
XEP-0124: Bidirectional-streams Over Synchronous HTTP (BOSH)

Ian Paterson
mailto:ian.paterson@clientside.co.uk

xmpp:ian@zoofy.com

Dave Smith
mailto:dizzyd@jabber.org
xmpp:dizzyd@jabber.org

Peter Saint-Andre
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org

https://stpeter.im/

Jack Moffitt
mailto:jack@chesspark.com
xmpp:jack@chesspark.com

Lance Stout
mailto:lance@andyet.com
xmpp:lance@lance.im

Winfried Tilanus
mailto:winfried@tilanus.com
xmpp:winfried@tilanus.com
https://www.tilanus.com

2021-05-22
Version 1.11.2

Status Type Short Name
Draft Standards Track bosh

This specification defines a transport protocol that emulates the semantics of a long-lived, bidirec-
tional TCP connection between two entities (such as a client and a server) by efficiently using multiple
synchronous HTTP request/response pairs without requiring the use of frequent polling or chunked re-
sponses.

mailto:ian.paterson@clientside.co.uk
xmpp:ian@zoofy.com
mailto:dizzyd@jabber.org
xmpp:dizzyd@jabber.org
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/
mailto:jack@chesspark.com
xmpp:jack@chesspark.com
mailto:lance@andyet.com
xmpp:lance@lance.im
mailto:winfried@tilanus.com
xmpp:winfried@tilanus.com
https://www.tilanus.com

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Requirements 2

3 Architectural Assumptions 3

4 The BOSH Technique 3

5 HTTP Overview 6

6 <body/> Wrapper Element 6

7 Initiating a BOSH Session 7
7.1 Session Creation Request . 7
7.2 Session Creation Response . 9

8 Sending and Receiving XML Payloads 11

9 Acknowledgements 14
9.1 Request Acknowledgements . 14
9.2 Response Acknowledgements . 14

10 Inactivity 15

11 Overactivity 17

12 Polling Sessions 18

13 Terminating the BOSH Session 19

14 Request IDs 19
14.1 Generation . 19
14.2 In-Order Message Forwarding . 20
14.3 Broken Connections . 20

15 Protecting Insecure Sessions 21
15.1 Applicability . 21
15.2 Introduction . 22
15.3 Generating the Key Sequence . 22
15.4 Use of Keys . 22
15.5 Switching to Another Key Sequence . 23

16 Multiple Streams 24
16.1 Introduction . 24
16.2 Discovery . 24

16.3 Adding Streams To A Session . 25
16.4 Transmitting Payloads . 26
16.5 Closing a Stream . 28
16.6 Error Conditions . 28

17 Error and Status Codes 29
17.1 HTTP Conditions . 30
17.2 Terminal Binding Conditions . 31
17.3 Recoverable Binding Conditions . 33
17.4 XML Payload Conditions . 34

18 Implementation Notes 34
18.1 HTTP Pipelining . 34

19 Security Considerations 34
19.1 Connection Between Client and BOSH Service 34
19.2 Connection Between BOSH Service and Application 35
19.3 Unpredictable SID and RID . 35
19.4 Use of SHA-1 . 35

20 IANA Considerations 35

21 XMPP Registrar Considerations 36
21.1 Protocol Namespaces . 36

22 XML Schema 36

23 Acknowledgements 38

1 INTRODUCTION

1 Introduction
The Transmission Control Protocol (TCP; RFC 793 1) is often used to establish a stream-
oriented connection between two entities. Such connections can often be long-lived to enable
an interactive ”session” between the entities. However, sometimes the nature of the device or
network can prevent an application frommaintaining a long-lived TCP connection to a server
or peer. In this case, it is desirable to use an alternative connection method that emulates the
behavior of a long-lived TCP connection using a sequenced series of requests and responses
that are exchanged over short-lived connections. The appropriate request-response seman-
tics are widely available via the Hypertext Transfer Protocol (HTTP) as specified in RFC 1945 2

and RFC 2616 3.
BOSH, the technology defined in this specification, essentially provides a ”drop-in” alternative
to a long-lived, bidirectional TCP connection. It is a mature, full-featured technology that has
been widely implemented and deployed since 2004. To our knowledge it was the first of many
similar technologies, which now include the Comet methodology formalized in the Bayeux
Protocol 4 as well as WebSocket RFC 6455 5 and Reverse HTTP 6.
BOSH is designed to transport any data efficiently andwithminimal latency in both directions.
For applications that require both ”push” and ”pull” semantics, BOSH is significantly more
bandwidth-efficient and responsive than most other bidirectional HTTP-based transport
protocols and the techniques now commonly known as ”Ajax”. BOSH achieves this effi-
ciency and low latency by using so-called ”long polling” with multiple synchronous HTTP
request/response pairs. Furthermore, BOSH can address the needs of constrained clients by
employing fully-compliant HTTP 1.0 without the need for ”cookies” (see RFC 2965 7) 8 or even
access to HTTP headers.
BOSH was originally developed in the Jabber/XMPP community as a replacement for an even
earlier HTTP-based technology called Jabber HTTP Polling (XEP-0025) 9. Although BOSH
assumes that the ”payload” of HTTP requests and responses will be XML, the payload formats
are not limited to XMPP stanzas (see XMPP Core 10) and could contain a mixture of elements
qualified by namespaces defined by different protocols (e.g., both XMPP and JSON). BOSH
connection managers are generally not required to understand anything about the XML
content that they transport beyond perhaps ensuring that each XML payload is qualified by
the correct namespace.
Note: XMPP Over BOSH (XEP-0206) 11 documents some XMPP-specific extensions of this

1RFC 793: Transmission Control Protocol <http://tools.ietf.org/html/rfc0793>.
2RFC 1945: Hypertext Transfer Protocol -- HTTP/1.0 <http://tools.ietf.org/html/rfc1945>.
3RFC 2616: Hypertext Transport Protocol -- HTTP/1.1 <http://tools.ietf.org/html/rfc2616>.
4Bayeux Protocol <http://svn.cometd.org/trunk/bayeux/bayeux.html>.
5RFC 6455: The WebSocket Protocol <http://tools.ietf.org/html/rfc6455>.
6Reverse HTTP <http://tools.ietf.org/html/draft-lentczner-rhttp>.
7RFC 2965: HTTP State Management Mechanism <http://tools.ietf.org/html/rfc2965>.
8Requiring cookies is sub-optimal because several significant computing platforms provide only limited access to
underlying HTTP requests/responses; worse, some platforms hide or remove cookie-related headers.

9XEP-0025: Jabber HTTP Polling <https://xmpp.org/extensions/xep-0025.html>.
10RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
11XEP-0206: XMPP Over BOSH <https://xmpp.org/extensions/xep-0206.html>.

1

http://tools.ietf.org/html/rfc0793
http://tools.ietf.org/html/rfc1945
http://tools.ietf.org/html/rfc2616
http://svn.cometd.org/trunk/bayeux/bayeux.html
http://svn.cometd.org/trunk/bayeux/bayeux.html
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/draft-lentczner-rhttp
http://tools.ietf.org/html/rfc2965
https://xmpp.org/extensions/xep-0025.html
http://tools.ietf.org/html/rfc6120
https://xmpp.org/extensions/xep-0206.html
http://tools.ietf.org/html/rfc0793
http://tools.ietf.org/html/rfc1945
http://tools.ietf.org/html/rfc2616
http://svn.cometd.org/trunk/bayeux/bayeux.html
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/draft-lentczner-rhttp
http://tools.ietf.org/html/rfc2965
https://xmpp.org/extensions/xep-0025.html
http://tools.ietf.org/html/rfc6120
https://xmpp.org/extensions/xep-0206.html

2 REQUIREMENTS

protocol that were formerly included in this document.

2 Requirements
The following design requirements reflect the need to offer performance as close as possible
to a standard TCP connection.

1. Compatible with constrained runtime environments* (e.g., mobile and browser-based
clients).

2. Compatible with proxies that buffer partial HTTP responses.

3. Efficient through proxies that limit the duration of HTTP responses.

4. Fully compatible with HTTP/1.0.

5. Compatible with restricted network connections (e.g., firewalls, proxies, and gateways).

6. Fault tolerant (e.g., session recovers after an underlying TCP connection breaks at any
stage during an HTTP request).

7. Extensible.

8. Consume significantly less bandwidth than polling-based protocols.

9. Significantly more responsive (lower latency) than polling-based protocols.

10. Support for polling (for clients that are limited to a single HTTP connection at a time).

11. In-order delivery of data.

12. Guard against unauthorized users injecting HTTP requests into a session.

13. Protect against denial of service attacks.

14. Multiplexing of data streams.

*Note: Compatibility with constrained runtime environments implies the following restric-
tions:

1. Clients are not required to have programmatic access to the headers of each HTTP re-
quest and response (e.g., cookies or status codes).

2. The body of each HTTP request and response is parsable XMLwith a single root element.

3. Clients can specify the Content-Type of the HTTP responses they receive.

2

4 THE BOSH TECHNIQUE

3 Architectural Assumptions
This document assumes that most implementations will utilize a specialized connection
manager (”CM”) to handle HTTP connections rather than the native connection type for the
relevant application (e.g., TCP connections in XMPP). Effectively, such a connection manager
is a specialized HTTP server that translates between the HTTP requests and responses defined
herein and the data streams (or API) implemented by the server with which it communi-
cates, thus enabling a client to connect to a server via HTTP on port 80 or 443 instead of an
application-specific port. We can illustrate this graphically as follows:

Server
|
| [unwrapped data streams]
|

HTTP CM
|
| [HTTP + <body/> wrapper]
|

Client

This specification covers communication only between a client and the connection manager.
It does not cover communication between the connection manager and the server, since such
communications are implementation-specific (e.g., the server might natively support this
HTTP binding, in which case the connection manager will be a logical entity rather than a
physical entity; alternatively the connection manager might be an independent translating
proxy such that the server might believe it is talking directly to the client over TCP; or the
connection manager and the server might use a component protocol or an API defined by the
server implementation).
Furthermore, no aspect of this protocol limits its use to communication between a client
and a server. For example, it could be used for communication between a server and a peer
server if such communication can occur for the relevant application (e.g., in XMPP). However,
this document focuses exclusively on use of the transport by clients that cannot maintain
arbitrary persistent TCP connections with a server. We assume that servers and components
are under no such restrictions and thus would use the native connection transport for the
relevant application. (However, on some unreliable networks, BOSHmight enable more stable
communication between servers.)

4 The BOSH Technique
The technique employed by BOSH, which is sometimes called ”HTTP long polling”, reduces
latency and bandwidth consumption over other HTTP polling techniques. When the client
sends a request, the connection manager does not immediately send a response; instead it
holds the request open until it has data to actually send to the client (or an agreed-to length

3

4 THE BOSH TECHNIQUE

of inactivity has elapsed). The client then immediately sends a new request to the connection
manager, continuing the long polling loop.
If the connection manager does not have any data to send to the client after some agreed-to
length of time12, it sends a response with an empty <body/>. This serves a similar purpose to
whitespace keep-alives or XMPP Ping (XEP-0199) 13; it helps keep a socket connection active
which prevents some intermediaries (firewalls, proxies, etc) from silently dropping it, and
helps to detect breaks in a reasonable amount of time.
Where clients and connection managers support persistent connections (i.e. ”Connection:
keep-alive” from HTTP/1.0, and which is the default state for HTTP/1.1), these sockets remain
open for an extended length of time, awaiting the client’s next request. This reduces the
overhead of socket establishment, which can be very expensive if HTTP over Secure Sockets
Layer (SSL) is used.
If the client has data to send while a request is still open, it establishes a second socket
connection to the connection manager to send a new request. The connection manager
immediately responds to the previously held request (possibly with no data) and holds open
this new request. This results in the connections switching roles; the ”old” connection is
responded to and left awaiting new requests, while the ”new” connection is now used for the
long polling loop.
The following diagram illustrates this technique (possibly after XMPP session establishment)

(timeline running top -down)

first socket second socket
|

+-+ <-- empty body request
X
-
*
+-+

+-+ <-- empty body request
X
-
*

12This time is typically on the order of tens of seconds (e.g., 60), and is determined during session creation
13XEP-0199: XMPP Ping <https://xmpp.org/extensions/xep-0199.html>.

4

https://xmpp.org/extensions/xep-0199.html
https://xmpp.org/extensions/xep-0199.html

4 THE BOSH TECHNIQUE

+-+
|

+-+ <-- empty body request
|X| socket opened --> ===
|-| |
| | new message out --> +-+
|-| <-- empty body response |X|
|*| |-|
+-+ | |
empty body response -->	-
	*
+-+	
empty body request --> +-+	
	X
	-

+-+ <-- new message out | |
|X| empty body response --> |-|
|-| <-- new message in |*|
|*| +-+
+-+ |
| |

+-+ <-- empty body request |
X	
-	
	new message out --> +-+
-	<-- new message in
*	
+-+	
empty body response -->	-
	*
+-+	
empty body request --> +-+	
	X
	-
empty body response -->	-

5

6 <BODY/> WRAPPER ELEMENT

| |*|
| +-+
| |

5 HTTP Overview
The requirements of RFC 2616 14 MUST be met for both requests and responses. Additional
HTTP headers not specified herein MAY be included, but receivers SHOULD ignore any such
headers. Clients and connection managers MAY omit headers that are not mandated by RFC
2616 andwould otherwise be ignored (e.g. if the client has constrained bandwidth), but clients
are advised that network and proxy policies could block such requests.
All information is encoded in the body of standard HTTP POST requests and responses. Each
HTTP body contains a single <body/> wrapper which encapsulates the XML elements being
transferred (see <body/> Wrapper Element).
Clients MUST send all HTTP requests as POST requests in any way permitted by RFC 1945 15 or
RFC 2616. For example, clients can be expected to open more than one persistent connection,
or in some cases to open a new HTTP/1.0 connection to send each request. However, clients
and connection managers SHOULD NOT use Chunked Transfer Coding, since intermediaries
might buffer each partial HTTP request or response and only forward the full request or
response once it is available.
Clients MAY include an HTTP Accept-Encoding header in any request. If the connection
manager receives a request with an Accept-Encoding header, it MAY include an HTTP
Content-Encoding header in the response (indicating one of the encodings specified in the
request) and compress the response body accordingly.
The HTTP Content-Type header of all client requests SHOULD be ”text/xml; charset=utf-
8”. However, clients MAY specify another value if they are constrained to do so (e.g.,
”application/x-www-form-urlencoded” or ”text/plain”). The client and connection manager
SHOULD ignore all HTTP Content-Type headers they receive.

6 <body/> Wrapper Element
The body of each HTTP request and response contains a single <body/> wrapper element qual-
ified by the ’http://jabber.org/protocol/httpbind’ namespace. The content of the wrapper is
the data being transferred. The <body/> element and its content together MUST conform to
the specifications set out in XML 1.0 16. They SHOULD also conform to Namespaces in XML 17.
The content MUST NOT contain any of the following (all defined in XML 1.0):

14RFC 2616: Hypertext Transport Protocol -- HTTP/1.1 <http://tools.ietf.org/html/rfc2616>.
15RFC 1945: Hypertext Transfer Protocol -- HTTP/1.0 <http://tools.ietf.org/html/rfc1945>.
16Extensible Markup Language (XML) 1.0 (Fourth Edition) <http://www.w3.org/TR/REC-xml/>.
17Namespaces in XML <http://www.w3.org/TR/REC-xml-names/>.

6

http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc1945
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml-names/
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc1945
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml-names/

7 INITIATING A BOSH SESSION

• Partial XML elements

• XML comments

• XML processing instructions

• Internal or external DTD subsets

• Internal or external entity references (with the exception of predefined entities)

The <body/> wrapper MUST NOT contain any XML character data, although its child elements
MAY contain character data. The <body/> wrapperMUST contain zero or more complete XML
immediate child elements (called ”payloads” in this document, e.g., XMPP stanzas as defined
in RFC 6120 18 or elements containing XML character data that represents objects using the
JSON data interchange format as defined in RFC 4627 19). Each <body/> wrapper MAY contain
payloads qualified under a wide variety of different namespaces.
The <body/> element of every client request MUST possess a sequential request ID encapsu-
lated via the ’rid’ attribute; for details, refer to the Request IDs section of this document.

7 Initiating a BOSH Session
7.1 Session Creation Request
The first request from the client to the connection manager requests a new session.
The <body/> element of the first request SHOULD possess the following attributes (they
SHOULD NOT be included in any other requests except as specified under Adding Streams To
A Session):

• ’to’ -- This attribute specifies the target domain of the first stream.

• ’xml:lang’ -- This attribute (as defined in Section 2.12 of XML 1.0 20) specifies the default
language of anyhuman-readableXML character data sent or received during the session.

• ’ver’ -- This attribute specifies the highest version of the BOSH protocol that the client
supports. The numbering scheme is ”<major>.<minor>” (where the minor number MAY
be incremented higher than a single digit, so it MUST be treated as a separate integer).

18RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
19RFC 4627: The application/jsonMedia Type for JavaScript Object Notation (JSON) <http://tools.ietf.org/htm

l/rfc4627>.
20Extensible Markup Language (XML) 1.0 (Fourth Edition) <http://www.w3.org/TR/REC-xml/>.

7

http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc4627
http://www.w3.org/TR/REC-xml/
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://www.w3.org/TR/REC-xml/

7 INITIATING A BOSH SESSION

Note: The ’ver’ attribute should not be confused with the version of any protocol being
transported.

• ’wait’ -- This attribute specifies the longest time (in seconds) that the connection man-
ager is allowed towait before responding to any request during the session. This enables
the client to limit the delay before it discovers any network failure, and to prevent its
HTTP/TCP connection from expiring due to inactivity.

• ’hold’ -- This attribute specifies the maximum number of requests the connection man-
ager is allowed to keep waiting at any one time during the session. If the client is able to
reuse connections, this value SHOULD be set to ”1”.

Note: Clients that only support Polling Sessions MAY prevent the connection manager from
waiting by setting ’wait’ or ’hold’ to ”0”. However, polling is NOT RECOMMENDED since the
associated increase in bandwidth consumption and the decrease in responsiveness are both
typically one or two orders of magnitude!
A connection manager MAY be configured to enable sessions with more than one server in
different domains. When requesting a session with such a ”proxy” connection manager, a
client SHOULD include a ’route’ attribute that specifies the protocol, hostname, and port
of the server with which it wants to communicate, formatted as ”proto:host:port” (e.g.,
”xmpp:example.com:9999”). 21 A connection manager that is configured to work only with a
single server (or only with a defined list of domains and the associated list of hostnames and
ports that are serving those domains) MAY ignore the ’route’ attribute. (Note that the ’to’
attribute specifies the domain being served, not the hostname of the machine that is serving
the domain.)
The <body/> element of the first request MAY also possess a ’from’ attribute, which specifies
the originator of the first stream and which enables the connection manager to forward the
originating entity’s identity to the application server (e.g., the JabberID of an entity that is
connecting to an XMPP server; see XMPP Over BOSH (XEP-0206) 23).
A client MAY include an ’ack’ attribute (set to ”1”) to indicate that it will be using acknowl-
edgements throughout the session and that the absence of an ’ack’ attribute in any request is
meaningful (see Acknowledgements).
Some clients are constrained to only accept HTTP responses with specific Content-Types (e.g.,
”text/html”). The <body/> element of the first request MAY possess a ’content’ attribute.
This specifies the value of the HTTP Content-Type header that MUST appear in all the
connection manager’s responses during the session. If the client request does not possess a
’content’ attribute, then the HTTP Content-Type header of responses MUST be ”text/xml;
charset=utf-8”.

Listing 1: Requesting a BOSH session

21Although the syntax of the ’route’ attribute bears a superficial resemblance to a URI or IRI, it is not a URI/IRI
and MUST NOT be processed in accordance with the rules specified in RFC 3986 22, RFC 3987, or (for XMPP) RFC
5122.

23XEP-0206: XMPP Over BOSH <https://xmpp.org/extensions/xep-0206.html>.

8

https://xmpp.org/extensions/xep-0206.html
http://tools.ietf.org/html/rfc3986
https://xmpp.org/extensions/xep-0206.html

7 INITIATING A BOSH SESSION

POST /webclient HTTP /1.1
Host: httpcm.example.com
Accept -Encoding: gzip , deflate
Content -Type: text/xml; charset=utf -8
Content -Length: 225

<body content=’text/xml;␣charset=utf -8’
from=’user@example.com’
hold=’1’
rid=’1573741820 ’
to=’example.com’
route=’xmpp:example.com:9999 ’
ver=’1.6’
wait=’60’
ack=’1’
xml:lang=’en’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

Note: All requests after the first one MUST include a valid ’sid’ attribute (provided by the
connection manager in the Session Creation Response). The initialization request is unique in
that the <body/> element MUST NOT possess a ’sid’ attribute.

7.2 Session Creation Response
After receiving a new session request, the connection manager MUST generate an opaque,
unpredictable session identifier (or SID). The SID MUST be unique within the context of the
connection manager application. The <body/> element of the connection manager’s response
to the client’s session creation request MUST possess the following attributes (they SHOULD
NOT be included in any other responses):

• ’sid’ -- This attribute specifies the SID

• ’wait’ -- This is the longest time (in seconds) that the connection manager will wait be-
fore responding to any request during the session. The time MUST be less than or equal
to the value specified in the session request.

• ’requests’ -- This attribute enables the connection manager to limit the number of si-
multaneous requests the clientmakes (see Overactivity and Polling Sessions). This value
must be larger than the ’hold’ attribute value specified in the session request. The REC-
OMMENDED value is one more than the value of the ’hold’ attribute specified in the ses-
sion request.

The <body/> element SHOULD also include the following attributes (they SHOULD NOT be
included in any other responses):

9

7 INITIATING A BOSH SESSION

• ’ver’ -- This attribute specifies the highest version of the BOSH protocol that the connec-
tion manager supports, or the version specified by the client in its request, whichever is
lower.

• ’polling’ -- This attribute specifies the shortest allowable polling interval (in seconds).
This enables the client to not send empty request elements more often than desired (see
Polling Sessions and Overactivity).

• ’inactivity’ -- This attribute specifies the longest allowable inactivity period (in sec-
onds). This enables the client to ensure that the periods with no requests pending are
never too long (see Polling Sessions and Inactivity).

• ’hold’ -- This attribute informs the client about the maximum number of requests the
connection manager will keep waiting at any one time during the session. This value
MUST NOT be greater than the value specified by the client in the session request.

• ’from’ -- This attribute communicates the identity of the backend server to which the
client is attempting to connect.

The connection manager MAY include an ’accept’ attribute in the session creation response
element, to specify a comma-separated list of the content encodings it can decompress. After
receiving a session creation response with an ’accept’ attribute, clients MAY include an HTTP
Content-Encoding header in subsequent requests (indicating one of the encodings specified
in the ’accept’ attribute) and compress the bodies of the requests accordingly.
A connection manager MAY include an ’ack’ attribute (set to the value of the ’rid’ attribute of
the session creation request) to indicate that it will be using acknowledgements throughout
the session and that the absence of an ’ack’ attribute in any response is meaningful (see
Acknowledgements).
If the connection manager supports session pausing (see Inactivity) then it SHOULD advertise
that to the client by including a ’maxpause’ attribute in the session creation response
element. The value of the attribute indicates the maximum length of a temporary session
pause (in seconds) that a client can request.
For both requests and responses, the <body/> element and its content SHOULD be UTF-8
encoded. If the HTTP Content-Type header of a request/response specifies a character
encoding other than UTF-8, then the connection manager MAY convert between UTF-8 and
the other character encoding. However, even in this case, it is OPTIONAL for the connection
manager to convert between encodings. The connection manager MAY inform the client
which encodings it can convert by setting the optional ’charsets’ attribute in the session
creation response element to a space-separated list of encodings. 24

24Each character set name (or character encoding name -- we use the terms interchangeably) SHOULD be of type
NMTOKEN, where the names are separated by thewhite space character #x20, resulting in a tokenized attribute
type of NMTOKENS (see Section 3.3.1 of XML 1.0 25). Strictly speaking, the Character Sets registry maintained
by the Internet AssignedNumbers Authority (see <http://www.iana.org/assignments/character-sets>) al-
lows a character set name to contain any printable US-ASCII character, which might include characters not al-
lowed by the NMTOKEN construction of XML 1.0; however, the only existing character set namewhich includes
such a character is ”NF_Z_62-010_(1973)”.

10

http://www.w3.org/TR/REC-xml/
http://www.iana.org/assignments/character-sets

8 SENDING AND RECEIVING XML PAYLOADS

As soon as the connection manager has established a connection to the server and discovered
its identity, it MAY forward the identity to the client by including a ’from’ attribute in a
response, either in its session creation response, or (if it has not received the identity from
the server by that time) in any subsequent response to the client.

Listing 2: Session creation response
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 243

<body wait=’60’
inactivity=’30’
polling=’5’
requests=’2’
hold=’1’
ack=’1573741820 ’
accept=’deflate ,gzip’
maxpause=’120’
sid=’SomeSID ’
charsets=’ISO_8859 -1␣ISO -2022-JP’
ver=’1.6’
from=’example.com’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

Listing 3: Subsequent response with ’from’ attribute
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 71

<body from=’example.com’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

8 Sending and Receiving XML Payloads
After the client has successfully completed all required preconditions, it can send and receive
XML payloads via the HTTP binding.

Listing 4: Transmitting payloads
POST /webclient HTTP /1.1
Host: httpcm.example.com
Accept -Encoding: gzip , deflate
Content -Type: text/xml; charset=utf -8
Content -Length: 279

11

8 SENDING AND RECEIVING XML PAYLOADS

<body rid=’1249243562 ’
sid=’SomeSID ’
xmlns=’http: // jabber.org/protocol/httpbind ’>

<message to=’contact@example.com’
xmlns=’jabber:client ’>

<body>Good morning!</body>
</message >
<message to=’friend@example.com’

xmlns=’jabber:client ’>
<body>Hey , what's up?</body>

</message >
</body>

Upon receipt of a request, the connection manager SHOULD forward the content of the
<body/> element to the server as soon as possible. In any case it MUST forward the content
from different requests in the order specified by their ’rid’ attributes.
The connection manager MUST also return an HTTP 200 OK response with a <body/> element
to the client. Note: This does not indicate that the payloads have been successfully delivered
to the application server.
It is RECOMMENDED that the connection manager not return an HTTP result until a payload
has arrived from the application server for delivery to the client. However, the connection
manager SHOULD NOT wait longer than the time specified by the client in the ’wait’ attribute
of its Session Creation Request, and it SHOULD NOT keep more HTTP requests waiting at a
time than the number specified in the ’hold’ attribute of the session creation request. In any
case it MUST respond to requests in the order specified by their ’rid’ attributes.
If there are no payloads waiting or ready to be delivered within the waiting period, then the
connection manager SHOULD include an empty <body/> element in the HTTP result:

Listing 5: Empty response
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 52

<body xmlns=’http: // jabber.org/protocol/httpbind ’/>

If the connection manager has received one or more payloads from the application server
for delivery to the client, then it SHOULD return the payloads in the body of its response as
soon as possible after receiving them from the server. The example below includes payloads
qualified by different namespaces:

Listing 6: Response with queued stanza
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 917

12

8 SENDING AND RECEIVING XML PAYLOADS

<body xmlns=’http: // jabber.org/protocol/httpbind ’
xmlns:json=’http: //json.org/’>

<message from=’contact@example.com’
to=’user@example.com’
xmlns=’jabber:client ’>

<body>Good morning to you!</body>
</message >
<message from=’friend@example.com’

to=’user@example.com’
xmlns=’jabber:client ’>

<body>Not much , how about with you?</body>
</message >
<json:json >
[

{
”precision”: ”zip”,
”Latitude”: 37.7668 ,
”Longitude”: -122.3959 ,
”Address”: ””,
”City”: ”SAN␣FRANCISCO”,
”State”: ”CA”,
”Zip”: ”94107”,
”Country”: ”US”

},
{

”precision”: ”zip”,
”Latitude”: 37.371991 ,
”Longitude”: -122.026020 ,
”Address”: ””,
”City”: ”SUNNYVALE”,
”State”: ”CA”,
”Zip”: ”94085”,
”Country”: ”US”

}
]
</json:json >

</body>

The client MAY poll the connection manager for incoming payloads by sending an empty
<body/> element.

Listing 7: Requesting XML Payloads
POST /webclient HTTP /1.1
Host: httpcm.example.com
Accept -Encoding: gzip , deflate
Content -Type: text/xml; charset=utf -8
Content -Length: 83

13

9 ACKNOWLEDGEMENTS

<body rid=’1249243563 ’
sid=’SomeSID ’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

The connection manager MUST wait and respond in the same way as it does after receiving
payloads from the client.

9 Acknowledgements
9.1 Request Acknowledgements
When responding to a request that it has been holding, if the connection manager finds it has
already received another request with a higher ’rid’ attribute (typically while it was holding
the first request), then it MAY acknowledge the reception to the client. The connection
manager MAY set the ’ack’ attribute of any response to the value of the highest ’rid’ attribute
it has received in the case where it has also received all requests with lower ’rid’ values.

Listing 8: Response with request acknowledgement
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 69

<body ack=’1249243564 ’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

If the connection manager will be including ’ack’ attributes on responses during a session,
then it MUST include an ’ack’ attribute in its session creation response, and set the ’ack’
attribute of responses throughout the session. The only exception is that, after its session
creation response, the connection manager SHOULD NOT include an ’ack’ attribute in any
response if the value would be the ’rid’ of the request being responded to.
If the connection manager is permitted to hold more than one request at a time, then
the reception of a lower-than-expected ’ack’ value from the connection manager (or the
unexpected absence of an ’ack’ attribute) can give the client an early warning that a network
failure might have occurred (e.g., if the client believes the connection manager should have
received another request by the time it responded).

9.2 Response Acknowledgements
The client MAY similarly inform the connection manager about the responses it has received
by setting the ’ack’ attribute of any request to the value of the highest ’rid’ of a request for
which it has already received a response in the case where it has also received all responses
associated with lower ’rid’ values. If the client will be including ’ack’ attributes on requests
during a session, then it MUST include an ’ack’ attribute (set to ’1’) in its session creation

14

10 INACTIVITY

request, and set the ’ack’ attribute of requests throughout the session. The only exception is
that, after its session creation request, the client SHOULD NOT include an ’ack’ attribute in
any request if it has received responses to all its previous requests.

Listing 9: Request with response acknowledgement
POST /webclient HTTP /1.1
Host: httpcm.example.com
Accept -Encoding: gzip , deflate
Content -Type: text/xml; charset=utf -8
Content -Length: 100

<body rid=’1249243566 ’
sid=’SomeSID ’
ack=’1249243564 ’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

After receiving a request with an ’ack’ value less than the ’rid’ of the last request that it has
already responded to, the connection manager MAY inform the client of the situation by
sending its next response immediately instead of waiting until it has payloads to send to the
client (e.g., if some time has passed since it responded). In this case it SHOULD include a
’report’ attribute set to one greater than the ’ack’ attribute it received from the client, and a
’time’ attribute set to the number of milliseconds since it sent the response associated with
the ’report’ attribute.

Listing 10: Response with report
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 83

<body report=’1249243565 ’
time=’852’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

Upon reception of a response with ’report’ and ’time’ attributes, if the client has still not
received the response associated with the request identifier specified by the ’report’ attribute,
then it MAY choose to resend the request associated with the missing response (see Broken
Connections).

10 Inactivity
After receiving a response from the connection manager, if none of the client’s requests are
still being held by the connection manager (and if the session is not a Polling Session), the
client SHOULD make a new request as soon as possible. In any case, if no requests are being

15

10 INACTIVITY

held, the client MUST make a new request before the maximum inactivity period has expired.
The length of this period (in seconds) is specified by the ’inactivity’ attribute in the session
creation response.
If the connection manager has responded to all the requests it has received within a session
and the time since its last response is longer than the maximum inactivity period, then
it SHOULD assume the client has been disconnected and terminate the session without
informing the client. If the client subsequently makes another request, then the connection
manager SHOULD respond as if the session does not exist.
If the connectionmanager did not specify amaximum inactivity period in the session creation
response, then it SHOULD allow the client to be inactive for as long as it chooses.
If the session is not a polling session then the connectionmanager SHOULD specify a relatively
short inactivity period to ensure that disconnections are discovered as quickly as possible.
The RECOMMENDED time would be a little more than the number of seconds for a comfortable
network round trip between the connection manager and the client under difficult network
conditions (since the client can be expected to make a new request immediately -- see above).
If a client encounters an exceptional temporary situation during which it will be unable to
send requests to the connection manager for a period of time greater than the maximum
inactivity period (e.g., while a runtime environment changes from one web page to another),
and if the connection manager included a ’maxpause’ attribute in its Session Creation Re-
sponse, then the client MAY request a temporary increase to the maximum inactivity period
by including a ’pause’ attribute in a request. Note: If the connection manager did not specify
a ’maxpause’ attribute at the start of the session then the client MUST NOT send a ’pause’
attribute during the session.

Listing 11: Requesting a Session Pause
POST /webclient HTTP /1.1
Host: httpcm.example.com
Accept -Encoding: gzip , deflate
Content -Type: text/xml; charset=utf -8
Content -Length: 94

<body rid=’1249243564 ’
sid=’SomeSID ’
pause=’60’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

Upon reception of a session pause request, if the requested period is not greater than the
maximum permitted time, then the connection manager SHOULD respond immediately to
all pending requests (including the pause request) and temporarily increase the maximum
inactivity period to the requested time. Note: The response to the pause request MUST NOT
contain any payloads.
Note: If the client simply wants the connectionmanager to return all the requests it is holding
then it MAY set the value of the ’pause’ attribute to be the value of the ’inactivity’ attribute in
the connection manager’s session creation response. (If the client believes it is in danger of

16

11 OVERACTIVITY

becoming disconnected indefinitely then it MAY even request a temporary reduction of the
maximum inactivity period by specifying a ’pause’ value less than the ’inactivity’ value, thus
enabling the connection manager to discover any subsequent disconnection more quickly.)
The connection manager SHOULD set the maximum inactivity period back to normal upon
reception of the next request from the client (assuming the connection manager has not
already terminated the session).

11 Overactivity
The client SHOULD NOT make more simultaneous requests than specified by the ’requests’
attribute in the connection manager’s Session Creation Response. However the client MAY
make one additional request if it is to pause or terminate a session.
If during any period the client sends a sequence of new requests (i.e. requests with incre-
mented rid attributes, not repeat requests) longer than the number specified by the ’requests’
attribute, and if the connection manager has not yet responded to any of the requests,
and if the last request did not include either a ’pause’ attribute or a ’type’ attribute set
to ”terminate”, then the connection manager SHOULD consider that the client is making
too many simultaneous requests, and terminate the HTTP session with a ’policy-violation’
terminal binding error to the client. Note: This behavior applies to equally to normal and
polling sessions.

Listing 12: Too many simultaneous requests response
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 98

<body type=’terminate ’
condition=’policy -violation ’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

Note: If the connection manager did not specify a ’requests’ attribute in the session creation
response, then it MUST allow the client to send as many simultaneous requests as it chooses.
If during any period the client sends a sequence of new requests equal in length to the number
specified by the ’requests’ attribute, and if the connection manager has not yet responded
to any of the requests, and if the last request was empty and did not include either a ’pause’
attribute or a ’type’ attribute set to ”terminate”, and if the last two requests arrived within a
period shorter than the number of seconds specified by the ’polling’ attribute in the session
creation response, then the connection manager SHOULD consider that the client is making
requests more frequently than it was permitted and terminate the HTTP session and return a
’policy-violation’ terminal binding error to the client. Note: the behavior for Polling Sessions
is slightly different.

17

12 POLLING SESSIONS

Listing 13: Too frequent requests response
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 98

<body type=’terminate ’
condition=’policy -violation ’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

Note: If the connection manager did not specify a ’polling’ attribute in the session creation
response, then it MUST allow the client to send requests as frequently as it chooses.

12 Polling Sessions
It is not always possible for a constrained client to open more than one HTTP connection
with the connection manager at a time. In this case the client SHOULD inform the connection
manager by setting the values of the ’wait’ and/or ’hold’ attributes in its session creation
request to ”0”, and then ”poll” the connection manager at regular intervals throughout the
session for payloads it might have received from the server. Note: Even if the client does
not request a polling session, the connection manager MAY require a client to use polling
by setting the ’requests’ attribute (which specifies the number of simultaneous requests the
client can make) of its Session Creation Response to ”1”, however this is NOT RECOMMENDED.
If a session will use polling, the connection manager SHOULD specify a higher than normal
value for the ’inactivity’ attribute (see Inactivity) in its session creation response. The increase
SHOULD be greater than the value it specifies for the ’polling’ attribute.
If the client sends two consecutive empty new requests (i.e. requests with incremented
rid attributes, not repeat requests) within a period shorter than the number of seconds
specified by the ’polling’ attribute (the shortest allowable polling interval) in the session
creation response, and if the connection manager’s response to the first request contained
no payloads, then upon reception of the second request the connection manager SHOULD
terminate the HTTP session and return a ’policy-violation’ terminal binding error to the client.

Listing 14: Too frequent polling response
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 98

<body type=’terminate ’
condition=’policy -violation ’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

Note: If the connection manager did not specify a ’polling’ attribute in the session creation
response, then it MUST allow the client to poll as frequently as it chooses.

18

14 REQUEST IDS

13 Terminating the BOSH Session
At any time, the client MAY gracefully terminate the session by sending a <body/> element
with a ’type’ attribute set to ”terminate”. The termination request MAY include one or more
payloads that the connection manager MUST forward to the server to ensure graceful logoff.
The payload in the termination request SHOULD NOT need any response from the server.

Listing 15: Session termination by client
POST /webclient HTTP /1.1
Host: httpcm.example.com
Accept -Encoding: gzip , deflate
Content -Type: text/xml; charset=utf -8
Content -Length: 158

<body rid=’1249243565 ’
sid=’SomeSID ’
type=’terminate ’
xmlns=’http: // jabber.org/protocol/httpbind ’>

<presence type=’unavailable ’
xmlns=’jabber:client ’/>

</body>

The connection manager SHOULD respond to this request with an HTTP 200 OK containing
an empty <body/> element. The connection manager SHOULD acknowledge the session
termination on the oldest connection with a HTTP 200 OK containing a <body/> element
of the type ’terminate’. On all other open connections, the connection manager SHOULD
respond with an HTTP 200 OK containing an empty <body/> element.

Listing 16: Connection manager acknowledges termination
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 69

<body type=’terminate ’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

Upon receiving the response, the client MUST consider the HTTP session to have been
terminated.

14 Request IDs
14.1 Generation
The client MUST generate a large, random, positive integer for the initial ’rid’ (see Secu-
rity Considerations) and then increment that value by one for each subsequent request.

19

14 REQUEST IDS

The client MUST take care to choose an initial ’rid’ that will never be incremented above
9007199254740991 26 within the session. In practice, a sessionwould have to be extraordinarily
long (or involve the exchange of an extraordinary number of packets) to exceed the defined
limit.

14.2 In-Order Message Forwarding
When a client makes simultaneous requests, the connection manager might receive them out
of order. The connection manager MUST forward the payloads to the server and respond
to the client requests in the order specified by the ’rid’ attributes. The client MUST process
responses received from the connection manager in the order the requests were made.
The connection manager SHOULD expect the ’rid’ attribute to be within a window of values
greater than the ’rid’ of the previous request. The size of the window is equal to the maximum
number of simultaneous requests allowed by the connection manager. If it receives a request
with a ’rid’ greater than the values in the window, then the connection manager MUST
terminate the session with an error:

Listing 17: Unexpected rid error
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 96

<body type=’terminate ’
condition=’item -not -found ’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

14.3 Broken Connections
Unreliable network communications or client constraints can result in broken connections.
The connection manager SHOULD remember the ’rid’ and the associated HTTP response body
of the client’s most recent requests which were not session pause requests (see Inactivity)
and which did not result in an HTTP or binding error. The number of responses to non-pause
requests kept in the buffer SHOULD be either the same as the maximum number of simulta-
neous requests allowed by the connection manager or, if Acknowledgements are being used,
the number of responses that have not yet been acknowledged.
If the network connection is broken or closed before the client receives a response to a
request from the connection manager, then the client MAY resend an exact copy of the
original request. Whenever the connection manager receives a request with a ’rid’ that it has
already received, it SHOULD return an HTTP 200 (OK) response that includes the buffered copy
of the original XML response to the client (i.e., a <body/> wrapper possessing appropriate

269007199254740991 is 253-1. Some weakly typed languages use IEEE Standard 754 Doubles to represent all num-
bers. These Doubles cannot represent integers above 253 accurately.

20

15 PROTECTING INSECURE SESSIONS

attributes and optionally containing one or more XML payloads).
If the connection manager receives a request for a ’rid’ which has already been received
but to which it has not yet responded then it SHOULD respond immediately to the existing
request with a recoverable binding condition (see Recoverable Binding Conditions) and send
any future response to the latest request. There is a possibility that a client might subvert
polling frequency limits by deliberately sending requests for the same ’rid’ multiple times,
and so a connection manager implementation MAY choose to impose a limit to the frequency
or number of requests for the same ’rid’. If the client exceeds this limit then the connection
manager SHOULD terminate the HTTP session and return a ’policy-violation’ terminal binding
error to the client (see Terminal Binding Conditions).
If the original response is not available (e.g., it is no longer in the buffer), then the connection
manager MUST return an ’item-not-found’ terminal binding error:

Listing 18: Response not in buffer error
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 96

<body type=’terminate ’
condition=’item -not -found ’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

Note: The error is the same whether the ’rid’ is too large or too small. This makes it more
difficult for an attacker to discover an acceptable value.

15 Protecting Insecure Sessions
15.1 Applicability
The OPTIONAL key sequencing mechanism described here MAY be used if the client’s session
with the connection manager is not secure. The session SHOULD be considered secure only if
all client requests are made via SSL (or TLS) HTTP connections and the connection manager
generates an unpredictable session ID. If the session is secure, it is not necessary to use this
key sequencing mechanism.
Even if the session is not secure, the unpredictable session and request IDs specified in the
preceding sections of this document already provide a level of protection similar to that
provided by a connection bound to a single pair of persistent TCP/IP connections, and thus
provide sufficient protection against a ’blind’ attacker. However, in some circumstances, the
key sequencing mechanism defined below helps to protect against a more determined and
knowledgeable attacker.
It is important to recognize that the key sequencing mechanism defined below helps to
protect only against an attacker who is able to view the contents of all requests or responses
in an insecure session but who is not able to alter the contents of those requests (in this

21

15 PROTECTING INSECURE SESSIONS

case, the mechanism prevents the attacker from injecting HTTP requests into the session,
e.g., termination requests or responses). However, the key sequencing mechanism does not
provide any protection when the attacker is able to alter the contents of insecure requests or
responses.

15.2 Introduction
The HTTP requests of each session MAY be spread across a series of different socket connec-
tions. This would enable an unauthorized user that obtains the session ID and request ID of a
session to then use their own socket connection to inject <body/> request elements into the
session and receive the corresponding responses.
The key sequencing mechanism below protects against such attacks by enabling a connection
manager to detect <body/> request elements injected by a third party.

15.3 Generating the Key Sequence
Prior to requesting a new session, the client MUST select an unpredictable counter (”n”) and
an unpredictable value (”seed”). The client then processes the ”seed” through a cryptographic
hash and converts the resulting 160 bits to a hexadecimal string K(1). It does this ”n” times to
arrive at the initial key K(n). The hashing algorithmMUST be SHA-1 as defined in RFC 3174 27.

Listing 19: Creating the key sequence
K(1) = hex(SHA -1(seed))

K(2) = hex(SHA -1(K(1)))
...
K(n) = hex(SHA -1(K(n-1)))

Because case is not significant in hexadecimal encoding, key comparisons SHOULD be case
insensitive.

15.4 Use of Keys
The client MUST set the ’newkey’ attribute of the first request in the session to the value K(n).

Listing 20: Session Request with Initial Key
POST /webclient HTTP /1.1
Host: httpcm.example.com
Accept -Encoding: gzip , deflate
Content -Type: text/xml; charset=utf -8

27RFC 3174: US Secure Hash Algorithm 1 (SHA1) <http://tools.ietf.org/html/rfc3174>.

22

http://tools.ietf.org/html/rfc3174
http://tools.ietf.org/html/rfc3174

15 PROTECTING INSECURE SESSIONS

Content -Length: 203

<body content=’text/xml;␣charset=utf -8’
hold=’1’
rid=’1573741820 ’
to=’example.com’
wait=’60’
xml:lang=’en’
newkey=’ca393b51b682f61f98e7877d61146407f3d0a770 ’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

The client MUST set the ’key’ attribute of all subsequent requests to the value of the next key
in the generated sequence (decrementing from K(n-1) towards K(1) with each request sent).

Listing 21: Request with Key
POST /webclient HTTP /1.1
Host: httpcm.example.com
Accept -Encoding: gzip , deflate
Content -Type: text/xml; charset=utf -8
Content -Length: 130

<body rid=’1573741821 ’
sid=’SomeSID ’
key=’bfb06a6f113cd6fd3838ab9d300fdb4fe3da2f7d ’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

The connection manager MAY verify the key by calculating the SHA-1 hash of the key and
performing a case insensitive comparison of it to the ’newkey’ attribute of the previous
request (or the ’key’ attribute if the ’newkey’ attribute was not set). If the values do not match
(or if it receives a request without a ’key’ attribute and the ’newkey’ or ’key’ attribute of the
previous request was set), then the connection manager MUST NOT process the element,
MUST terminate the session, and MUST return an ’item-not-found’ terminal binding error.

Listing 22: Invalid Key Sequence Error
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 96

<body type=’terminate ’
condition=’item -not -found ’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

15.5 Switching to Another Key Sequence
A client SHOULD choose a high value for ”n” when generating the key sequence. However, if
the session lasts long enough that the client arrives at the last key in the sequence K(1) then

23

16 MULTIPLE STREAMS

the client MUST switch to a new key sequence.
The client MUST:

1. Choose new values for ”seed” and ”n”.

2. Generate a new key sequence using the algorithm defined above.

3. Set the ’key’ attribute of the request to the next value in the old sequence (i.e. K(1), the
last value).

4. Set the ’newkey’ attribute of the request to the value K(n) from the new sequence.

Listing 23: New Key Sequence
POST /webclient HTTP /1.1
Host: httpcm.example.com
Accept -Encoding: gzip , deflate
Content -Type: text/xml; charset=utf -8
Content -Length: 277

<body rid=’1573741822 ’
sid=’SomeSID ’
key=’6f825e81f4532b2c5fa2d12457d8a1f22e8f838e ’
newkey=’113 f58a37245ec9637266cf2fb6e48bfeaf7964e ’
xmlns=’http: // jabber.org/protocol/httpbind ’>

<message to=’contact@example.com’
xmlns=’jabber:client ’>

<body>I said ”Hi!”</body>
</message >

</body>

16 Multiple Streams
16.1 Introduction
The OPTIONAL feature described in this section enables multiple XML streams to be contained
within a single HTTP session. This feature allows for clients to connect using more than one
account at the same time. This feature also reduces network traffic for any client that needs
to establish parallel streams over HTTP.

16.2 Discovery
If a connection manager supports the multi-streams feature, it MUST include a ’stream’
attribute in its Session Creation Response. If a client does not receive the ’stream’ attribute

24

16 MULTIPLE STREAMS

then it MUST assume that the connection manager does not support the feature. 28

The ’stream’ attribute identifies the first stream to be opened for the session. The value of
each ’stream’ attribute MUST be an opaque and unpredictable name that is unique within the
context of the connection manager application.

Listing 24: Session creation response with stream name
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 251

<body wait=’60’
inactivity=’30’
polling=’5’
requests=’2’
hold=’1’
accept=’deflate ,gzip’
stream=’firstStreamName ’
maxpause=’120’
sid=’SomeSID ’
charsets=’ISO_8859 -1␣ISO -2022-JP’
ver=’1.6’
from=’example.com’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

16.3 Adding Streams To A Session
If the connection manager included a ’stream’ attribute in its session creation response then
the client MAY ask it to open another stream at any time by sending it an empty <body/>
element with a ’to’ attribute. The request MUST include valid ’sid’ and ’rid’ 29 attributes, and
SHOULD also include an ’xml:lang’ attribute. The request MAY include either ’route’ or ’from’
attributes (see Session Creation Request), but it SHOULD NOT include ’ver’, ’content’, ’hold’ or
’wait’ attributes (since a new session is not being created).

Listing 25: Requesting another stream
POST /webclient HTTP /1.1
Host: httpcm.example.com
Accept -Encoding: gzip , deflate
Content -Type: text/xml; charset=utf -8
Content -Length: 144

<body sid=’SomeSID ’

28Therefore a client and a connection manager will be compatible even if one or the other offers no support for
multi-stream sessions.

29The ’rid’ attribute is always incremented normally without reference to any ’stream’ attribute.

25

16 MULTIPLE STREAMS

rid=’1573741820 ’
to=’example.com’
route=’xmpp:example.com:9999 ’
xml:lang=’en’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

If the connection manager did not indicate its support for multiple streams at the start of the
session, then it MUST ignore the extra attributes and treat the request as a normal empty
request for payloads (see Sending and Receiving XML Payloads). 30 Otherwise it MUST open a
new stream with the specified server (see Session Creation Response), generate a new stream
name, and respond to the client with the name. The response MAY also include the ’from’
attribute, but it SHOULD NOT include ’sid’, ’requests’, ’polling’, ’hold’, ’inactivity’, ’maxpause’,
’accept’, ’charsets’, ’ver’ or ’wait’ attributes.

Listing 26: Add stream response
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 97

<body stream=’secondStreamName ’
from=’example.com’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

Note: If the response did not include a ’from’ attribute then they MAY be sent in a subsequent
response instead (see Session Creation Response). In that case the ’stream’ attribute MUST
also be specified.

16.4 Transmitting Payloads
If more than one stream has been opened within a session, then all non-empty <body/>
elements sent by the connection manager MUST include a ’stream’ attribute that specifies
which stream all the payloads it contains belong to. The client SHOULD include a ’stream’
attribute for the same purpose. The client MAY omit the ’stream’ attribute if it wants the
connection manager to broadcast the payloads over all open streams. Note: A <body/>
element MUST NOT contain different payloads for different streams.
If a stream name does not correspond to one of the session’s open streams, then the receiving
connection manager SHOULD return an ’item-not-found’ terminal binding error, or the
receiving client SHOULD terminate the session. However, if the receiving entity has only
just closed the stream (and the sender might not have been aware of that when it sent the
payloads), then it MAY instead simply silently ignore any payloads the <body/> element
contains.
Note: Empty <body/> elements that do not include a ’from’ attribute SHOULD NOT include a

30This helps to ensure backwards-compatibility with older implementations.

26

16 MULTIPLE STREAMS

’stream’ attribute (since nothing is being transmitted for any stream). If such a <body/> el-
ement does include a ’stream’ attribute then the receiving entity SHOULD ignore the attribute.

Listing 27: Client sends payload with a stream name
POST /webclient HTTP /1.1
Host: httpcm.example.com
Accept -Encoding: gzip , deflate
Content -Type: text/xml; charset=utf -8
Content -Length: 207

<body rid=’1249243562 ’
sid=’SomeSID ’
stream=’secondStreamName ’
xmlns=’http: // jabber.org/protocol/httpbind ’>

<message to=’contact@example.com’
xmlns=’jabber:client ’>

<body>I said hello.</body>
</message >

</body>

Note: The value of the ’stream’ attribute of the response MAY be different than the corre-
sponding request. 31

Listing 28: Connection manager responds with a different stream name
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 197

<body stream=’firstStreamName ’
xmlns=’http: // jabber.org/protocol/httpbind ’>

<message from=’contact@example.com’
to=’user@example.com’
xmlns=’jabber:client ’>

<body>Hi yourself!</body>
</message >

</body>

If no stream name is specified by the connection manager then the client MUST assume the
payloads are associated with the first stream (even if the first stream has been closed).
If no stream name is specified by the client then the connection manager MUST broadcast the
payloads over all open streams. 32

31Each HTTP response MUST belong to the same session as the request that triggered it, but not necessarily to the
same stream.

32The broadcast payloads can be of any type.

27

16 MULTIPLE STREAMS

Listing 29: Client asks for a payload to be broadcast
POST /webclient HTTP /1.1
Host: httpcm.example.com
Accept -Encoding: gzip , deflate
Content -Type: text/xml; charset=utf -8
Content -Length: 149

<body rid=’1249243562 ’
sid=’SomeSID ’
xmlns=’http: // jabber.org/protocol/httpbind ’>

<presence xmlns=’jabber:client ’>
<show>away</show>

</presence >
</body>

16.5 Closing a Stream
If more than one stream is open within a session, the client MAY close one open stream at
any time using the procedure described in the section Terminating the BOSH Session above,
taking care to specify the stream name with a ’stream’ attribute. If the client closes the last
stream the connection manager MUST terminate the session. If the client does not specify
a stream name then the connection manager MUST close all open streams (sending any
payloads the terminate request contains to all streams), and terminate the session.

Listing 30: Client closes one stream
POST /webclient HTTP /1.1
Host: httpcm.example.com
Accept -Encoding: gzip , deflate
Content -Type: text/xml; charset=utf -8
Content -Length: 184

<body rid=’1249243564 ’
sid=’SomeSID ’
stream=’secondStreamName ’
type=’terminate ’
xmlns=’http: // jabber.org/protocol/httpbind ’>

<presence type=’unavailable ’
xmlns=’jabber:client ’/>

</body>

16.6 Error Conditions
If more than one stream is open within a session, the connection manager MAY include a
’stream’ attribute in a fatal binding error (see Terminal Binding Conditions). If a ’stream’
attribute is specified then the streamMUST be closed by both entities but the session SHOULD

28

17 ERROR AND STATUS CODES

NOT be terminated.

Listing 31: Fatal stream error
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 132

<body type=’terminate ’
condition=’remote -connection -failed ’
stream=’secondStreamName ’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

Note: If the connection manager does not include a ’stream’ attribute in a fatal binding error
then all the session’s open streams MUST be closed by both entities and the session MUST be
terminated.

17 Error and Status Codes
There are four types of error and status reporting in HTTP responses:

Condition Type Description
HTTP Conditions (Deprecated) The connectionmanager responds to an invalid request

from a legacy client with a standard HTTP error. These
are used for binding syntax errors, possible attacks, etc.
Note that constrained clients are unable to differentiate
between HTTP errors.

Terminal Binding Conditions These error conditions can be read by constrained
clients. They are used for connection manager prob-
lems, abstracting stream errors, communication prob-
lems between the connection manager and the server,
and invalid client requests (binding syntax errors, pos-
sible attacks, etc.)

Recoverable Binding Conditions These report communication problems between the
connection manager and the client. They do not ter-
minate the session. Clients recover from these errors
by resending all the preceding <body/> wrappers that
have not received responses.

Transported Protocol Conditions Errors relating to the XML payloads within <body/>
wrappers are, in general, defined in the documentation
of the protocol being transported. They do not termi-
nate the session.

29

17 ERROR AND STATUS CODES

Full descriptions are provided below.

17.1 HTTP Conditions
Note: All HTTP codes except 200 have been superseded by Terminal Binding Conditions to allow clients to
determine whether the source of errors is the connection manager application or an HTTP intermediary.
A legacy client (or connection manager) is a client (or connection manager) that did not
include a ’ver’ attribute in its session creation request (or response). A legacy client (or
connection manager) will interpret (or respond with) HTTP error codes according to the
table below. Non-legacy connection managers SHOULD NOT send HTTP error codes unless
they are communicating with a legacy client. Upon receiving an HTTP error (400, 403, 404),
a legacy client or any client that is communicating with a legacy connection manager MUST
consider the HTTP session to be null and void. A non-legacy client that is communicating
with a non-legacy connection manager MAY consider that the session is still active.

Code Name Superseded by Purpose
200 OK - Response to valid client

request.
400 Bad Request bad-request Inform client that the for-

mat of an HTTP header or
binding element is unac-
ceptable (e.g., syntax er-
ror).

403 Forbidden policy-violation Inform client that it
has broken the session
rules (polling too fre-
quently, requesting too
frequently, too many
simultaneous requests).

404 Not Found item-not-found Inform client that (1) ’sid’
is not valid, (2) ’stream’ is
not valid, (3) ’rid’ is larger
than the upper limit of the
expectedwindow, (4) con-
nection manager is un-
able to resend response,
(5) ’key’ sequence is in-
valid.

30

17 ERROR AND STATUS CODES

Note: No other HTTP error and status codes were defined in the early versions of BOSH (e.g.,
Internal Server Error).

17.2 Terminal Binding Conditions
In any response it sends to the client, the connection manager MAY return a fatal error by
setting a ’type’ attribute of the <body/> element to ”terminate”. These binding errors imply
that the HTTP session is terminated (unless a ’stream’ attribute is specified -- see Multiple
Stream Error Conditions).
Note: Although many of these conditions are similar to the XMPP stream error conditions
specified in RFC 6120 33, they are not to be confused with XMPP stream errors. In cases where
BOSH is being used to transport XMPP, any fatal XMPP stream error conditions experienced
between the connection manager and the XMPP server SHOULD only be reported using the
”remote-stream-error” condition as described below.

Listing 32: Remote connection failed error
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 106

<body type=’terminate ’
condition=’remote -connection -failed ’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

The following values of the ’condition’ attribute are defined:

Condition Purpose
bad-request* The format of an HTTP header or binding element received

from the client is unacceptable (e.g., syntax error).
host-gone The target domain specified in the ’to’ attribute or the target

host or port specified in the ’route’ attribute is no longer ser-
viced by the connection manager.

host-unknown The target domain specified in the ’to’ attribute or the target
host or port specified in the ’route’ attribute is unknown to the
connection manager.

improper-addressing The initialization element lacks a ’to’ or ’route’ attribute (or the
attribute has no value) but the connection manager requires
one.

internal-server-error The connection manager has experienced an internal error
that prevents it from servicing the request.

33RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.

31

http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6120

17 ERROR AND STATUS CODES

Condition Purpose
item-not-found* (1) ’sid’ is not valid, (2) ’stream’ is not valid, (3) ’rid’ is larger

than the upper limit of the expected window, (4) connection
manager is unable to resend response, (5) ’key’ sequence is in-
valid.

other-request Another request being processed at the same time as this re-
quest caused the session to terminate.

policy-violation* The client has broken the session rules (polling too frequently,
requesting too frequently, sending too many simultaneous re-
quests).

remote-connection-failed The connection manager was unable to connect to, or unable
to connect securely to, or has lost its connection to, the server.

remote-stream-error Encapsulates an error in the protocol being transported.
see-other-uri The connection manager does not operate at this URI (e.g., the

connection manager accepts only SSL or TLS connections at
some https: URI rather than the http: URI requested by the
client). The client can try POSTing to the URI in the content of
the <uri/> child element.

system-shutdown The connection manager is being shut down. All active HTTP
sessions are being terminated. No new sessions can be created.

undefined-condition The error is not one of those defined herein; the connection
manager SHOULD include application-specific information in
the content of the <body/> wrapper.

* If the client did not include a ’ver’ attribute in its session creation request then the con-
nection manager SHOULD send a deprecated HTTP Error Condition instead of this terminal
binding condition. If the connection manager did not include a ’ver’ attribute in its session
creation response then the client SHOULD expect it to send a deprecated HTTP Error Condition
instead of this terminal binding condition.
The following is an example of a ”see-other-uri” condition:

Listing 33: See other URI error
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 144

<body condition=’see -other -uri’
type=’terminate ’
xmlns=’http: // jabber.org/protocol/httpbind ’>

<uri>https: // secure.jabber.org/xmppcm </uri>
</body>

The following is an example including a ”remote-stream-error” condition:

32

17 ERROR AND STATUS CODES

Listing 34: Remote error
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 526

<body condition=’remote -stream -error ’
type=’terminate ’
xmlns=’http: // jabber.org/protocol/httpbind ’
xmlns:stream=’http: // etherx.jabber.org/streams ’>

<message from=’contact@example.com’
to=’user@example.com’
xmlns=’jabber:client ’>

<body>I said ”Hi!”</body>
</message >
<stream:error >

<xml -not -well -formed xmlns=’urn:ietf:params:xml:ns:xmpp -streams ’/>
<text xmlns=’urn:ietf:params:xml:ns:xmpp -streams ’

xml:lang=’en’>
Some special application diagnostic information!

</text>
<escape -your -data xmlns=’application -ns’/>

</stream:error >
</body>

Naturally, the client MAY report binding errors to the connection manager as well, although
this is unlikely.

17.3 Recoverable Binding Conditions
In any response it sends to the client, the connectionmanagerMAY return a recoverable error
by setting a ’type’ attribute of the <body/> element to ”error”. These errors do not imply that
the HTTP session is terminated.
If it decides to recover from the error, then the client MUST repeat the HTTP request that
resulted in the error, as well as all the preceding HTTP requests that have not received
responses. The content of these requests MUST be identical to the <body/> elements of the
original requests. This enables the connectionmanager to recover a session after the previous
request was lost due to a communication failure.

Listing 35: Recoverable error
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 65

<body type=’error ’
xmlns=’http: // jabber.org/protocol/httpbind ’/>

33

19 SECURITY CONSIDERATIONS

17.4 XML Payload Conditions
Application-level error conditions described in the documentation of the protocol being
transported are routed to the client through the connection manager. They are transparent
to the connection manager, and therefore out of scope for the transport binding defined
herein.

18 Implementation Notes
18.1 HTTP Pipelining
HTTP pipelining allows a client to send multiple requests over the same HTTP socket connec-
tion without waiting for the corresponding responses. However, RFC 2616 34 notes that only
idempotent methods should be allowed to use HTTP pipelining, which does not include the
POST method used extensively by BOSH. Furthermore, there is no guarantee that pipelining
will succeed because intermediate proxies might not support it. Therefore, clients and
connection managers SHOULD NOT use HTTP Pipelining.

19 Security Considerations
19.1 Connection Between Client and BOSH Service
All communications between a client and a BOSH service SHOULD occur over encrypted HTTP
connections. Negotiation of encryption between the client and the connection manager
SHOULD occur at the transport layer or the HTTP layer, not the application layer; such
negotiation SHOULD follow the HTTP/SSL protocol defined in SSL 35, although MAY follow
the HTTP/TLS protocol defined in RFC 2818 36 or the TLSWithin HTTP protocol defined in RFC
2817 37.
If the HTTP connection used to send the initial session request is encrypted, then all the
other HTTP connections used within the session MUST also be encrypted. Furthermore, if
authentication certificates are exchanged when establishing the encrypted connection that is
used to send the initial session request, then the client and/or connection manager SHOULD
ensure that the same authentication certificates are employed for all subsequent connections
used by the session. Once such a ”secure session” has been established:

• If the connectionmanager refuses to establish an encrypted connectionor offers a differ-
ent certificate, then the client SHOULD close the connection and terminate the session
without sending any more requests.

34RFC 2616: Hypertext Transport Protocol -- HTTP/1.1 <http://tools.ietf.org/html/rfc2616>.
35SSL V3.0 <http://wp.netscape.com/eng/ssl3/draft302.txt>.
36RFC 2818: HTTP Over TLS <http://tools.ietf.org/html/rfc2818>.
37RFC 2817: Upgrading to TLS Within HTTP/1.1 <http://tools.ietf.org/html/rfc2817>.

34

http://tools.ietf.org/html/rfc2616
http://wp.netscape.com/eng/ssl3/draft302.txt
http://tools.ietf.org/html/rfc2818
http://tools.ietf.org/html/rfc2817
http://tools.ietf.org/html/rfc2817
http://tools.ietf.org/html/rfc2616
http://wp.netscape.com/eng/ssl3/draft302.txt
http://tools.ietf.org/html/rfc2818
http://tools.ietf.org/html/rfc2817

20 IANA CONSIDERATIONS

• If the client sends a wrapper element that is part of a ”secure session” over a connection
that either is not encrypted or uses a different certificate, then the connection manager
SHOULD simply close the connection. The connection manager SHOULD NOT terminate
the session since that would facilitate denial of service attacks.

19.2 Connection Between BOSH Service and Application
A BOSH service SHOULD encrypt its connection to the backend application using appropriate
technologies such as Secure Sockets Layer (SSL), Transport Layer Security (TLS), and StartTLS
if supported by the backend application. Alternatively, the BOSH service can be considered
secure (1) if it is running on the same physical machine as the backend application or (2) if it
running on the same private network as the backend application and the administrators are
sure that unknown individuals or processes do not have access to that private network.
If data privacy is desired, the client SHOULD encrypt its messages using an application-specific
end-to-end encryption technology, because there is no way for the client to be sure that the
BOSH service encrypts its connection to the application; methods for doing so are outside the
scope of this specification.

19.3 Unpredictable SID and RID
The session identifier (SID) and initial request identifier (RID) are security-critical and there-
fore MUST be both unpredictable and nonrepeating (see RFC 1750 38 for recommendations
regarding randomness of SIDs and initial RIDs for security purposes).

19.4 Use of SHA-1
Recent research has shown that in select cases it is possible to compromise the hashes
produced by the SHA-1 hashing algorithm (see RFC 4270 39). However, the use to which SHA-1
is put in BOSH will likely minimize the applicability of the attacks described in the literature.
Furthermore, current estimates suggest that even with the recently-discovered attack, it
would still take one year of computing by a government-sized entity to produce a collision.

20 IANA Considerations
TCP port 5280, conventially used for communication between BOSH clients and BOSH con-
nection mangers, is registered with the Internet Assigned Numbers Authority (IANA) 40 in its

38RFC 1750: Randomness Recommendations for Security <http://tools.ietf.org/html/rfc1750>.
39RFC 4270: Attacks on Cryptographic Hashes in Internet Protocols <http://tools.ietf.org/html/rfc4270>.
40The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-

rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

35

http://tools.ietf.org/html/rfc1750
http://tools.ietf.org/html/rfc4270
http://www.iana.org/
http://tools.ietf.org/html/rfc1750
http://tools.ietf.org/html/rfc4270
http://www.iana.org/

22 XML SCHEMA

port registry at IANA Port Numbers Registry 41, with a keyword of ”xmpp-bosh”. (Although
use of this port is OPTIONAL, it is helpful to define this port in a standardized way so that
BOSH clients can contact any given XMPP service via BOSH without the need either for DNS
TXT records as described in Discovering Alternative XMPP Connection Methods (XEP-0156) 42

or for more advanced methods such as U-NAPTR.

21 XMPP Registrar Considerations
21.1 Protocol Namespaces
The XMPP Registrar includes ’http://jabber.org/protocol/httpbind’ in its registry of protocol
namespaces.

22 XML Schema

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
xmlns:stream=’http: // etherx.jabber.org/streams ’
targetNamespace=’http: // jabber.org/protocol/httpbind ’
xmlns=’http: // jabber.org/protocol/httpbind ’
elementFormDefault=’qualified ’>

<xs:annotation >
<xs:documentation >

The protocol documented by this schema is defined in
XEP -0124: http://www.xmpp.org/extensions/xep -0124. html

</xs:documentation >
</xs:annotation >

<xs:import namespace=’http: //www.w3.org/XML /1998/ namespace ’
schemaLocation=’http: //www.w3.org /2001/03/ xml.xsd’/>

<xs:element name=’body’>
<xs:complexType >

<xs:choice >
<xs:element name=’uri’

minOccurs=’0’
maxOccurs=’1’
type=’xs:string ’/>

41IANA registry of port numbers <http://www.iana.org/assignments/port-numbers>.
42XEP-0156: Discovering Alternative XMPP ConnectionMethods <https://xmpp.org/extensions/xep-0156.htm

l>.

36

http://www.iana.org/assignments/port-numbers
https://xmpp.org/extensions/xep-0156.html
http://www.iana.org/assignments/port-numbers
https://xmpp.org/extensions/xep-0156.html
https://xmpp.org/extensions/xep-0156.html

22 XML SCHEMA

<xs:any namespace=’## other ’
minOccurs=’0’
maxOccurs=’unbounded ’
processContents=’lax’/>

</xs:choice >
<xs:attribute name=’accept ’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’ack’ type=’xs:positiveInteger ’ use=’optional

’/>
<xs:attribute name=’authid ’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’charsets ’ type=’xs:NMTOKENS ’ use=’optional ’/

>
<xs:attribute name=’condition ’ use=’optional ’>

<xs:simpleType >
<xs:restriction base=’xs:NCName ’>

<xs:enumeration value=’bad -request ’/>
<xs:enumeration value=’host -gone’/>
<xs:enumeration value=’host -unknown ’/>
<xs:enumeration value=’improper -addressing ’/>
<xs:enumeration value=’internal -server -error ’/>
<xs:enumeration value=’item -not -found ’/>
<xs:enumeration value=’other -request ’/>
<xs:enumeration value=’policy -violation ’/>
<xs:enumeration value=’remote -connection -failed ’/>
<xs:enumeration value=’remote -stream -error ’/>
<xs:enumeration value=’see -other -uri’/>
<xs:enumeration value=’system -shutdown ’/>
<xs:enumeration value=’undefined -condition ’/>

</xs:restriction >
</xs:simpleType >

</xs:attribute >
<xs:attribute name=’content ’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’from’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’hold’ type=’xs:unsignedByte ’ use=’optional ’/

>
<xs:attribute name=’inactivity ’ type=’xs:unsignedShort ’ use=’

optional ’/>
<xs:attribute name=’key’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’maxpause ’ type=’xs:unsignedShort ’ use=’

optional ’/>
<xs:attribute name=’newkey ’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’pause ’ type=’xs:unsignedShort ’ use=’optional

’/>
<xs:attribute name=’polling ’ type=’xs:unsignedShort ’ use=’

optional ’/>
<xs:attribute name=’report ’ type=’xs:positiveInteger ’ use=’

optional ’/>
<xs:attribute name=’requests ’ type=’xs:unsignedByte ’ use=’

optional ’/>

37

23 ACKNOWLEDGEMENTS

<xs:attribute name=’rid’ type=’xs:positiveInteger ’ use=’optional
’/>

<xs:attribute name=’route ’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’sid’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’stream ’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’time’ type=’xs:unsignedShort ’ use=’optional ’

/>
<xs:attribute name=’to’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’type’ use=’optional ’>

<xs:simpleType >
<xs:restriction base=’xs:NCName ’>

<xs:enumeration value=’error ’/>
<xs:enumeration value=’terminate ’/>

</xs:restriction >
</xs:simpleType >

</xs:attribute >
<xs:attribute name=’ver’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’wait’ type=’xs:unsignedShort ’ use=’optional ’

/>
<xs:attribute ref=’xml:lang ’ use=’optional ’/>
<xs:anyAttribute namespace=’## other ’ processContents=’lax’/>

</xs:complexType >
</xs:element >

</xs:schema >

23 Acknowledgements
Thanks to Dave Cridland, Mike Cumings, Tomas Karasek, Steffen Larsen, Tobias Markmann,
Matt Miller, Chris Seymour, Safa Sofuoğlu, Stefan Strigler, Mike Taylor, Winfriend Tilanus,
Matthew Wild, Kevin Winters, and Christopher Zorn for their feedback.

38

	Introduction
	Requirements
	Architectural Assumptions
	The BOSH Technique
	HTTP Overview
	<body/> Wrapper Element
	Initiating a BOSH Session
	Session Creation Request
	Session Creation Response

	Sending and Receiving XML Payloads
	Acknowledgements
	Request Acknowledgements
	Response Acknowledgements

	Inactivity
	Overactivity
	Polling Sessions
	Terminating the BOSH Session
	Request IDs
	Generation
	In-Order Message Forwarding
	Broken Connections

	Protecting Insecure Sessions
	Applicability
	Introduction
	Generating the Key Sequence
	Use of Keys
	Switching to Another Key Sequence

	Multiple Streams
	Introduction
	Discovery
	Adding Streams To A Session
	Transmitting Payloads
	Closing a Stream
	Error Conditions

	Error and Status Codes
	HTTP Conditions
	Terminal Binding Conditions
	Recoverable Binding Conditions
	XML Payload Conditions

	Implementation Notes
	HTTP Pipelining

	Security Considerations
	Connection Between Client and BOSH Service
	Connection Between BOSH Service and Application
	Unpredictable SID and RID
	Use of SHA-1

	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces

	XML Schema
	Acknowledgements

