >
</Signature >
</query >
</iq>

The responder acknowledge the keying material.

• The values of initiator and responder MUST be the JIDs of the two participants, respec-
tively.

• The initator and responder cookies are checked; a mismatch results in an error code of
401 - Unauthorized.

• Based on the selected authentication algorithm, the initiator’s authenticator is con-
structed. A digital signature requires calculating:

1. HASH_I = hmac (Kir, JID initiator | JID responder | length of DH group | initiator DH public
key | responder DH public key | EHAs)

• The authenticator is verified. A failure results in an error code of 406 - Unacceptable.

<iq from=”responder@domain” to=”initiator@domain” type=”result” id=”
req -2”/>

25

6 AUTHENTICATED KEY AGREEMENT

6.3.2 Aggressive Mode Key Exchange

The intitiator uses <SecurityAssociation/> element in the request to list all the EHA algorithms
that it supports. In addition it provides its own DH ephemeral public key. The message is
signed with its own private key.

• The values of initiator and responder MUST be the JIDs of the two participants, respec-
tively.

• The initiator cookie is prepared by generating a string of 32 random octets (64 random
bits). The cookie resulting octets are then encoded into a string of hex characters. The
generated value will be used as identifier for the initiator leg of the security association.

• The available set of confidentiality and HMAC cryptographic algorithms is selected. The
manner in which these algorithms are selected and all related policy issues are outside
the scope of this specification.

• The available set of authentication algorithms is selected. The manner in which these
algorithms are selected and all related policy issues are outside the scope of this spec-
ification. When the digital signature form of authentication is selected, the relevant
end-entity certificate and, optionally, a chain of CA certificates representing a valida-
tion path, is assembled and encoded. A set of trusted CA certificates MAY optionally be
included via caCertificate elements; if so, the set MUST include the issuer of the initia-
tor’s end-entity certificate.

• A Diffie-Hellman group is selected. The appropriate values for g and p will be used to
generate the initiator’s public key.

• An ephemeral private key, x, is generated using g and p for the selected group. This key
MUST be generated using an appropriate random number source. The corresponding
public key, gˆx, is generated and encoded.

• The initiator nonce is prepared by first generating a string of 20 random octets (160
random bits). The resulting octets are then encoded into a string of base64 characters.

• Based on the selected authentication algorithm, the initiator’s authenticator is con-
structed. A digital signature requires calculating:

1. EHAs = (Encryption algorithm URI | Digest algorithm URI | Signature algorithm URI)

2. SIGN_I = S (JID initiator | JID responder | initiator cookie | 0 | initiator nonce | 0 | length
of DH group | initiator DH public key | 0 | EHAs) initiator private key

• SIGN_I is encoded in base64.

26

6 AUTHENTICATED KEY AGREEMENT

<iq from=”initiator@domain” to=”responder@domain” type=”get” id=”req -0
”>

<query xmlns=”xmpp:sec”>
<SecurityAssociation id=”SA@domain”>
<OriginatorKeyInfo >
<KeyName >A32F ...245A</KeyName >
<RSAKeyValue >
<p>... encoded initiator public key value </p>
</RSAKeyValue >
</OriginatorKeyInfo >
<EncryptionMethod Algorithm=”tripledes -cbc”/>
<DigestMethod Algorithm=”hmac -sha1”/>
<SignatureMethod Algorithm=”rsa -sha1”/>
</SecurityAssociation >
<KeyAgreement length=”1024”>
<DHKeyValue >
<Public >
<p>... encoded initiator public key</p>
</Public >
</DHKeyValue >
<KA -Nonce>
<p>... encoded initiator nonce value >
</KA -Nonce>
</KeyAgreement >
<Signature

xmlns=”http: //www.w3.org /2000/09/ xmldsig#”
xmlns:xsi=”http: //www.w3.org /2001/ XMLSchema -instance”
xsi:schemaLocation=”http: //www.w3.org /2000/09/ xmldsig#xmldsig -core

-schema.xsd”>
<SignatureValue >
<p>... encoded initiator signature value </p>
</SignatureValue >
</Signature >
</query >
</iq>

The responder will reply to the request by acknowledging the selected EHA algorithms. In
addition, it provides its own DH ephemeral public key. The message is signed with its own
private key.

• The values of initiator and responder MUST be the JIDs of the two participants, respec-
tively.

• The Diffie-Hellman group is checked against the values supported by the user agent. An
unsupported group results in an error code of 406 - Unacceptable

• Based on the selected authentication algorithm, the initiator’s authenticator is con-
structed. A digital signature requires calculating:

27

6 AUTHENTICATED KEY AGREEMENT

1. EHAs = (Encryption algorithm URI | Digest algorithm URI | Signature algorithm URI)

2. SIGN_I = S (JID initiator | JID responder | initiator cookie | 0 | initiator nonce | 0 | length
of DH group | initiator DH public key | 0 | EHAs) initiator public key

• The authenticator is verified. A failure results in an error code of 401 - Unauthorized.

• The responder cookie is prepared by generating a string of 32 random octets (64 random
bits). The cookie resulting octets are then encoded into a string of hex characters. The
generated value will be used as identifier for the responder leg of the security associa-
tion.

• An ephemeral private key, y, is generated using g and p for the group indicated by the
PDU. This key MUST be generated using an appropriate random number source. The
corresponding public key, gˆy, is generated and encoded.

• The responder nonce is prepared by first generating a string of 20 random octets (160
random bits). The resulting octets are then encoded into a string of base64 characters.

• Based on the selected authentication algorithm, the responder’s authenticator is con-
structed. A digital signature requires calculating:

1. SIGN_R = S (JID responder | JID initiator | responder cookie | initiator cookie | responder
nonce | initiator nonce | length of DH group | responder DH public key | initiator DH
public key | EHAs) responder private key

• SIGN_R is encoded in base64.

<iq from=”responder@domain” to=”initiator@domain” type=”result” id=”
req -0”>

<query xmlns=”xmpp:sec”>
<SecurityAssociation id=”SA@domain”>
<OriginatorKeyInfo >
<KeyName >A32F ...245A</KeyName >
</OriginatorKeyInfo >
<RecipientKeyInfo >
<KeyName >324A... BF24</KeyName >
<RSAKeyValue >
<p>... encoded responder public key value </p>
</RSAKeyValue >
</RecipientKeyInfo >
</SecurityAssociation >
<KeyAgreement length=”1024”>
<DHKeyValue >
<Public >
<p>... encoded responder public key</p>
</Public >
</DHKeyValue >

28

6 AUTHENTICATED KEY AGREEMENT

<KA -Nonce>
<p>... encoded responder nonce value >
</KA -Nonce>
</KeyAgreement >
<Signature

xmlns=”http: //www.w3.org /2000/09/ xmldsig#”
xmlns:xsi=”http: //www.w3.org /2001/ XMLSchema -instance”
xsi:schemaLocation=”http: //www.w3.org /2000/09/ xmldsig#

xmldsig -core -schema.xsd”>
<SignatureValue >
<p>... encoded responder signature value </p>
</SignatureValue >
</Signature >
</query >
</iq>

The initiator authenticate the keying material using the agreed signature algorithm.

• The values of initiator and responder MUST be the JIDs of the two participants, respec-
tively.

• Based on the selected authentication algorithm, the initiator’s authenticator is con-
structed. A digital signature requires calculating:

1. EHAs = (Encryption algorithm URI | Digest algorithm URI | Signature algorithm URI)

2. SIGN_R = S (JID responder | JID initiator | responder cookie | initiator cookie | responder
nonce | initiator nonce | length of DH group | responder DH public key | initiator DH
public key | EHAs) responder public key

• The authenticator is verified. A failure results in the procedure being aborted.

• Based on the selected authentication algorithm, the authenticator is constructed. A dig-
ital signature requires calculating:

1. SIGN_I = S (JID initiator | JID responder | initiator cookie | responder cookie | initiator
nonce | responder nonce | length of DH group | initiator DH public key | responder DH
public key | EHAs) shared secret key

• SIGN_I is encoded in base64.

<iq from=”initiator@domain” to=”responder@domain” type=”set” id=”req -2
”>

<query xmlns=”xmpp:sec”>
<SecurityAssociation id=”SA@domain”>
<OriginatorKeyInfo >
<KeyName >A32F ...245A</KeyName >

29

7 KEY TRANSPORT

</OriginatorKeyInfo >
<RecipientKeyInfo >
<KeyName >324A... BF24</KeyName >
</RecipientKeyInfo >
</SecurityAssociation >
<Signature

xmlns=”http: //www.w3.org /2000/09/ xmldsig#”
xmlns:xsi=”http: //www.w3.org /2001/ XMLSchema -instance”
xsi:schemaLocation=”http: //www.w3.org /2000/09/ xmldsig#

xmldsig -core -schema.xsd”>
<SignaturetValue >
<p>... encoded signature value</p>
</SignatureValue >
</Signature></query>
</iq>

The responder acknowledge the keying material.

• The values of initiator and responder MUST be the JIDs of the two participants, respec-
tively.

• Based on the selected authentication algorithm, the initiator’s authenticator is con-
structed. A digital signature requires calculating:

1. EHAs = (Encryption algorithm URI | Digest algorithm URI | Signature algorithm URI)

2. SIGN_I = S (JID initiator | JID responder | initiator cookie | responder cookie | initiator
nonce | responder nonce | length of DH group | initiator DH public key | responder DH
public key | EHAs) shared secret key

• The authenticator is verified. A failure results in an error code of 406 - Unacceptable.

<iq from=”responder@domain” to=”initiator@domain” type=”result” id=”
req -2”/>

7 Key Transport
7.1 Conversation Key Transport
Conversation keys are transported using the symmetric key wrap feature of XML Encryption
embedded in the KeyTransport PDU.

30

7 KEY TRANSPORT

7.1.1 Key transport exchange

Key transport follow a previous Security Association establishment and the generation of a
shared secret key through a key agreement.

Initiator Message content Responder
� JIDi, JIDr, CKYe, sKEYID_e, CKYa,

sKEYID_a, CKYd, sKEYID_d, S{JIDi |
JIDr | Ni | Nr | CKYe | sKEYID_e | CKYa |
sKEYID_a | CKYd | sKEYID_d }KEY

�

7.1.2 Generating And Sending a Conversation Key Transport PDU

The Key Transport assumes that a security association be negotiated for the purpose of
securely transporting conversation keys. The sender’s user agent employs the following
algorithm to generate the keyTransport PDU:

• The values of initiator and responder MUST be the JIDs of the two participants who ne-
gotiated the security association, respectively.

• The security association identifier is assembled.

• The payload, which consists of the confidentiality key sKEYID_e, digest key sKEYID_d
and the integrity key sKEYID_a , is wrapped in instances of xenc:EncryptedKey as fol-
lows:

1. The Type attribute of the xenc:EncryptedKey element MUST indicate ’content’.

2. The Id, MimeType and Encoding attributes of the xenc:EncryptedKey element MUST
NOT be present.

3. The xenc:EncryptionMethod element MUST be present, and the Algorithm attribute
MUST indicate a valid symmetric key wrap algorithm. Furthermore, the algorithm
MUST be the same as was negotiated for the security association.

4. The ds:KeyInfo element MUST NOT be present. The key to use is the shared secret KEY
of the negotiated security association.

5. The xenc:ContainedKeyName element MUST be present.

6. The xenc:CipherData elementMUSTbepresent, and itMUSTuse theCipherValue choice.

• The HMAC is computed using KEY of the negotiated security association. A digital sig-
nature requires calculating:

31

7 KEY TRANSPORT

1. HMAC = prf(KEY, JIDi | JIDr | Ni | Nr | sKEYID_e | key name | sKEYID_e | sKEYID_a key name
| sKEYID_a | sKEYID_d key name | sKEYID_d)

These values are then used to prepare the XML KeyTransport element; this element is trans-
mitted via the existing XMPP iq mechanism. The order in which the keys are in the payload is
significant. The first mandatory key is sKEYID_e. The second optional key is sKEYID_a. And
the last optional key is sKEYID_d.

<iq from=”initiator@domain” to=”responder@domain” type=”set” id=”req -0
”>

<query xmlns=”xmpp:sec”>
<SecurityAssociation id=”negotiated␣SA␣id”/>
<KeyTransport >
<EncryptedKey xmlns=’http: //www.w3.org /2001/04/ xmlenc#’

Type=’http: //www.w3.org /2001/04/ xmlenc#Content ’>
<ContainedKeyName >A32F ...245 A324A ...BF24 -enc</ ContainedKeyName >
<EncryptionMethod Algorithm=”kw -tripledes”/>
<CipherData >
<CipherValue >
<p>... encoded encrypted confidentiality key</p>
</CipherValue >
</CipherData >
</EncryptedKey >
<EncryptedKey xmlns=’http: //www.w3.org /2001/04/ xmlenc#’

Type=’http: //www.w3.org /2001/04/ xmlenc#Content ’>
<ContainedKeyName >A32F ...245 A324A ...BF24 -auth</ ContainedKeyName >
<EncryptionMethod Algorithm=”kw -tripledes”/>
<CipherData >
<CipherValue >
<p>... encoded encrypted confidentiality key</p>
</CipherValue >
</CipherData >
</EncryptedKey >
<EncryptedKey xmlns=’http: //www.w3.org /2001/04/ xmlenc#’

Type=’http: //www.w3.org /2001/04/ xmlenc#Content ’>
<ContainedKeyName >A32F ...245 A324A ...BF24 -dig</ ContainedKeyName >
<EncryptionMethod Algorithm=”kw -tripledes”/>
<CipherData >
<CipherValue >
<p>... encoded encrypted confidentiality key</p>
</CipherValue >
</CipherData >
</EncryptedKey >
</KeyTransport >
<Signature

xmlns=”http: //www.w3.org /2000/09/ xmldsig#”
xmlns:xsi=”http: //www.w3.org /2001/ XMLSchema -instance”
xsi:schemaLocation=”http: //www.w3.org /2000/09/ xmldsig#

32

7 KEY TRANSPORT

xmldsig -core -schema.xsd”>
<SignedInfo >
<SignatureMethod Algorithm=”http: //www.w3.org /2000/09/ xmldsig#dsa”/>
<DigestMethod Algorithm=”http: //www.w3.org /2000/09/ xmldsig#sha1”/>
</SignedInfo >
<SignaturetValue >
<p>... encoded signature value</p>
</SignatureValue >
</Signature >
</query >
</iq>

7.1.3 Receiving and Processing the Conversation Key Transport PDU

The receiver’s user agent employs the following algorithm to process each KeyTransport PDU:

• The values of initiator, responder, and security association id MUST indicate an existing
security association. An invalid security association results in an error of 401 - Unautho-
rized.

• The payload, which consists of the confidentiality key sKEYID_e, digest key sKEYID_d
and the intergrity key sKEYID_a, is unwrapped. Any failures result in an error code of
406-Unacceptable.

• The body of the HMAC element is decoded into the actual HMAC octet string.

• TheHMAC is computedusingKEYof the security association. Adigital signature requires
calculating:

1. HMAC = prf(KEY, JIDi | JIDr | Ni | Nr | sKEYID_e key name | sKEYID_e | sKEYID_a key name
| sKEYID_a | sKEYID_d key name | sKEYID_d)

• The HMAC is validated. An invalid HMAC results in an error code of 406-Unacceptable.

• The keys are added to the user agent’s key store.

If any errors occur during processing, the error is communicated via the existing XMPP
mechanism:

<iq from=”responder@domain” to=”initiator@domain” type=”result” id=”
req -0”/>

7.2 Public Key Transport
Public keys are transported embedded in the KeyTransport PDU.

33

7 KEY TRANSPORT

7.2.1 Certificate transport

X509 certificates can also be transported in existing XMPP message. The following example
uses a presence subscription packet as the vehicle PDU. The subscribee public key and
certificate are sent to the initiator of a presence subscription.

<presence from=”responder@domain” to=”initiator@domain” type=”
subscribed”>

<x xmlns=”xmpp:sec”>
<KeyTransport >
<KeyInfo >
<X509Data >
<X509IssuerSerial >
<X509IssuerName >

CN=TAMURA Kent , OU=TRL , O=IBM , L=Yamato -shi , ST=Kanagawa , C=JP
</X509IssuerName >
<X509SerialNumber> ;12345678& lt;/ X509SerialNumber >
</X509IssuerSerial >
<X509SKI>31 d97bd7</ X509SKI >
</X509Data >
<X509Data >
<X509SubjectName>Subject of Certificate B</ X509SubjectName >
</X509Data >
<X509Data >
<X509Certificate>MIICXTCCA ..</ X509Certificate >
<X509Certificate>MIICPzCCA ...</ X509Certificate >
<X509Certificate>MIICSTCCA ...</ X509Certificate >
</X509Data >
</KeyInfo >
</KeyTransport >
</x>
</presence >

7.2.2 Other Public Keys Transport

• The values of initiator and responder MUST be the JIDs of the two participants in the
exchange, respectively.

• The payload, which consists of the public key of the responder is assembled.

• The SIGN is computedusing theprivate key of the responder. A digital signature requires
calculating:

1. SIGN = S (JIRi | JIDR | Kr name | Kr) responder private key

These values are then used to prepare the XML KeyTransport element; this element is
transmitted via an existing XMPPmechanism. In the following example, the responder public

34

8 MESSAGE PROTECTION

key is sent to the initiator of a presence subscription.

<presence from=”responder@domain” to=”initiator@domain” type=”
subscribed”>

<x xmlns=”xmpp:sec”>
<KeyTransport >
<KeyInfo >
<KeyName >responder@domain key name</KeyName >
<RSAKeyValue >
<p>... encoded responder public key value </p>
</RSAKeyValue >
</KeyInfo >
</KeyTransport >
<Signature

xmlns=”http: //www.w3.org /2000/09/ xmldsig#”
xmlns:xsi=”http: //www.w3.org /2001/ XMLSchema -instance”
xsi:schemaLocation=”http: //www.w3.org /2000/09/ xmldsig#xmldsig -core

-schema.xsd”>
<SignedInfo >
<SignatureMethod Algorithm=”http: //www.w3.org /2000/09/ xmldsig#dsa”/>
</SignedInfo >
<SignaturetValue >
<p>... encoded signature value</p>
</SignatureValue >
</Signature >
</x>
</presence >

8 Message Protection
8.1 Overview
The ultimate goal is the protection of conversation data. The protocol exchanges described
above allow the conversation participants to cryptographically protect their conversation
data using the conversation keys that they share.

8.2 Message Protection Mechanism
A protectedmessage is defined as a traditional XMPPmessage whose body content is extended
to include the transport of a cryptographically protected message body. The two key features
are:

• the usual body element contains some arbitrary text.

35

8 MESSAGE PROTECTION

• themessage contains a XMPP x element defining the xmpp:sec namespace; this element
transports the protected message.

This mechanism has the advantages of allowing transparent integration with existing XMPP
servers and existing XMPP clients.

8.3 Generating And Sending the Protected Message PDU
The sender’s user agent employs the following algorithm to generate the protected Message
PDU:

• The security association identifier is assembled.

• The actual message body is encoded into a character string corresponding to a XMPP
message body element. This character string is then wrapped in an instance of
xenc:EncryptedData as follows:

1. The Type attribute of the xenc:EncryptedData element MUST indicate ’element’.

2. The Id, MimeType and Encoding attributes of the xenc:EncryptedData element MUST
NOT be present.

3. The xenc:EncryptionMethod element MUST be present, and the Algorithm attribute
MUST indicate a valid block encryption algorithm.

4. The ds:KeyInfo element MUST NOT be present. The key to be used is the confidentiality
key indicated by the convId attribute.

5. The xenc:CipherData elementMUSTbepresent, and itMUSTuse theCipherValue choice.

• Using the HMAC key indicated by the security association, the HMAC is computed. A
digital signature requires calculating:

1. HMAC = prf(sKEYID_d, key name | JID from | JID to | message id | message type | message
thread | message subject | message body)

These values are then used to prepare the XML protected element; this element is transmitted
via the existing XMPP message mechanism:

<message from=”initiator@domain” to=”responder@␣domain” id=”msg -0”>
<body>
The real body is protected.
</body>
<x xmlns=”xmpp:security”>
<EncryptedData xmlns=”http: //www.w3.org /2001/04/ xmlenc#”

36

8 MESSAGE PROTECTION

Type=”http: //www.w3.org /2001/04/ xmlenc#Element”>
<KeyInfo >
<KeyName >A32F2 ...45 A324A ...BF24 -enc</KeyName >
</KeyInfo >
<EncryptionMethod Algorithm=”http: //www.w3.org /2001/04/ xmlenc#

tripledes -cbc”/>
<CipherData >
<CipherValue >
... encoded encrypted message content
</CipherValue >
</CipherData >
</EncryptedData >
<Signature

xmlns=”http: //www.w3.org /2000/09/ xmldsig#”
xmlns:xsi=”http: //www.w3.org /2001/ XMLSchema -instance”
xsi:schemaLocation=”http: //www.w3.org /2000/09/ xmldsig#xmldsig -core

-schema.xsd”>
<SignedInfo >
<SignatureMethod Algorithm=”http: //www.w3.org /2000/09/ xmldsig#dsa”/>
</SignedInfo >
<KeyInfo >
<KeyName >A32F2 ...45 A324A ...BF24 -auth</KeyName >
</KeyInfo >
<SignatureValue >
... encoded signature value
</SignatureValue >
</Signature >
</x>
</message >

8.4 Receiving and Processing the Protected Message PDU
The receiver’s user agent employs the following algorithm to process each protectedMessage
PDU:

• The values of initiator, responder, and key name MUST indicate an existing security
association. An invalid security association results in an error of 406-Unacceptable.

• The payload, which consists of the actual message body, is unwrapped. Any failures
result in an error code of 406-Unacceptable.

• The body of the HMAC element is decoded into the actual HMAC octet string.

• Using the HMAC key indicated by the security association, the HMAC is computed. A
digital signature requires calculating:

1. HMAC = prf(sKEYID_d, key name | JID from | JID to | message id | message type | message
thread | message subject | message body)

37

9 ALGORITHMS

• The HMAC is validated. An invalid HMAC results in an error code of 406-Unacceptable.

If any errors occur during processing, the error is communicated via the existing XMPP
mechanism:

9 Algorithms
This section discusses algorithms used with the XMPP security specification. Entries contain
the identifier to be used as the value of the Algorithm attribute of the EncryptionMethod
element or other element representing the role of the algorithm, a reference to the formal
specification, definitions for the representation of keys and the results of cryptographic
operations where applicable, and general applicability comments.
The table below lists the categories of algorithms. Within each category, a brief name, the
level of implementation requirement, and an identifying URI are given for each algorithm.

Category Algorithm URI
Block Encryption TRIPLEDES tripledes-cbc
AES-128 aes128-cbc
AES-192 aes192-cbc
AES-256 aes256-cbc
Key Transport RSA-v1.5 rsa-1_5
RSA-OAEP rsa-oaep-mgf1p
Symmetric Key Wrap TRIPLEDES KeyWrap kw-tripledes
AES-128 KeyWrap kw-aes128
AES-256 KeyWrap kw-aes256
AES-192 KeyWrap kw-aes192
Message Digest MD5 md5
SHA1 sha1
SHA256 sha256
SHA512 sha512
RIPEMD-160 ripemd160
HMAC-MD5 hmac-md5
HMAC-SHA1 hmac-sha1
HMAC-SHA128 hmac-sha128
HMAC-SHA256 hmac-sha256
Signature DSAwithSHA1 (DSS) dsa-sha1
RSAwithSHA1 rsa-sha1

38

10 PKCS #3: DIFFIE-HELLMAN KEY-AGREEMENT STANDARD

10 PKCS #3: Diffie-Hellman Key-Agreement Standard
An RSA Laboratories Technical Note Version 1.4 Revised November 1, 19932

10.1 Scope
This standard describes a method for implementing Diffie-Hellman key agreement, whereby
two parties, without any prior arrangements, can agree upon a secret key that is known only
to them (and, in particular, is not known to an eavesdropper listening to the dialogue by
which the parties agree on the key). This secret key can then be used, for example, to encrypt
further communications between the parties.
The intended application of this standard is in protocols for establishing secure connections,
such as those proposed for OSI’s transport and network layers [ISO90a][ISO90b].
Details on the interpretation of the agreed-upon secret key are outside the scope of this
standard, as are details on sources of the pseudorandom bits required by this standard.

10.2 References
X.208 CCITT. Recommendation X.208: Specification of Abstract Syntax Notation One (ASN.1).
1988.
X.509 CCITT. Recommendation X.509: The Directory—Authentication Framework. 1988.

DH76
W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transactions on Informa-
tion Theory, IT-22:644-654, 1976.

Sch90
C.P. Schnorr. Efficient identification and signatures for smart cards. In G. Brassard, editor,
Advances in Cryptology—CRYPTO ’89 Proceedings, volume 435 of Lecture Notes in Computer
Science, pages 239-251. Springer-Verlag, New York, 1990.

ISO90a
ISO. JTC1/SC6/N6285: Draft Transport Layer Security Protocol. Draft, November 1990.

ISO90b
ISO. JTC1/SC6/N2559: Draft Network Layer Security Protocol. Draft, September 1990.

10.3 Definitions
For the purposes of this standard, the following definitions apply.
AlgorithmIdentifier: A type that identifies an algorithm (by object identifier) and any associ-
ated parameters. This type is defined in X.509.
ASN.1: Abstract Syntax Notation One, as defined in X.208.
Diffie-Hellman parameters: Prime and base.
Diffie-Hellman: The Diffie-Hellman key-agreement protocol, elsewhere called ”exponential

2upersedes June 3, 1991 version, which was also published as NIST/OSI Implementors’ Workshop document SEC-
SIG-91-19. PKCS documents are available by electronic mail to <pkcs@rsa.com>.

39

10 PKCS #3: DIFFIE-HELLMAN KEY-AGREEMENT STANDARD

key agreement,” as defined in [DH76].

10.4 Symbols and abbreviations
Upper-case italic symbols (e.g., PV) denote octet strings; lower-case italic symbols (e.g., g)
denote integers.

PV public value p prime
PV’ other’s public value x private value
SK secret key x’ other’s private value
G base y integer public value
K length of prime in octets y’ other’s integer public value
L length of private value in bits z integer secret key
mod n modulo n

10.5 General overview
The next four sections specify parameter generation, two phases of Diffie-Hellman key
agreement, and an object identifier.
A central authority shall generate Diffie-Hellman parameters, and the two phases of key
agreement shall be performed with these parameters. It is possible that more than one
instance of parameters may be generated by a given central authority, and that there may be
more than one central authority. Indeed, each entity may be its own central authority, with
different entities having different parameters. The algorithm identifier for Diffie-Hellman
key agreement specifies which Diffie-Hellman parameters are employed.
Two entities intending to agree on a secret key shall employ the first phase independently to
produce outputs PV and PV’, the public values. The entities shall exchange the outputs.
The entities shall then employ the second phase independently with the other entity’s public
value as input. The mathematics of Diffie-Hellman key agreement ensure that the outputs SK
of the second phase are the same for both entities.

10.6 Parameter generation
This section describes Diffie-Hellman parameter generation.
A central authority shall select an odd prime p. The central authority shall also select an
integer g, the base, that satisfies 0 < g < p. The central authority may optionally select an
integer l, the private-value length in bits, that satisfies 2l-1 ≤ p.
The length of the prime p in octets is the integer k satisfying

40

10 PKCS #3: DIFFIE-HELLMAN KEY-AGREEMENT STANDARD

28(k−1) ≤ p < 28k .

10.6.1 Notes

1. The cost of some methods for computing discrete logarithms depends on the the length of
the prime, while the cost of others depends on the length of the private value. The intention
of selecting a private-value length is to reduce the computation time for key agreement, while
maintaining a given level of security. A similar optimization is suggested by Schnorr [Sch90].
2. Some additional conditions on the choice of prime, base, and private-value length may
well be taken into account in order to deter discrete logarithm computation. These security
conditions fall outside the scope of this standard.

10.7 Phase I
This section describes the first phase of Diffie-Hellman key agreement.
The first phase consists of three steps: private-value generation, exponentiation, and
integer-to-octet-string conversion. The input to the first phase shall be the Diffie-Hellman
parameters. The output from the first phase shall be an octet string PV, the public value; and
an integer x, the private value.
This phase is performed independently by the two parties intending to agree on a secret key.

10.7.1 Private-value generation

An integer x, the private value, shall be generated privately and randomly. This integer shall
satisfy 0 < x < p−1, unless the central authority specifies a private-value length l, in which case
the integer shall satisfy 2l-1 ≤ x < 2l.

10.7.2 Exponentiation

The base g shall be raised to the private value x modulo p to give an integer y, the integer
public value.
y = gx mod p, 0 < y < p .
This is the classic discrete-exponentiation computation.

10.7.3 Integer-to-octet-string conversion

The integer public value y shall be converted to an octet string PV of length k, the public
value. The public value PV shall satisfy
y = , (1)
where PV1, ..., PVk are the octets of PV from first to last.

41

10 PKCS #3: DIFFIE-HELLMAN KEY-AGREEMENT STANDARD

In other words, the first octet of PV has the most significance in the integer and the last octet
of PV has the least significance.

10.8 Phase II
This section describes the second phase of Diffie-Hellman key agreement.
The second phase consists of three steps: octet-string-to-integer conversion, exponentiation,
and integer-to-octet-string conversion. The input to the second phase shall be the Diffie-
Hellman parameters; an octet string PV’, the other entity’s public value; and the private value
x. The output from the second phase shall be an octet string SK, the agreed-upon secret key.
This phase is performed independently by the two parties intending to agree on a secret key,
after the parties have exchanged public values resulting from the first phase.

10.8.1 Octet-string-to-integer conversion

The other entity’s public value PV’ shall be converted to an integer y’, the other entity’s
integer public value. Let PV’1, ..., PV’k be the octets of PV’ from first to last. Then the other
entity’s integer public value y’ shall satisfy
y’ = .
In other words, the first octet of PV’ has the most significance in the integer and the last octet
of PV’ has the least significance.

10.8.2 Exponentiation

The other entity’s integer public value y’ shall be raised to the private integer x modulo p to
give an integer z, the integer secret key.
z = (y’)x mod p, 0 < z < p .
This is the classic discrete-exponentiation computation.
Note. The integer secret key z satisfies
z = (y’)x = (gx’)x = (gx)x’ = yx’ mod p ,
where x’ is the other entity’s private value. This mathematical relationship is the reason the
two entities arrive at the same key.

10.8.3 Integer-to-octet-string conversion

The integer secret key z shall be converted to an octet string SK, the secret key, of length k.
The secret key SK shall satisfy
z = ,
where SK1, ..., SKk are the octets of SK from first to last.
In other words, the first octet of SK has the most significance in the integer and the last octet

42

10 PKCS #3: DIFFIE-HELLMAN KEY-AGREEMENT STANDARD

of SK has the least significance.

10.9 Object identifier
This standard defines two object identifiers: pkcs-3 and DHKeyValue.
The object identifier pkcs-3 identifies this standard.
pkcs-3 OBJECT IDENTIFIER ::= { iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) 3 }
The object identifier DHKeyValue identifies the Diffie-Hellman key agreementmethod defined
in Sections 7 and 8.
DHKeyValue OBJECT IDENTIFIER ::= { pkcs-3 1 }
The DHKeyValue object identifier is intended to be used in the algorithm field of a value of
type AlgorithmIdentifier. The parameters field of that type, which has the algorithm-specific
syntax ANY DEFINED BY algorithm, would have ASN.1 type DHParameter for this algorithm.
DHParameter ::= SEQUENCE { prime INTEGER, - p base INTEGER, - g privateValueLength
INTEGER OPTIONAL }
The fields of type DHParameter have the following meanings:

• prime is the prime p.

• base is the base g.

• privateValueLength is the optional private-value length l.

10.10 Revision history
10.10.1 Versions 1.0-1.2

Versions 1.0-1.2 were distributed to participants in RSA Data Security, Inc.’s Public-Key
Cryptography Standards meetings in February and March 1991.

10.10.2 Version 1.3

Version 1.3 is part of the June 3, 1991 initial public release of PKCS. Version 1.3 was published
as NIST/OSI Implementors’ Workshop document SEC-SIG-91-19.

10.10.3 Version 1.4

Version 1.4 incorporates several editorial changes, including updates to the references and
the addition of a revision history. The following substantive changes were made:

• Section 6: Parameter generation is modified to allow central authority to select private-
value length in bits.

43

11 IKE DIFFIE-HELLMAN GROUPS

• Section 7.1: Private-value generation is modified to handle private-value length.

• Section 9: Optional privateValueLength field is added to DHParameter type.

10.11 Author’s address
RSA Laboratories (415) 595-7703 100 Marine Parkway (415) 595-4126 (fax) Redwood City, CA
94065 USA pkcs-editor@rsa.com

11 IKE Diffie-Hellman Groups
Different Diffie-Hellman groups are defined for use in IKE. These groups were generated by
Richard Schroeppel at the University of Arizona. Properties of these primes are described in
[Orm96].

11.1 768-bit MODP - modp1
IKE implementations MAY support a MODP group with the following prime and generator.
This group is assigned id 1 (one).
The prime is: 2ˆ768 - 2 ˆ704 - 1 + 2ˆ64 * { [2ˆ638 pi] + 149686 } Its hexadecimal value is:

FFFFFFFF FFFFFFFF C90FDAA2 2168 C234 C4C6628B 80 DC1CD1 29024 E08
8A67CC74 020 BBEA6 3B139B22 514 A0879 8E3404DD EF9519B3 CD3A431B
302 B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625 E7EC6 F44C42E9
A63A3620 FFFFFFFF FFFFFFFF

The generator is: 2.

11.2 1024-bit MODP Group - modp2
IKE implementations SHOULD support a MODP group with the following prime and generator.
This group is assigned id 2 (two).
The prime is 2ˆ1024 - 2ˆ960 - 1 + 2ˆ64 * { [2ˆ894 pi] + 129093 }. Its hexadecimal value is:

FFFFFFFF FFFFFFFF C90FDAA2 2168 C234 C4C6628B 80 DC1CD1 29024 E08
8A67CC74 020 BBEA6 3B139B22 514 A0879 8E3404DD EF9519B3 CD3A431B
302 B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625 E7EC6 F44C42E9
A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
49286651 ECE65381 FFFFFFFF FFFFFFFF

The generator is 2 (decimal)

44

11 IKE DIFFIE-HELLMAN GROUPS

11.3 1536-bit MODP Group - modp5
IKE implementations MUST support a MODP group with the following prime and generator.
This group is assigned id 5 (five). The 1536 bit MODP group has been used for the implemen-
tations for quite a long time, but it has not been documented in the current RFCs or drafts.
The prime is 2ˆ1536 - 2ˆ1472 - 1 + 2ˆ64 * {[2ˆ1406 pi] + 741804}. Its hexadecimal value is

FFFFFFFF FFFFFFFF C90FDAA2 2168 C234 C4C6628B 80 DC1CD1 29024 E08
8A67CC74 020 BBEA6 3B139B22 514 A0879 8E3404DD EF9519B3 CD3A431B
302 B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625 E7EC6 F44C42E9
A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
49286651 ECE45B3D C2007CB8 A163BF05 98 DA4836 1C55D39A 69163 FA8
FD24CF5F 83655 D23 DCA3AD96 1C62F356 208552 BB 9ED52907 7096966D
670 C354E 4ABC9804 F1746C08 CA237327 FFFFFFFF FFFFFFFF

The generator is 2.

11.4 2048-bit MODP Group
This prime is: 2ˆ2048 - 2ˆ1984 - 1 + 2ˆ64 * { [2ˆ1918 pi] + 124476 } Its hexadecimal value is

FFFFFFFF FFFFFFFF C90FDAA2 2168 C234 C4C6628B 80 DC1CD1
29024 E08 8A67CC74 020 BBEA6 3B139B22 514 A0879 8E3404DD
EF9519B3 CD3A431B 302 B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625 E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
C2007CB8 A163BF05 98 DA4836 1C55D39A 69163 FA8 FD24CF5F
83655 D23 DCA3AD96 1C62F356 208552 BB 9ED52907 7096966D
670 C354E 4ABC9804 F1746C08 CA18217C 32905 E46 2E36CE3B
E39E772C 180 E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
DE2BCBF6 95581718 3995497C EA956AE5 15 D22618 98 FA0510
15728 E5A 8AACAA68 FFFFFFFF FFFFFFFF

The generator is: 2.

11.5 3072-bit MODP Group
This prime is: 2ˆ3072 - 2ˆ3008 - 1 + 2ˆ64 * { [2ˆ2942 pi] + 1690314 }
Its hexadecimal value is:

FFFFFFFF FFFFFFFF C90FDAA2 2168 C234 C4C6628B 80 DC1CD1
29024 E08 8A67CC74 020 BBEA6 3B139B22 514 A0879 8E3404DD
EF9519B3 CD3A431B 302 B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625 E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED

45

11 IKE DIFFIE-HELLMAN GROUPS

EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
C2007CB8 A163BF05 98 DA4836 1C55D39A 69163 FA8 FD24CF5F
83655 D23 DCA3AD96 1C62F356 208552 BB 9ED52907 7096966D
670 C354E 4ABC9804 F1746C08 CA18217C 32905 E46 2E36CE3B
E39E772C 180 E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
DE2BCBF6 95581718 3995497C EA956AE5 15 D22618 98 FA0510
15728 E5A 8AAAC42D AD33170D 04507 A33 A85521AB DF1CBA64
ECFB8504 58 DBEF0A 8AEA7157 5D060C7D B3970F85 A6E1E4C7
ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226 1AD2EE6B
F12FFA06 D98A0864 D8760273 3EC86A64 521 F2B18 177 B200C
BBE11757 7A615D6C 770988 C0 BAD946E2 08 E24FA0 74 E5AB31
43 DB5BFC E0FD108E 4B82D120 A93AD2CA FFFFFFFF FFFFFFFF

The generator is: 2.

11.6 4096-bit MODP Group
This prime is: 2ˆ4096 - 2ˆ4032 - 1 + 2ˆ64 * { [2ˆ3966 pi] + 240904 }
Its hexadecimal value is :

FFFFFFFF FFFFFFFF C90FDAA2 2168 C234 C4C6628B 80 DC1CD1
29024 E08 8A67CC74 020 BBEA6 3B139B22 514 A0879 8E3404DD
EF9519B3 CD3A431B 302 B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625 E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
C2007CB8 A163BF05 98 DA4836 1C55D39A 69163 FA8 FD24CF5F
83655 D23 DCA3AD96 1C62F356 208552 BB 9ED52907 7096966D
670 C354E 4ABC9804 F1746C08 CA18217C 32905 E46 2E36CE3B
E39E772C 180 E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
DE2BCBF6 95581718 3995497C EA956AE5 15 D22618 98 FA0510
15728 E5A 8AAAC42D AD33170D 04507 A33 A85521AB DF1CBA64
ECFB8504 58 DBEF0A 8AEA7157 5D060C7D B3970F85 A6E1E4C7
ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226 1AD2EE6B
F12FFA06 D98A0864 D8760273 3EC86A64 521 F2B18 177 B200C
BBE11757 7A615D6C 770988 C0 BAD946E2 08 E24FA0 74 E5AB31
43 DB5BFC E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7
88719 A10 BDBA5B26 99 C32718 6AF4E23C 1A946834 B6150BDA
2583 E9CA 2AD44CE8 DBBBC2DB 04 DE8EF9 2E8EFC14 1FBECAA6
287 C5947 4E6BC05D 99 B2964F A090C3A2 233 BA186 515 BE7ED
1F612970 CEE2D7AF B81BDD76 2170481C D0069127 D5B05AA9
93 B4EA98 8D8FDDC1 86 FFB7DC 90 A6C08F 4DF435C9 34063199
FFFFFFFF FFFFFFFF

The generator is: 2.

46

11 IKE DIFFIE-HELLMAN GROUPS

11.7 6144-bit MODP Group
This prime is: 2ˆ6144 - 2ˆ6080 - 1 + 2ˆ64 * { [2ˆ6014 pi] + 929484 }
Its hexadecimal value is :

FFFFFFFF FFFFFFFF C90FDAA2 2168 C234 C4C6628B 80 DC1CD1
29024 E08 8A67CC74 020 BBEA6 3B139B22 514 A0879 8E3404DD
EF9519B3 CD3A431B 302 B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625 E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
C2007CB8 A163BF05 98 DA4836 1C55D39A 69163 FA8 FD24CF5F
83655 D23 DCA3AD96 1C62F356 208552 BB 9ED52907 7096966D
670 C354E 4ABC9804 F1746C08 CA18217C 32905 E46 2E36CE3B
E39E772C 180 E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
DE2BCBF6 95581718 3995497C EA956AE5 15 D22618 98 FA0510
15728 E5A 8AAAC42D AD33170D 04507 A33 A85521AB DF1CBA64
ECFB8504 58 DBEF0A 8AEA7157 5D060C7D B3970F85 A6E1E4C7
ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226 1AD2EE6B
F12FFA06 D98A0864 D8760273 3EC86A64 521 F2B18 177 B200C
BBE11757 7A615D6C 770988 C0 BAD946E2 08 E24FA0 74 E5AB31
43 DB5BFC E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7
88719 A10 BDBA5B26 99 C32718 6AF4E23C 1A946834 B6150BDA
2583 E9CA 2AD44CE8 DBBBC2DB 04 DE8EF9 2E8EFC14 1FBECAA6
287 C5947 4E6BC05D 99 B2964F A090C3A2 233 BA186 515 BE7ED
1F612970 CEE2D7AF B81BDD76 2170481C D0069127 D5B05AA9
93 B4EA98 8D8FDDC1 86 FFB7DC 90 A6C08F 4DF435C9 34028492
36 C3FAB4 D27C7026 C1D4DCB2 602646 DE C9751E76 3DBA37BD
F8FF9406 AD9E530E E5DB382F 413001 AE B06A53ED 9027 D831
179727 B0 865 A8918 DA3EDBEB CF9B14ED 44 CE6CBA CED4BB1B
DB7F1447 E6CC254B 33205151 2BD7AF42 6FB8F401 378 CD2BF
5983 CA01 C64B92EC F032EA15 D1721D03 F482D7CE 6E74FEF6
D55E702F 46980 C82 B5A84031 900 B1C9E 59 E7C97F BEC7E8F3
23 A97A7E 36 CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
CC8F6D7E BF48E1D8 14 CC5ED2 0F8037E0 A79715EE F29BE328
06 A1D58B B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C
DA56C9EC 2EF29632 387 FE8D7 6E3C0468 043 E8F66 3F4860EE
12 BF2D5B 0B7474D6 E694F91E 6DCC4024 FFFFFFFF FFFFFFFF

The generator is: 2.

11.8 8192-bit MODP Group
This prime is: 2ˆ8192 - 2ˆ8128 - 1 + 2ˆ64 * { [2ˆ8062 pi] + 4743158 }
Its hexadecimal value is :

FFFFFFFF FFFFFFFF C90FDAA2 2168 C234 C4C6628B 80 DC1CD1
29024 E08 8A67CC74 020 BBEA6 3B139B22 514 A0879 8E3404DD

47

11 IKE DIFFIE-HELLMAN GROUPS

EF9519B3 CD3A431B 302 B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625 E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
C2007CB8 A163BF05 98 DA4836 1C55D39A 69163 FA8 FD24CF5F
83655 D23 DCA3AD96 1C62F356 208552 BB 9ED52907 7096966D
670 C354E 4ABC9804 F1746C08 CA18217C 32905 E46 2E36CE3B
E39E772C 180 E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
DE2BCBF6 95581718 3995497C EA956AE5 15 D22618 98 FA0510
15728 E5A 8AAAC42D AD33170D 04507 A33 A85521AB DF1CBA64
ECFB8504 58 DBEF0A 8AEA7157 5D060C7D B3970F85 A6E1E4C7
ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226 1AD2EE6B
F12FFA06 D98A0864 D8760273 3EC86A64 521 F2B18 177 B200C
BBE11757 7A615D6C 770988 C0 BAD946E2 08 E24FA0 74 E5AB31
43 DB5BFC E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7
88719 A10 BDBA5B26 99 C32718 6AF4E23C 1A946834 B6150BDA
2583 E9CA 2AD44CE8 DBBBC2DB 04 DE8EF9 2E8EFC14 1FBECAA6
287 C5947 4E6BC05D 99 B2964F A090C3A2 233 BA186 515 BE7ED
1F612970 CEE2D7AF B81BDD76 2170481C D0069127 D5B05AA9
93 B4EA98 8D8FDDC1 86 FFB7DC 90 A6C08F 4DF435C9 34028492
36 C3FAB4 D27C7026 C1D4DCB2 602646 DE C9751E76 3DBA37BD
F8FF9406 AD9E530E E5DB382F 413001 AE B06A53ED 9027 D831
179727 B0 865 A8918 DA3EDBEB CF9B14ED 44 CE6CBA CED4BB1B
DB7F1447 E6CC254B 33205151 2BD7AF42 6FB8F401 378 CD2BF
5983 CA01 C64B92EC F032EA15 D1721D03 F482D7CE 6E74FEF6
D55E702F 46980 C82 B5A84031 900 B1C9E 59 E7C97F BEC7E8F3
23 A97A7E 36 CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
CC8F6D7E BF48E1D8 14 CC5ED2 0F8037E0 A79715EE F29BE328
06 A1D58B B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C
DA56C9EC 2EF29632 387 FE8D7 6E3C0468 043 E8F66 3F4860EE
12 BF2D5B 0B7474D6 E694F91E 6DBE1159 74 A3926F 12 FEE5E4
38777 CB6 A932DF8C D8BEC4D0 73 B931BA 3BC832B6 8D9DD300
741 FA7BF 8AFC47ED 2576 F693 6BA42466 3AAB639C 5AE4F568
3423 B474 2BF1C978 238 F16CB E39D652D E3FDB8BE FC848AD9
22222 E04 A4037C07 13 EB57A8 1A23F0C7 3473 FC64 6CEA306B
4BCBC886 2F8385DD FA9D4B7F A2C087E8 79683303 ED5BDD3A
062 B3CF5 B3A278A6 6D2A13F8 3F44F82D DF310EE0 74 AB6A36
4597 E899 A0255DC1 64 F31CC5 0846851D F9AB4819 5DED7EA1
B1D510BD 7EE74D73 FAF36BC3 1ECFA268 359046 F4 EB879F92
4009438B 481 C6CD7 889 A002E D5EE382B C9190DA6 FC026E47
9558 E447 5677 E9AA 9E3050E2 765694 DF C81F56E8 80 B96E71
60 C980DD 98 EDD3DF FFFFFFFF FFFFFFFF

The generator is: 2.

48

	Introduction
	Terms and Definitions
	Requirements And Considerations
	Security Requirements
	Data Protection
	Data Classification
	End To End Protection
	Trust Issues
	Cryptosystem Design Considerations

	2.2 Environmental Considerations
	Usability
	Development And Deployment
	XML Processing
	Transporting Binary Content
	Transporting Encrypted Content
	Performing HMAC Computation
	Performing Cryptographic Operations

	xmpp:sec namespace
	Elements within the extension
	Attributes
	Elements
	Attributes values

	Base Key Agreement
	Overview
	Secure password registration

	Authenticated Key Agreement
	Introduction
	Key Exchange Protocol
	Aggressive Mode Key Exchange
	Main Mode Key Exchange
	Deriving key material for Cryptographic Transforms

	Authenticated Key Exchange Application
	Main Mode Key Exchange
	Aggressive Mode Key Exchange

	Key Transport
	Conversation Key Transport
	Key transport exchange
	Generating And Sending a Conversation Key Transport PDU
	Receiving and Processing the Conversation Key Transport PDU

	Public Key Transport
	Certificate transport
	Other Public Keys Transport

	Message Protection
	Overview
	Message Protection Mechanism
	Generating And Sending the Protected Message PDU
	Receiving and Processing the Protected Message PDU

	Algorithms
	PKCS #3: Diffie-Hellman Key-Agreement Standard
	Scope
	References
	Definitions
	Symbols and abbreviations
	General overview
	Parameter generation
	Notes

	Phase I
	Private-value generation
	Exponentiation
	Integer-to-octet-string conversion

	Phase II
	Octet-string-to-integer conversion
	Exponentiation
	Integer-to-octet-string conversion

	Object identifier
	Revision history
	Versions 1.0-1.2
	Version 1.3
	Version 1.4

	Author's address

	IKE Diffie-Hellman Groups
	768-bit MODP - modp1
	1024-bit MODP Group - modp2
	1536-bit MODP Group - modp5
	2048-bit MODP Group
	3072-bit MODP Group
	4096-bit MODP Group
	6144-bit MODP Group
	8192-bit MODP Group

