
XEP-0115: Entity Capabilities

Joe Hildebrand
mailto:jhildebr@cisco.com
xmpp:hildjj@jabber.org

Peter Saint-Andre
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org

https://stpeter.im/

Remko Tronçon
http://el-tramo.be/

Jacek Konieczny
mailto:jajcus@jajcus.net
xmpp:jajcus@jabber.bnet.pl

2022-03-08
Version 1.6.0

Status Type Short Name
Draft Standards Track caps

This document defines an XMPP protocol extension for broadcasting and dynamically discovering
client, device, or generic entity capabilities. In order to minimize network impact, the transport mecha-
nism is standard XMPP presence broadcast (thus forestalling the need for polling related to service dis-
covery data), the capabilities information can be cached either within a session or across sessions, and
the format has been kept as small as possible.

mailto:jhildebr@cisco.com
xmpp:hildjj@jabber.org
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/
http://el-tramo.be/
mailto:jajcus@jajcus.net
xmpp:jajcus@jabber.bnet.pl


Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2020 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
## NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy


Contents
1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 How It Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Assumptions 4

3 Requirements 4

4 Protocol 5

5 Verification String 6
5.1 Generation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.2 Simple Generation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.3 Complex Generation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.4 Processing Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6 Use Cases 11
6.1 Advertising Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.2 Discovering Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.3 Stream Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7 Determining Support 13

8 Implementation Notes 14
8.1 Hashing Algorithm Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.2 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.3 Directed Presence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.4 Caps Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

9 Security Considerations 15
9.1 Mandatory-to-Implement Technologies . . . . . . . . . . . . . . . . . . . . . . 15
9.2 Preimage Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.3 Caps Poisoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
9.4 Information Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

10 IANA Considerations 18

11 XMPP Registrar Considerations 18
11.1 Protocol Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
11.2 Service Discovery Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
11.3 Stream Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

12 XML Schema 18



13 Legacy Format 19

14 Acknowledgements 20



1 INTRODUCTION

1 Introduction
1.1 Motivation
It is often desirable for an XMPP application (commonly but not necessarily a client) to take
different actions depending on the capabilities of another application from which it receives
presence information. Examples include:

• Showing a different set of icons depending on the capabilities of other entities.

• Not sending XHTML-IM (XEP-0071) 1 or other rich content to plaintext clients such as
cell phones.

• Allowing the initiation of aVoice over IP (VoIP) session only to clients that support Jingle
(XEP-0166) 2 and Jingle RTP Sessions (XEP-0167) 3.

• Not showing a ”Send a File” button if another user’s client does not support SI File Trans-
fer (XEP-0096) 4.

• Filtering Publish-Subscribe (XEP-0060) 5 notifications based on advertised subscriber in-
terests.

In the past, after logging in some Jabber clients sent one Service Discovery (XEP-0030) 6 and
one Software Version (XEP-0092) 7 request to each entity from which they received presence.
That ”disco/version flood” resulted in an excessive use of bandwidth and was impractical
on a larger scale, particularly for users with large rosters. Therefore this document defines
a more robust and scalable solution: namely, a presence-based mechanism 8 for exchanging
information about entity capabilities. Clients should not engage in the older ”disco/version
flood” behavior and instead should use Entity Capabilities as specified herein.

1.2 How It Works
This section provides a friendly introduction to entity capabilities (”caps”).
Imagine that you are a Shakespearean character named Juliet and one of your contacts, a
handsome fellow named Romeo, becomes available. His client wants to publish its capabilities,
and does this by adding to its presence packets a <c/> element with special attributes. As a
result, your client receives the following presence packet:

1XEP-0071: XHTML-IM <https://xmpp.org/extensions/xep-0071.html>.
2XEP-0166: Jingle <https://xmpp.org/extensions/xep-0166.html>.
3XEP-0167: Jingle RTP Sessions <https://xmpp.org/extensions/xep-0167.html>.
4XEP-0096: SI File Transfer <https://xmpp.org/extensions/xep-0096.html>.
5XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.
6XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.
7XEP-0092: Software Version <https://xmpp.org/extensions/xep-0092.html>.
8Entity capabilities is not limited to clients, and can be used by any entity that exchanges presence with another
entity, e.g., a gateway. However, this specification mainly uses the example of clients.

1

https://xmpp.org/extensions/xep-0071.html
https://xmpp.org/extensions/xep-0166.html
https://xmpp.org/extensions/xep-0166.html
https://xmpp.org/extensions/xep-0167.html
https://xmpp.org/extensions/xep-0096.html
https://xmpp.org/extensions/xep-0096.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0092.html
https://xmpp.org/extensions/xep-0071.html
https://xmpp.org/extensions/xep-0166.html
https://xmpp.org/extensions/xep-0167.html
https://xmpp.org/extensions/xep-0096.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0092.html


1 INTRODUCTION

<presence from=’romeo@montague.lit/orchard ’>
<c xmlns=’http: // jabber.org/protocol/caps’

hash=’sha -1’
node=’http: //code.google.com/p/exodus ’
ver=’QgayPKawpkPSDYmwT/WM94uAlu0=’/>

</presence >

The ’node’ attribute represents the client software Romeo is using. The ’ver’ attribute is
a specially-constructed string (called a ”verification string”) that represents the entity’s
service discovery identity (category and type as registered at <https://xmpp.org/reg
istrar/disco-categories.html>, as well as, optionally, xml:lang and name) and sup-
ported features (as registered at <https://xmpp.org/registrar/disco-features.html>
as well as, optionally, extended service discovery information data registered at
<https://xmpp.org/registrar/formtypes.html>).
At this point, your client has no idea what the capabilities are of someone with a verification
string ’QgayPKawpkPSDYmwT/WM94uAlu0=’. Your client therefore sends a service discovery
query to Romeo, asking what his client can do.

<iq from=’juliet@capulet.lit/chamber ’
id=’disco1 ’
to=’romeo@montague.lit/orchard ’
type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’
node=’http: //code.google.com/p/exodus#QgayPKawpkPSDYmwT/

WM94uAlu0=’/>
</iq>

The response is:

<iq from=’romeo@montague.lit/orchard ’
id=’disco1 ’
to=’juliet@capulet.lit/chamber ’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’
node=’http: //code.google.com/p/exodus#QgayPKawpkPSDYmwT/

WM94uAlu0=’>
<identity category=’client ’ name=’Exodus␣0.9.1 ’ type=’pc’/>
<feature var=’http: // jabber.org/protocol/caps’/>
<feature var=’http: // jabber.org/protocol/disco#info’/>
<feature var=’http: // jabber.org/protocol/disco#items ’/>
<feature var=’http: // jabber.org/protocol/muc’/>

</query >
</iq>

2

https://xmpp.org/registrar/disco-categories.html
https://xmpp.org/registrar/disco-categories.html
https://xmpp.org/registrar/disco-features.html
https://xmpp.org/registrar/formtypes.html


1 INTRODUCTION

At this point, your client knows that a contact who advertises a verification string of ’QgayP-
KawpkPSDYmwT/WM94uAlu0=’ supports Multi-User Chat (XEP-0045) 9 and the other features
returned by Romeo because the contact in fact uses the same version of the same client
software as Romeo, with the same enabled features, plugins, presented client name(s), and
the like (i.e., the same input to the verification string generation method). 10 Your client
remembers this information, so that it does not need to explicitly query the capabilities of a
contact with the same verification string. For example, your Nurse may use the same client
that Romeo does:

<presence from=’nurse@capulet.lit/chamber ’>
<c xmlns=’http: // jabber.org/protocol/caps’

hash=’sha -1’
node=’http: //code.google.com/p/exodus ’
ver=’QgayPKawpkPSDYmwT/WM94uAlu0=’/>

</presence >

Therefore you know that she also supports the same features that Romeo does.
On the other hand, for a person with the following presence ...

<presence from=’benvolio@capulet.lit /230193 ’>
<c xmlns=’http: // jabber.org/protocol/caps’

hash=’sha -1’
node=’http: //psi -im.org’
ver=’q07IKJEyjvHSyhy // CH0CxmKi8w=’/>

</presence >

... or the following presence ...

<presence from=’bard@shakespeare.lit/globe ’>
<c xmlns=’http: // jabber.org/protocol/caps’

hash=’sha -1’
node=’http: //www.chatopus.com’
ver=’zHyEOgxTrkpSdGcQKH8EFPLsriY=’/>

</presence >

... you have no information about what this contact’s client is capable of unless you have
cached previous entity capabilities information; therefore you need to query for capabilities
explicitly again via service discovery.

9XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>.
10The string can be relied upon because of how it is generated and checked, as explained later in this document.

3

https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html


3 REQUIREMENTS

2 Assumptions
This document makes several assumptions:

• The identity of the client I am using is of interest to the people in my roster.

• Clients for the people on my roster might want to make user interface decisions based
on my capabilities.

• Members of a community tend to cluster around a small set of clients with a small set
of capabilities. More specifically, multiple people in my roster use the same client, and
they upgrade versions relatively slowly (commonly a few times a year, perhaps once a
week at most, certainly not once a minute).

• Some clients are running on networks without server-to-server connectivity enabled
and without access to the Internet via HTTP.

• Conversations are possible between users who are not on each other’s rosters.

• Client capabilities may change over the course of a presence session, as features are
enabled or disabled.

3 Requirements
The protocol defined herein addresses the following requirements:

1. Clients must be able to participate even if they support only XMPP Core 11, XMPP IM 12,
and XEP-0030.

2. Clients must be able to participate even if they are on networks without connectivity to
other XMPP servers, services offering specialized XMPP extensions, or HTTP servers.13

3. Clients must be able to retrieve information without querying every entity with which
they communicate.

4. Since presence is normally broadcast to many contacts, the byte size of the proposed
extension must be as small as possible.

5. It must be possible to write a XEP-0045 server implementation that passes the given
information along.

6. It must be possible to publish a change in capabilities within a single presence session.
11RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
12RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool

s.ietf.org/html/rfc6121>.
13These first two requirements effectively eliminated XEP-0060 as a possible implementation of entity capabilities.

4

http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121


4 PROTOCOL

7. Server infrastructure above and beyond that defined in XMPP Core and XMPP IM must
not be required for this approach towork, although additional server infrastructuremay
be used for optimization purposes.

8. The defined mechanism must not be limited to clients but must be usable by servers,
components, and other network entities.

4 Protocol
Entity capabilities are encapsulated in a <c/> element qualified by the
’http://jabber.org/protocol/caps’ namespace. The attributes of the <c/> element are as
follows.

Name Definition Inclusion
ext A set of nametokens specifying addi-

tional feature bundles; this attribute is
deprecated (see the Legacy Format sec-
tion of this document).

DEPRECATED

hash The hashing algorithm used to generate
the verification string; see Mandatory-
to-Implement Technologies regarding
supported hashing algorithms.

REQUIRED

node AURI that uniquely identifies a software
application, typically a URL at the web-
site of the project or company that pro-
duces the software. *

REQUIRED

ver A string that is used to verify the iden-
tity and supported features of the en-
tity. **

REQUIRED

* Note: It is RECOMMENDED for the value of the ’node’ attribute to be an HTTP URL at which
a user could find further information about the software product, such as ”http://psi-im.org”
for the Psi client; this enables a processing application to also determine a unique string for the
generating application, which it could maintain in a list of known software implementations
(e.g., associating the name received via the disco#info reply with the URL found in the caps
data).
* Note: Before version 1.4 of this specification, the ’ver’ attribute was used to specify the
released version of the software; while the values of the ’ver’ attribute that result from use of
the algorithm specified herein are backwards-compatible, applications SHOULD appropriately
handle the Legacy Format.

5



5 VERIFICATION STRING

5 Verification String
5.1 Generation Method
In order to help prevent poisoning of entity capabilities information, the value of the verifi-
cation string MUST be generated according to the following method.
Note: All sorting operations MUST be performed using ”i;octet” collation as specified in
Section 9.3 of RFC 4790 14.

1. Initialize an empty string S.

2. Sort the service discovery identities 15 by category and thenby type and thenby xml:lang
(if it exists), formatted as CATEGORY ’/’ [TYPE] ’/’ [LANG] ’/’ [NAME]. 16 Note that each
slash is included even if the LANGorNAME is not included (in accordancewithXEP-0030,
the category and type MUST be included).

3. For each identity, append the ’category/type/lang/name’ to S, followed by the ’<’ char-
acter.

4. Sort the supported service discovery features. 17

5. For each feature, append the feature to S, followed by the ’<’ character.

6. If the service discovery information response includes XEP-0128 data forms, sort the
forms by the FORM_TYPE (i.e., by the XML character data of the <value/> element).

7. For each extended service discovery information form:
a) Append the XML character data of the FORM_TYPE field’s <value/> element, fol-

lowed by the ’<’ character.
b) Sort the fields by the value of the ”var” attribute.
c) For each field other than FORM_TYPE:

i. Append the value of the ”var” attribute, followed by the ’<’ character.
ii. Sort values by the XML character data of the <value/> element.
iii. For each <value/> element, append the XML character data, followed by the

’<’ character.

8. Ensure that S is encoded according to the UTF-8 encoding (RFC 3629 18).

14RFC 4790: Internet Application Protocol Collation Registry <http://tools.ietf.org/html/rfc4790>.
15A registry of service discovery identities is located at <https://xmpp.org/registrar/disco-categories.htm

l>.
16The combination of category, type, and xml:lang forms a unique combination, so it is not necessary to also sort

by name (the name merely provides some human-readable text associated with a category/type/lang).
17A registry of service discovery features is located at <https://xmpp.org/registrar/disco-features.html>.
18RFC 3629: UTF-8, a transformation format of ISO 10646 <http://tools.ietf.org/html/rfc3629>.

6

http://tools.ietf.org/html/rfc4790
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc4790
https://xmpp.org/registrar/disco-categories.html
https://xmpp.org/registrar/disco-categories.html
https://xmpp.org/registrar/disco-features.html
http://tools.ietf.org/html/rfc3629


5 VERIFICATION STRING

9. Compute the verification string by hashing S using the algorithm specified in the ’hash’
attribute (e.g., SHA-1 as defined in RFC 3174 19). The hashed data MUST be generated
with binary output and encoded using Base64 as specified in Section 4 of RFC 4648 20

(note: the Base64 output MUST NOT include whitespace and MUST set padding bits to
zero). 21

Note: If the four characters ’&’, ’l’, ’t’, ’;’ appear consecutively in any of the
factors of the verification string S (e.g., a service discovery identity of ’Some-
Client&lt;http://jabber.org/protocol/muc’) then that string of characters MUST be treated
as literally ’&lt;’ and MUST NOT be converted to the character ’<’, because completing such a
conversion would open the protocol to trivial attacks.

5.2 Simple Generation Example
Consider an entity whose category is ”client”, whose service discovery type is ”pc”,
whose service discovery name is ”Exodus 0.9.1”, and whose supported features are
”http://jabber.org/protocol/disco#info”, ”http://jabber.org/protocol/disco#items”, and
”http://jabber.org/protocol/muc”. Using the SHA-1 algorithm, the verification string would
be generated as follows (note: line breaks in the verification string are included only for the
purposes of readability):

1. S = ’’

2. Only one identity: ”client/pc”

3. S = ’client/pc//Exodus 0.9.1<’

4. Sort the features: ”http://jabber.org/protocol/caps”, ”http://jabber.org/protocol/disco#info”,
”http://jabber.org/protocol/disco#items”, ”http://jabber.org/protocol/muc”.

5. S = ’client/pc//Exodus 0.9.1<http://jabber.org/protocol/caps<http://jabber.org/protocol/disco#info<
http://jabber.org/protocol/disco#items<http://jabber.org/protocol/muc<’

6. ver = QgayPKawpkPSDYmwT/WM94uAlu0=

19RFC 3174: US Secure Hash Algorithm 1 (SHA1) <http://tools.ietf.org/html/rfc3174>.
20RFC 4648: The Base16, Base32, and Base64 Data Encodings <http://tools.ietf.org/html/rfc4648>.
21The OpenSSL command for producing such output with SHA-1 is ”echo -n ’S’ | openssl dgst -binary -sha1 | openssl

enc -nopad -base64”.

7

http://tools.ietf.org/html/rfc3174
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc3174
http://tools.ietf.org/html/rfc4648


5 VERIFICATION STRING

5.3 Complex Generation Example
Consider a more complex example, where the entity includes several identities (with the
service discovery name in different languages) as well as extended information formatted
according to XEP-0128.

<iq from=’benvolio@capulet.lit /230193 ’
id=’disco1 ’
to=’juliet@capulet.lit/chamber ’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’
node=’http: //psi -im.org#q07IKJEyjvHSyhy // CH0CxmKi8w=’>

<identity xml:lang=’en’ category=’client ’ name=’Psi␣0.11’ type=’pc
’/>

<identity xml:lang=’el’ category=’client ’ name=’�␣0.11’ type=’pc’/
>

<feature var=’http: // jabber.org/protocol/caps’/>
<feature var=’http: // jabber.org/protocol/disco#info’/>
<feature var=’http: // jabber.org/protocol/disco#items ’/>
<feature var=’http: // jabber.org/protocol/muc’/>
<x xmlns=’jabber:x:data ’ type=’result ’>

<field var=’FORM_TYPE ’ type=’hidden ’>
<value >urn:xmpp:dataforms:softwareinfo </value >

</field >
<field var=’ip_version ’ type=’text -multi ’ >

<value >ipv4</value >
<value >ipv6</value >

</field >
<field var=’os’>

<value >Mac</value >
</field >
<field var=’os_version ’>

<value >10.5.1 </value >
</field >
<field var=’software ’>

<value >Psi</value >
</field >
<field var=’software_version ’>

<value >0.11</value >
</field >

</x>
</query >

</iq>

Using the SHA-1 algorithm, the verification string would be generated as follows (note: line
breaks in the verification string are included only for the purposes of readability):

1. S = ’’

8



5 VERIFICATION STRING

2. Two identities: ”client/pc/Psi” and ”client/pc/�”

3. S = ’client/pc/el/� 0.11<client/pc/en/Psi 0.11<’

4. Sort the features: ”http://jabber.org/protocol/caps”, http://jabber.org/protocol/disco#info”,
”http://jabber.org/protocol/disco#items”, ”http://jabber.org/protocol/muc”.

5. S = ’client/pc/el/�0.11<client/pc/en/Psi 0.11<http://jabber.org/protocol/caps<http://jabber.org/protocol/disco#info<
http://jabber.org/protocol/disco#items<http://jabber.org/protocol/muc<’.

6. Sort the extended service discovery forms by FORM_TYPE (there is only one:
”urn:xmpp:dataforms:softwareinfo”).

7. S = ’client/pc/el/�0.11<client/pc/en/Psi 0.11<http://jabber.org/protocol/caps<http://jabber.org/protocol/disco#info<
http://jabber.org/protocol/disco#items<http://jabber.org/protocol/muc<urn:xmpp:dataforms:softwareinfo<’

8. Sort the fields by var and append the value(s): ”ip_version<ipv4<ipv6”, ”os<Mac”,
”os_version<10.5.1”, ”software<Psi”, ”software_version<0.11”.

9. S = ’client/pc/el/�0.11<client/pc/en/Psi 0.11<http://jabber.org/protocol/caps<http://jabber.org/protocol/disco#info<
http://jabber.org/protocol/disco#items<http://jabber.org/protocol/muc<urn:xmpp:dataforms:softwareinfo<
ip_version<ipv4<ipv6<os<Mac<os_version<10.5.1<software<Psi<software_ver-
sion<0.11<’

10. ver = q07IKJEyjvHSyhy//CH0CxmKi8w=

5.4 Processing Method
When an entity receives a value of the ’ver’ attribute that appears to be a verification string
generated in accordance with the generation method defined in this specification, it MUST
process the ’ver’ according to the following method.

1. Verify that the <c/> element includes a ’hash’ attribute. If it does not, ignore the ’ver’ or
treat it as generated in accordance with the Legacy Format (if supported).

9



5 VERIFICATION STRING

2. If the value of the ’hash’ attribute does not match one of the processing application’s
supported hash functions, do the following:

a) Send a service discovery information request to the generating entity.
b) Receive a service discovery information response from the generating entity.
c) Do not validate or globally cache the verification string as described below; instead,

the processing application SHOULD associate the discovered identity+features only
with the JabberID of the generating entity.

3. If the value of the ’hash’ attributematches one of the processing application’s supported
hash functions, validate the verification string by doing the following:

a) Send a service discovery information request to the generating entity.
b) Receive a service discovery information response from the generating entity.
c) If the response includes more than one service discovery identity with the same

category/type/lang/name, consider the entire response to be ill-formed.
d) If the response includes more than one service discovery feature with the same

XML character data, consider the entire response to be ill-formed.
e) If the response includes more than one extended service discovery information

form with the same FORM_TYPE or the FORM_TYPE field contains more than one
<value/> element with different XML character data, consider the entire response
to be ill-formed.

f) If the response includes an extended service discovery information formwhere the
FORM_TYPE field is not of type ”hidden” or the form does not include a FORM_-
TYPE field, ignore the form but continue processing.

g) If the response is consideredwell-formed, reconstruct thehash byusing the service
discovery information response to generate a local hash in accordance with the
Generation Method).

h) If the values of the received and reconstructed hashesmatch, the processing appli-
cation MUST consider the result to be valid and SHOULD globally cache the result
for all JabberIDs with which it communicates.

i) If the values of the received and reconstructed hashes do notmatch, the processing
application MUST consider the result to be invalid and MUST NOT globally cache
the verification string; however, it SHOULD check the service discovery identity
and supported features of another generating entity who advertises that value.

Note: If the four characters ’&’, ’l’, ’t’, ’;’ appear consecutively in any of the
factors of the verification string S (e.g., a service discovery identity of ’Some-
Client&lt;http://jabber.org/protocol/muc’) then that string of characters MUST be treated
as literally ’&lt;’ and MUST NOT be converted to the character ’<’, because completing such a
conversion would open the protocol to trivial attacks.

10



6 USE CASES

6 Use Cases
6.1 Advertising Capabilities
Each time a generating entity sends presence, it annotates that presence with an entity
identifier (’node’ attribute) and identity and feature identifier (’ver’ attribute). So that servers
can remember the last presence for use in responding to probes, a client SHOULD include
entity capabilities with every presence notification it sends.

Listing 1: Presence with caps
<presence >

<c xmlns=’http: // jabber.org/protocol/caps’
hash=’sha -1’
node=’http: //code.google.com/p/exodus ’
ver=’QgayPKawpkPSDYmwT/WM94uAlu0=’/>

</presence >

If the supported features change during a generating entity’s presence session (e.g., a user in-
stalls an updated version of a client plugin), the application MUST recompute the verification
string and SHOULD send a new presence broadcast.

Listing 2: Presence with recomputed ver attribute
<presence >

<c xmlns=’http: // jabber.org/protocol/caps’
hash=’sha -1’
node=’http: //code.google.com/p/exodus ’
ver=’66/0 NaeaBKkwk85efJTGmU47vXI=’/>

</presence >

6.2 Discovering Capabilities
An application (the ”requesting entity”) can learn what features another entity supports by
sending a disco#info request (see XEP-0030) to the entity that generated the caps information
(the ”generating entity”).

Listing 3: Disco#info request
<iq from=’juliet@capulet.lit/balcony ’

id=’disco1 ’
to=’romeo@montague.lit/orchard ’
type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’
node=’http: //code.google.com/p/exodus#QgayPKawpkPSDYmwT/

WM94uAlu0=’/>
</iq>

11



6 USE CASES

The disco#info request is sent by the requesting entity to the generating entity. The value of
the ’to’ attribute MUST be the exact JID of the generating entity, which in the case of a client
will be the full JID <localpart@domain.tld/resource>.
Note: The generating entity SHOULD NOT include the ”caps node” in the list of entities it
returns in its disco#items responses; i.e., the caps node is a kind of virtual or phantom node,
not a true items node that is associated with the generating entity for service discovery
purposes.
The disco ’node’ attribute MUST be included for backwards-compatibility. The value of the
’node’ attribute SHOULD be generated by concatenating the value of the caps ’node’ attribute
(e.g., ”http://code.google.com/p/exodus”) as provided by the generating entity, the ”#” char-
acter, and the value of the caps ’ver’ attribute (e.g., ”QgayPKawpkPSDYmwT/WM94uAlu0=”)
as provided by the generating entity.
The generating entity then returns all of the capabilities it supports.

Listing 4: Disco#info response
<iq from=’romeo@montague.lit/orchard ’

id=’disco1 ’
to=’juliet@capulet.lit/balcony ’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’
node=’http: //code.google.com/p/exodus#QgayPKawpkPSDYmwT/

WM94uAlu0=’>
<identity category=’client ’ type=’pc’/>
<feature var=’http: // jabber.org/protocol/disco#info’/>
<feature var=’http: // jabber.org/protocol/disco#items ’/>
<feature var=’http: // jabber.org/protocol/muc’/>

</query >
</iq>

Note: If the generating entity incorporated multiple identities with different xml:lang values
in its verification string, it MUST return all of the identities even if the request specified a
particular xml:lang.

6.3 Stream Feature
A server MAY include its entity capabilities in a stream feature element so that connecting
clients and peer servers do not need to send service discovery requests each time they connect.

Listing 5: Stream feature element including capabilities
<stream:features >

<c xmlns=’http: // jabber.org/protocol/caps’
hash=’sha -1’
node=’http: // jabberd.org’
ver=’ItBTI0XLDFvVxZ72NQElAzKS9sU=’/>

12



7 DETERMINING SUPPORT

</stream:features >

When a connected client or peer server sends a service discovery information request to
determine the entity capabilities of a server that advertises capabilities via the stream feature,
the requesting entity MUST send the disco#info request to the server’s JID as provided in the
’from’ attribute of the response stream header (the ’from’ attribute was recommended by RFC
3920 22 and is required by RFC 6120 23). To enable this functionality, a server that advertises
support for entity capabilities MUST provide a ’from’ address in its response stream headers,
in accordance with RFC 6120.

7 Determining Support
If an entity supports the entity capabilities protocol, it MUST advertise that fact by returning a
feature of ’http://jabber.org/protocol/caps’ in response to a service discovery information
request.

Listing 6: Service discovery information request
<iq from=’romeo@montague.lit/orchard ’

id=’disco2 ’
to=’juliet@capulet.lit/balcony ’
type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

Listing 7: Service discovery information response
<iq from=’juliet@capulet.lit/balcony ’

id=’disco2 ’
to=’romeo@montague.lit/orchard ’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
...
<feature var=’http: // jabber.org/protocol/caps’/>
...

</query >
</iq>

If a server supports the Caps Optimization functionality, it MUST also return a feature of
’http://jabber.org/protocol/caps#optimize’ in response to service discovery information
requests.

22RFC 3920: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc3920>.
23RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.

13

http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc6120


8 IMPLEMENTATION NOTES

Listing 8: Service discovery information request
<iq from=’juliet@capulet.lit/balcony ’

id=’disco3 ’
to=’capulet.lit’
type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

Listing 9: Service discovery information response
<iq from=’capulet.lit’

id=’disco3 ’
to=’juliet@capulet.lit/balcony ’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
...
<feature var=’http: // jabber.org/protocol/caps#optimize ’/>
...

</query >
</iq>

8 Implementation Notes
8.1 Hashing Algorithm Support
An application SHOULDmaintain a list of hashing algorithms it supports, whichMUST include
the algorithm or algorithms listed in the Mandatory-to-Implement Technologies section of
this document.

8.2 Caching
It is RECOMMENDED for an application that processes entity capabilities information to cache
associations between the verification string and discovered identity+features within the
scope of one presence session. This obviates the need for extensive service discovery requests
within a session.
It is RECOMMENDED for an application to cache associations across presence sessions, since
this obviates the need for extensive service discovery requests at the beginning of a session
(this is especially helpful in bandwidth-constrained environments).

8.3 Directed Presence
If two entities exchange messages but they do not normally exchange presence (i.e., via
presence subscription), the entities MAY choose to send directed presence to each other,

14



9 SECURITY CONSIDERATIONS

where the presence information SHOULD be annotated with the same capabilities information
as each entity sends in presence broadcasts. Until and unless capabilities information has
been received from another entity, an application MUST assume that the other entity does
not support capabilities.

8.4 Caps Optimization
A server that is managing an connected client’s presence session MAY optimize presence
notification traffic sent through the server by stripping off redundant capabilities annotations
(i.e., the <c/> element). Because of this, receivers of presence notifications MUST NOT expect
an annotation on every presence notification they receive. If the server performs caps opti-
mization, it MUST ensure that the first presence notification each subscriber receives contains
the annotation. The server MUST also ensure that any changes in the caps information (e.g.,
an updated ’ver’ attribute) are sent to all subscribers.
If a connected client determines that its server supports caps optimization, it MAY choose
to send the capabilities annotation only on the first presence packet, as well as whenever its
capabilities change.

9 Security Considerations
9.1 Mandatory-to-Implement Technologies
The SHA-1 hashing algorithm is mandatory to implement. All implementationsMUST support
SHA-1.
An implementationMAY support other algorithms. Any such algorithm SHOULD be registered
in the IANA Hash Function Textual Names Registry 24.
In the future, the XMPP Council 25 may, at its discretion, modify the mandatory-to-implement
hashing algorithm if it determines that SHA-1 has become practically vulnerable to Preimage
Attacks.

9.2 Preimage Attacks
As described in RFC 4270 26, protocols that use the output of hash functions such as MD5 or
SHA-1 can be vulnerable to collision attacks or preimage attacks or both. Because of how the
hash output is used in entity capabilities, the protocol will not be subject to collision attacks
even if the hash function used is found to be vulnerable to collision attacks. However, it is
24IANA registry of Hash Function Textual Names <http://www.iana.org/assignments/hash-function-text-n

ames>.
25The XMPP Council is a technical steering committee, authorized by the XSF Board of Directors and elected by

XSF members, that approves of new XMPP Extensions Protocols and oversees the XSF’s standards process. For
further information, see <https://xmpp.org/about/xmpp-standards-foundation#council>.

26RFC 4270: Attacks on Cryptographic Hashes in Internet Protocols <http://tools.ietf.org/html/rfc4270>.

15

http://www.iana.org/assignments/hash-function-text-names
https://xmpp.org/about/xmpp-standards-foundation#council
http://tools.ietf.org/html/rfc4270
http://www.iana.org/assignments/hash-function-text-names
http://www.iana.org/assignments/hash-function-text-names
https://xmpp.org/about/xmpp-standards-foundation##council
http://tools.ietf.org/html/rfc4270


9 SECURITY CONSIDERATIONS

possible that the protocol might become subject to preimage attacks if the hash function used
is found to be vulnerable to preimage attacks.
In theory, such a preimage attack would take one of the following forms:

• Given knowledge of a particular value V of the ’ver’ attribute, an attacker can find an
input message X such that hash(X) yields V (this is known as a ”first preimage attack”).

• Given knowledge of a particular value S used as the input message to the hash function,
an attacker can find a value S’ that yields V (this is known as a ”second preimage attack”).

In practice, a preimage attack would need to meet all of the following criteria in order to be
effective against the entity capabilities protocol:

1. The hashing algorithm used would need to be found not only theoretically but practi-
cally vulnerable to first or second preimage attacks (e.g., this is not yet true of the MD5
or SHA-1 algorithms, but may become true in the future).

2. An attacker would need to find an input message X or S’ that matches the hash V for a
particular value of V or S, whichmaynot be practical given that (a) the values of S used as
input to the hash function in entity capabilities are relatively short and (b) cryptanalysis
to date indicates that existing hash functionsmay not be vulnerable to preimage attacks
except in the case of relatively long input messages (on the order of 255 blocks).

3. The input message X or S’ would need to conform to the structure of S as specified un-
der Verification String, including the order of service discovery identity or identities
followed by service discovery features, delimited by the ’<’ character and sorted using
”i;octet” collation.

4. The input messsage X or S’ would need to make it seem as if a desirable feature (e.g.,
end-to-end encryption) is not supported by other entities that advertise the same hash
V even though the feature is indeed supported (i.e., the attacker would need to return a
set of service discovery identities and features that match X or S’, and have that set be
plausible for an entity that communicates viaXMPP), ormake it seemas if an undesirable
feature is supported even though the feature is not supported.

5. The attacker would need to propagate the hash V before some other entity with the true
input message S could broadcast presence with the relevant entity capabilities data and
provide the true service discovery response (thus the attackermight need to subvert the
development process of a particular software project or subvert the namespace issuance
process of the XMPP Registrar 27, or both).

27The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

16

https://xmpp.org/registrar/
https://xmpp.org/registrar/


9 SECURITY CONSIDERATIONS

It currently seems extremely unlikely that an attacker could meet all of the foregoing
conditions in the foreseeable future. However, the XMPP Council shall continue to monitor
the state of cryptanalysis regarding the mandatory-to-implement hash function as well
as the possibility that any vulnerabilities in that function might lead to practical threats
against the entity capabilities protocol. If and when it becomes practical (or even possible) to
launch effective preimage attacks against the entity capabilities protocol, the XMPP Council
shall consider updating this specification to change the mandatory-to-implement hashing
algorithm to a safer technology.
Note: If the four characters ’&’, ’l’, ’t’, ’;’ appear consecutively in any of the
factors of the verification string S (e.g., a service discovery identity of ’Some-
Client&lt;http://jabber.org/protocol/muc’) then that string of characters MUST be treated
as literally ’&lt;’ and MUST NOT be converted to the character ’<’, because completing such a
conversion would open the protocol to trivial attacks.

9.3 Caps Poisoning
Adherence to the method defined in the Verification String section of this document for
processing of the ’ver’ attribute is known to be vulnerable to certain cache poisoning attacks
that can not be fixed in a backwards compatible manner 28.
If the value of the ’ver’ attribute is a verification string as defined herein (i.e., if the ’ver’
attribute is not generated according to the Legacy Format), inclusion of the ’hash’ attribute
is REQUIRED. Knowing explicitly that the value of the ’ver’ attribute is a verification string
enables the recipient to avoid spurious notification of invalid or poisoned hashes.

9.4 Information Exposure
Use of entity capabilities might make it easier for an attacker to launch certain application-
specific attacks, since the attacker could more easily determine the type of client being
used as well as its capabilities. However, since most clients respond to Service Discovery
and Software Version requests without performing access control checks, there is no new
vulnerability. Entities that wish to restrict access to capabilities information SHOULD use
Privacy Lists (XEP-0016) 29 to define appropriate communications blocking (e.g., an entity
MAY choose to allow IQ requests only from ”trusted” entities, such as those with whom it has
a presence subscription of ”both”); note, however, that such restrictions may be incompatible
with the recommendation regarding Directed Presence.

28[Security] Trivial preimage attack against the entity capabilities protocol.
29XEP-0016: Privacy Lists <https://xmpp.org/extensions/xep-0016.html>.

17

https://xmpp.org/extensions/xep-0016.html
https://mail.jabber.org/pipermail/security/2009-July/000812.html
https://xmpp.org/extensions/xep-0016.html


12 XML SCHEMA

10 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
30.

11 XMPP Registrar Considerations
11.1 Protocol Namespaces
The XMPP Registrar 31 includes ”http://jabber.org/protocol/caps” in its registry of protocol
namespaces (see <https://xmpp.org/registrar/namespaces.html>).

11.2 Service Discovery Features
The XMPP Registrar includes ”http://jabber.org/protocol/caps” and
”http://jabber.org/protocol/caps#optimize” in its registry of service discovery features
(see <https://xmpp.org/registrar/disco-features.html>).

11.3 Stream Features
The XMPP Registrar includes ”http://jabber.org/protocol/caps” in its registry of stream
features (see <https://xmpp.org/registrar/stream-features.html>).

12 XML Schema

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’http: // jabber.org/protocol/caps’
xmlns=’http: // jabber.org/protocol/caps’
elementFormDefault=’qualified ’>

<xs:annotation >
<xs:documentation >

30The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

31The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

18

http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/registrar/namespaces.html
https://xmpp.org/registrar/disco-features.html
https://xmpp.org/registrar/stream-features.html
http://www.iana.org/
https://xmpp.org/registrar/


13 LEGACY FORMAT

The protocol documented by this schema is defined in
XEP -0115: http://www.xmpp.org/extensions/xep -0115. html

</xs:documentation >
</xs:annotation >

<xs:element name=’c’>
<xs:complexType >

<xs:simpleContent >
<xs:extension base=’empty ’>

<xs:attribute name=’ext’ type=’xs:NMTOKENS ’ use=’optional ’/>
<xs:attribute name=’hash’ type=’xs:NMTOKEN ’ use=’required ’/>
<xs:attribute name=’node’ type=’xs:string ’ use=’required ’/>
<xs:attribute name=’ver’ type=’xs:string ’ use=’required ’/>

</xs:extension >
</xs:simpleContent >

</xs:complexType >
</xs:element >

<xs:simpleType name=’empty ’>
<xs:restriction base=’xs:string ’>

<xs:enumeration value=’’/>
</xs:restriction >

</xs:simpleType >

</xs:schema >

13 Legacy Format
Before Version 1.4 of this specification, the ’ver’ attribute was generated differ-
ently, the ’ext’ attribute was used more extensively, and the ’hash’ attribute was ab-
sent. For historical purposes, Version 1.3 of this specification is archived at <http:
//www.xmpp.org/extensions/attic/xep-0115-1.3.html>. For backwards-compatibility
with the legacy format, the ’node’ attribute is REQUIRED and the ’ext’ attribute MAY be
included.
An application can determine if the legacy format is in use by checking for the presence of
the ’hash’ attribute, which is REQUIRED in the current format.
If a caps-processing application supports the legacy format, it SHOULD check the ’node’, ’ver’,
and ’ext’ combinations as specified in the archived version 1.3 of this specification, and MAY
cache the results.
If a caps-processing application does not support the legacy format, it SHOULD ignore the
’ver’ value entirely (since the value cannot be verified) and SHOULD NOT cache it, since the
application cannot validate the identity and features by checking the hash.

19

http://www.xmpp.org/extensions/attic/xep-0115-1.3.html
http://www.xmpp.org/extensions/attic/xep-0115-1.3.html


14 ACKNOWLEDGEMENTS

14 Acknowledgements
Thanks to Rachel Blackman, Dave Cridland, Richard Dobson, Olivier Goffart, Sergei Golovan,
Justin Karneges, Ralph Meijer, Ian Paterson, Kevin Smith, Tomasz Sterna, Michal Vaner, and
Matt Yacobucci for comments and suggestions.

20


	Introduction
	Motivation
	How It Works

	Assumptions
	Requirements
	Protocol
	Verification String
	Generation Method
	Simple Generation Example
	Complex Generation Example
	Processing Method

	Use Cases
	Advertising Capabilities
	Discovering Capabilities
	Stream Feature

	Determining Support
	Implementation Notes
	Hashing Algorithm Support
	Caching
	Directed Presence
	Caps Optimization

	Security Considerations
	Mandatory-to-Implement Technologies
	Preimage Attacks
	Caps Poisoning
	Information Exposure

	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	Service Discovery Features
	Stream Features

	XML Schema
	Legacy Format
	Acknowledgements

