
XEP-0163: Personal Eventing Protocol

Peter Saint-Andre
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org

https://stpeter.im/

Kevin Smith
mailto:kevin@kismith.co.uk
xmpp:kevin@doomsong.co.uk

2022-02-16
Version 1.2.2

Status Type Short Name
Draft Standards Track pep

This specification defines semantics for using the XMPP publish-subscribe protocol to broadcast state
change events associated with an instant messaging and presence account. This profile of pubsub there-
fore enables a standard XMPP user account to function as a virtual pubsub service, easing the discovery
of syndicated data and event notifications associated with such an account.

mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/
mailto:kevin@kismith.co.uk
xmpp:kevin@doomsong.co.uk

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2020 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 How It Works . 1

2 Concepts and Approach 5
2.1 Every Account a Pubsub Service . 6
2.2 One Publisher Per Node . 6
2.3 Use Presence . 6
2.4 Filtered Notifications . 7
2.5 Smart Defaults . 7

3 Publishing Events 7

4 Receiving Event Notifications 8
4.1 Automatic Subscriptions . 8
4.2 Notification Filtering . 8
4.3 Generating Notifications . 9

4.3.1 Addressing . 9
4.3.2 Number of Notifications . 9
4.3.3 When to Generate Notifications . 10
4.3.4 Sending the Last Published Item . 10

5 Recommended Defaults 12

6 Determining Support 12
6.1 Account Owner Service Discovery . 12
6.2 Contact Service Discovery . 13

7 Implementation Notes 14
7.1 Cancelling Subscriptions . 14
7.2 One Node Per Namespace . 14

8 Security Considerations 14

9 IANA Considerations 15

10 XMPP Registrar Considerations 15
10.1 Service Discovery Category/Type . 15

11 XML Schema 15

12 Acknowledgements 15

1 INTRODUCTION

1 Introduction
1.1 Motivation
Personal eventing provides a way for a Jabber/XMPP user to send updates or ”events” to other
users, who are typically contacts in the user’s roster. An event can be anything that a user
wants to make known to other people, such as those described in User Geolocation (XEP-0080)
1, User Mood (XEP-0107) 2, User Activity (XEP-0108) 3, and User Tune (XEP-0118) 4. While the
XMPP Publish-Subscribe (XEP-0060) 5 extension (”pubsub”) can be used to broadcast such
events associated, the full pubsub protocol is often thought of as complicated and therefore
has not been widely implemented. 6 To make publish-subscribe functionality more accessible
(especially to instant messaging and presence applications that conform to XMPP IM 7), this
document defines a simplified subset of pubsub that can be followed by instant messaging
client and server developers to more easily deploy personal eventing services across the
Jabber/XMPP network. We label this subset ”Personal Eventing Protocol” or PEP.
Note: Any use cases not described herein are described in XEP-0060. Also, this document does
not show error flows related to the generic publish-subscribe use cases referenced herein,
since they are exhaustively defined in XEP-0060. The reader is referred to XEP-0060 for all
relevant protocol details related to the XMPP publish-subscribe extension. This document
merely defines a ”subset” or ”profile” of XMPP publish-subscribe.

1.2 How It Works
This section provides a friendly introduction to personal eventing via pubsub (PEP).
Imagine that you are a Shakespearean character named Juliet and that you want to generate
events about what music you’re listening to, which anyone may see as long as they are
authorized to see your online/offline presence (i.e., a pubsub access model of ”presence”).
We assume that you have three contacts with the following relationship to you:

1. benvolio@montague.lit, who has no subscription to your presence

2. nurse@capulet.lit, who has a bidirectional subscription to your presence and who is in
your ”Servants” roster group

1XEP-0080: User Geolocation <https://xmpp.org/extensions/xep-0080.html>.
2XEP-0107: User Mood <https://xmpp.org/extensions/xep-0107.html>.
3XEP-0108: User Activity <https://xmpp.org/extensions/xep-0108.html>.
4XEP-0118: User Tune <https://xmpp.org/extensions/xep-0118.html>.
5XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.
6Instead,many ”extended presence” formats are currently sent using the <presence/> stanza type; unfortunately,
this overloads presence, results in unnecessary presence traffic, and does not provide fine-grained control over
access. The use of publish-subscribe rather than presence is therefore preferable.

7RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc6121>.

1

https://xmpp.org/extensions/xep-0080.html
https://xmpp.org/extensions/xep-0107.html
https://xmpp.org/extensions/xep-0108.html
https://xmpp.org/extensions/xep-0118.html
https://xmpp.org/extensions/xep-0060.html
http://tools.ietf.org/html/rfc6121
https://xmpp.org/extensions/xep-0080.html
https://xmpp.org/extensions/xep-0107.html
https://xmpp.org/extensions/xep-0108.html
https://xmpp.org/extensions/xep-0118.html
https://xmpp.org/extensions/xep-0060.html
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121

1 INTRODUCTION

3. romeo@montague.lit, who has a bidirectional subscription to your presence and who is
in your ”Friends” roster group

We also assume that your server (capulet.lit) supports PEP and that your client discovered
that support when you logged in.
Now you start playing a song on your music playing software. Your client captures that
”event” and publishes it to your server:

Listing 1: Publishing an event
<iq from=’juliet@capulet.lit/balcony ’ type=’set’ id=’pub1’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<publish node=’http: // jabber.org/protocol/tune’>

<item>
<tune xmlns=’http: // jabber.org/protocol/tune’>

<artist >Gerald Finzi</artist >
<length >255</length >
<source >Music for ”Love ’s␣Labors␣Lost” (Suite for small

orchestra)</source >
<title >Introduction (Allegro vigoroso)</title >
<track >1</track >

</tune>
</item>

</publish >
</pubsub >

</iq>

Note the following about your publish request:

1. It is sent with no ’to’ address (see Every Account a Pubsub Service).

2. It specifies a node of ”http://jabber.org/protocol/tune” (see One Node per Namespace).

If all goes well (see Publishing Events), everyone who is interested in what you are listening
to will receive notification of the event:

Listing 2: Interested parties receive event notifications
<message from=’juliet@capulet.lit’

to=’romeo@montague.lit/orchard ’
type=’headline ’
id=’tunefoo1 ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<items node=’http: // jabber.org/protocol/tune’>

<item>
<tune xmlns=’http: // jabber.org/protocol/tune’>

<artist >Gerald Finzi</artist >
<length >255</length >

2

1 INTRODUCTION

<source >Music for ”Love ’s␣Labors␣Lost” (Suite for small
orchestra)</source >

<title >Introduction (Allegro vigoroso)</title >
<track >1</track >

</tune>
</item>

</items >
</event >

</message >

<message from=’juliet@capulet.lit’
to=’nurse@capulet.lit/chamber ’
type=’headline ’
id=’tunefoo2 ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<items node=’http: // jabber.org/protocol/tune’>

<item>
<tune xmlns=’http: // jabber.org/protocol/tune’>

<artist >Gerald Finzi</artist >
<length >255</length >
<source >Music for ”Love ’s␣Labors␣Lost” (Suite for small

orchestra)</source >
<title >Introduction (Allegro vigoroso)</title >
<track >1</track >

</tune>
</item>

</items >
</event >

</message >

Because PEP services must send notifications to the account owner, you too receive the
notification at each of your resources (here ”balcony” and ”chamber”).

Listing 3: Publisher receives event notification
<message from=’juliet@capulet.lit’

to=’juliet@capulet.lit/balcony ’
type=’headline ’
id=’tunefoo3 ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<items node=’http: // jabber.org/protocol/tune’>

<item>
<tune xmlns=’http: // jabber.org/protocol/tune’>

<artist >Gerald Finzi</artist >
<length >255</length >
<source >Music for ”Love ’s␣Labors␣Lost” (Suite for small

orchestra)</source >
<title >Introduction (Allegro vigoroso)</title >
<track >1</track >

3

1 INTRODUCTION

</tune>
</item>

</items >
</event >

</message >

<message from=’juliet@capulet.lit’
to=’juliet@capulet.lit/chamber ’
type=’headline ’
id=’tunefoo4 ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<items node=’http: // jabber.org/protocol/tune’>

<item>
<tune xmlns=’http: // jabber.org/protocol/tune’>

<artist >Gerald Finzi</artist >
<length >255</length >
<source >Music for ”Love ’s␣Labors␣Lost” (Suite for small

orchestra)</source >
<title >Introduction (Allegro vigoroso)</title >
<track >1</track >

</tune>
</item>

</items >
</event >

</message >

But how do Romeo and the Nurse tell your server that they are interested in knowing
what you’re listening to? In generic pubsub they typically need to explicitly subscribe to
your ”http://jabber.org/protocol/tune” node. 8 But PEP services support two special features:

1. ”auto-subscribe” -- because they are subscribed to your presence, they automatically
receive your events (see Use Presence).

2. ”filtered-notification” -- they can include some special flags in their Entity Capabilities
(XEP-0115) 9 information to specify which event types (payloads) they want to receive
(see Filtered Notifications).

Listing 4: Romeo sends presence with caps
<presence from=’romeo@montague.lit/orchard ’>

<c xmlns=’http: // jabber.org/protocol/caps’
hash=’sha -1’
node=’http: //www.chatopus.com’
ver=’zHyEOgxTrkpSdGcQKH8EFPLsriY=’/>

</presence >

8That may still be necessary for open access model nodes in PEP if another user does not send you presence, such
as benvolio@montague.lit in our scenario.

9XEP-0115: Entity Capabilities <https://xmpp.org/extensions/xep-0115.html>.

4

https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0115.html

2 CONCEPTS AND APPROACH

Your server knows to send tune information to Romeo because when the server un-
packs the value of the ’ver’ attribute (”054H4A7280JuT6+IroVYxgCAjZo=”) in accordance
with XEP-0115, it discovers that Romeo’s client advertises a service discovery feature of
”http://jabber.org/protocol/tune+notify”, where the ”+notify” suffix indicates interest in
receiving notifications of the node whose NodeID precedes the suffix (see XEP-0060 § 9.2). The
server can verify this support if needed by sending a service discovery request to Romeo’s full
JID, where the response would be as follows:

Listing 5: Disco#info result from extension
<iq from=’romeo@montague.lit/orchard ’

to=’juliet@capulet.lit’
type=’result ’
id=’disco123 ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
<identity category=’client ’ name=’Exodus␣0.9.1 ’ type=’pc’/>
<feature var=’http: // jabber.org/protocol/disco#info’/>
<feature var=’http: // jabber.org/protocol/disco#items ’/>
<feature var=’http: // jabber.org/protocol/geoloc ’/>
<feature var=’http: // jabber.org/protocol/geoloc+notify ’/>
<feature var=’http: // jabber.org/protocol/tune’/>
<feature var=’http: // jabber.org/protocol/tune+notify ’/>

</query >
</iq>

Naturally your server doesn’t need to send out a disco#info request every time, since it will
quickly create a large cache of ’ver’ values.
So that’s the general idea.

2 Concepts and Approach
Personal eventing via pubsub (”PEP”) is based on the following principles:

1. Every account a pubsub service.

2. One publisher per node.

3. Use presence.

4. Filter notifications based on expressed interest.

5. Smart defaults.

These principles are described more fully below.

5

2 CONCEPTS AND APPROACH

2.1 Every Account a Pubsub Service
When a user creates an account (or has an account provisioned) at a Jabber/XMPP server that
supports PEP, the server associates a virtual pubsub service with the account. This greatly
simplifies the task of discovering the account owner’s personal pubsub nodes, since the root
pubsub node simply is the account owner’s bare JID (<localpart@domain.tld> or <domain.tld>).
This assumption also simplifies publishing and subscribing.

2.2 One Publisher Per Node
There is no need for multiple publishers to a PEP service, since by definition the service
generates information associated with only one entity. The owner-publisher for every node
is the bare JID of the account owner.

2.3 Use Presence
Although generic publish-subscribe services do not necessarily have access to presence
information about subscribers, PEP services are integrated with presence in the following
ways:

• Each messaging and presence account simply is a virtual publish-subscribe service.

• The default access model is ”presence”.

• A contact’s subscription to an account owner’s personal eventing data is automatically
created because the contact has an XMPP presence subscription (the ”auto-subscribe”
feature).

• Services take account of subscriber presence in the generation of notifications. 10

• A service automatically sends notifications to all of the account owner’s connected re-
sources (subject to notification filtering).

These uses of presence simplify the task of developing compliant clients (cf. XMPP Design
Guidelines (XEP-0134) 11).
Note: It is strongly NOT RECOMMENDED to use directed presence with Entity Capabilities
data that differs from the data included in broadcast presence for the purpose of establishing
implicit PEP subscriptions to another entity, because the directed presence information will
be overwritten by any subsequent presence broadcast.

10This works only if the subscription state is ”both” (see RFC 3921).
11XEP-0134: XMPP Design Guidelines <https://xmpp.org/extensions/xep-0134.html>.

6

https://xmpp.org/extensions/xep-0134.html
https://xmpp.org/extensions/xep-0134.html
https://xmpp.org/extensions/xep-0134.html

3 PUBLISHING EVENTS

2.4 Filtered Notifications
By default, the existence of an XMPP presence subscription is used to establish a PEP subscrip-
tion to the account owner’s personal eventing data. In order to filter which notifications are
sent by the PEP service, the contact’s client includes extended Entity Capabilities (XEP-0115)
12 information in the presence notifications it sends to the account owner. Because the PEP
service supports the ”filtered-notifications” feature, it sends only those notifications that
match the contact’s expressed notification preferences.

2.5 Smart Defaults
Most pubsub configuration options and metadata are not needed for personal eventing.
Instead, PEP services offer smart defaults to simplify node creation and management.

3 Publishing Events
An account owner publishes an item to a node by following the protocol specified in XEP-0060:

Listing 6: Account owner publishes item
<iq from=’juliet@capulet.lit/balcony ’ type=’set’ id=’pub1’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<publish node=’http: // jabber.org/protocol/tune’>

<item>
<tune xmlns=’http: // jabber.org/protocol/tune’>

<artist >Gerald Finzi</artist >
<length >255</length >
<source >Music for ”Love ’s␣Labors␣Lost” (Suite for small

orchestra)</source >
<title >Introduction (Allegro vigoroso)</title >
<track >1</track >

</tune>
</item>

</publish >
</pubsub >

</iq>

If the node does not already exist, the PEP service MUST create the node. This ”auto-create”
feature (defined in XEP-0060) MUST be supported by a PEP service. (Naturally, the account
owner’s client MAY follow the node creation use case specified in XEP-0060 before attempting
to publish an item.)
A PEP service SHOULD also support the ”publish-options” feature defined in XEP-0060.
If the publication logic dictates that event notifications shall be sent, the account owner’s
12XEP-0115: Entity Capabilities <https://xmpp.org/extensions/xep-0115.html>.

7

https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0115.html

4 RECEIVING EVENT NOTIFICATIONS

server generates notifications and sends them to all appropriate entities as described in
the Receiving Event Notifications section of this document, as well as to any of the account
owner’s available resources.
Note: PEP ties the receipt of PEP notifications to the subscriber’s presence, but does not tie
the generation of PEP notifications to the publisher’s presence. If the publisher wishes to
stop generating PEP events (or to generate an ”empty” event as can be done for some PEP
payloads) before ending its presence session, the publisher MUST direct its client to do so and
MUST NOT depend on the PEP service to automatically ”zero out” its PEP information when
the PEP service receives unavailable presence from the publisher.

4 Receiving Event Notifications
An entity shall receive event notifications if:

1. The node has an open access model and the entity has explicitly or implicitly subscribed
to the node as explained in XEP-0060.

2. The entity shares presencewith the account owner (see Presence Sharing), is authorized
to receive events from the node in accordance with the node access model (see XEP-
0060), and advertises an interest in the payload type (see Notification Filtering).

3. The entity is the account owner itself, in which case the PEP service shall send notifica-
tions to all of the account owner’s available resources (subject to notification filtering).

4.1 Automatic Subscriptions
A PEP service MUST support the ”auto-subscribe” feature defined in Section 9.1 of XEP-0060.
This implies that when a user has an XMPP presence subscription to the account owner’s
presence, the user automatically also has the right to subscribe to any of the account owner’s
PEP nodes (if the access model is the default of ”presence”) and to retrieve items from such
PEP nodes.

4.2 Notification Filtering
A PEP service MUST support the ”filtered-notifications” feature defined in Section 9.2 of
XEP-0060. This implies that when an automatic subscriber can specify which event payloads
it wants to receive by including appropriate feature bundles in the XEP-0115 information it
broadcasts.

8

4 RECEIVING EVENT NOTIFICATIONS

4.3 Generating Notifications
4.3.1 Addressing

1. The server MUST set the ’from’ address on the notification to the bare JID (<lo-
calpart@domain.tld> or <domain.tld>) of the account owner (in these examples,
”juliet@capulet.lit”).

2. Any errors generated by the recipient or the recipient’s server in relation to the
notification MUST be directed to the JID of the ’from’ address on the notification (i.e.,
the bare JID) so that bounce processing can be handled by the PEP service rather than
by the publishing client.

3. When sending notifications to an entity that has a presence subscription to the
account owner, the server SHOULD include an Extended Stanza Addressing (XEP-
0033) 13 ”replyto” extension specifying the publishing resource (in this example,
”juliet@capulet.lit/balcony”); this enables the subscriber’s client to differentiate be-
tween information received from each of the account owner’s resources (for example,
different resourcesmay be in different places and thereforemay need to specify distinct
geolocation data). However, a server MUST NOT include the ”replyto” address when
sending a notification to an entity that does not have a presence subscription to the
account owner.

4. If the PEP service has presence information about the intended recipient, it
SHOULD direct the notification(s) to the full JID(s) of the recipient’s (<local-
part@domain.tld/resource> or <domain.tld/resource>); if the PEP service does not
have presence information about a subscriber, it MUST address the notification to the
subscriber’s bare JID (<localpart@domain.tld> or <domain.tld>).

4.3.2 Number of Notifications

1. If an entity subscribed using a full JID (<localpart@domain.tld/resource> or <do-
main.tld/resource>) or a bare domain identifier <domain.tld>, a PEP service MUST send
one notification only, addressed to the subscribed JID.

2. If a subscriber subscribed using a bare JID <localpart@domain.tld> and a PEP service
does not have appropriate presence information about the subscriber, a PEP service
MUST send at most one notification, addressed to the bare JID <localpart@domain.tld>
of the subscriber, and MAY choose not to send any notification. (By ”appropriate
presence information” is meant an available presence stanza with XEP-0115 data that

13XEP-0033: Extended Stanza Addressing <https://xmpp.org/extensions/xep-0033.html>.

9

https://xmpp.org/extensions/xep-0033.html
https://xmpp.org/extensions/xep-0033.html
https://xmpp.org/extensions/xep-0033.html

4 RECEIVING EVENT NOTIFICATIONS

indicates interest in the relevant data format.)

3. If a subscriber subscribed using a bare JID <localpart@domain.tld> and a PEP service has
appropriate presence information about the subscriber, the PEP service MUST send one
notification to the full JID (<localpart@domain.tld/resource> or <domain.tld/resource>)
of each of the subscriber’s available resources that have included XEP-0115 information
indicating an interest in the data format.

4.3.3 When to Generate Notifications

1. When an account owner publishes an item to a node, a PEP service MUST generate a
notification and send it to all appropriate subscribers (where the number of notifica-
tions is determined by the foregoing rules).

2. When a PEP service receives initial presence 14 from a subscriber’s resource including
XEP-0115 information that indicates an interest in the data format, it MUST generate a
notification containing at least the last published item for that node and send it to the
newly-available resource; see below under Sending the Last Published Item.

3. As an exception to the foregoingMUST rules, a PEP serviceMUSTNOT send notifications
to a subscriber if the user has blocked the subscriber from receiving the kind of stanza
used for notifications (typically message stanzas) bymeans of communications blocking
as specified in Privacy Lists (XEP-0016) 15 or Blocking Command (XEP-0191) 16.

4.3.4 Sending the Last Published Item

As mentioned, a PEP service MUST send the last published item to all new subscribers and to
all newly-available resources for each subscriber, including the account owner itself. (That
is, the default value of the ”pubsub#send_last_published_item” node configuration field must
be ”on_sub_and_presence”; this behavior essentially mimics the functionality of presence as
defined in XMPP IM.) When processing a new subscription, the service MAY send not only the
last published item but instead all items that are currently associated with the node (i.e., up
to the maximum number of items at the node, which might be one if the node is a ”singleton
node” as described in XEP-0060). If the service has knowledge about the datetime that a
subscriber’s newly-available resource last received updated information from the node (e.g.,
14By ”initial presence” is meant a presence stanza with no ’type’ attribute that the PEP service receives after the

subscriber was previously unavailable; any subsequent presence stanza with no ’type’ attribute that the PEP
service receives after the initial presence notification but before the subscriber against goes offline MUST NOT
trigger sending of a new pubsub notification.

15XEP-0016: Privacy Lists <https://xmpp.org/extensions/xep-0016.html>.
16XEP-0191: Blocking Command <https://xmpp.org/extensions/xep-0191.html>.

10

https://xmpp.org/extensions/xep-0016.html
https://xmpp.org/extensions/xep-0191.html
https://xmpp.org/extensions/xep-0016.html
https://xmpp.org/extensions/xep-0191.html

4 RECEIVING EVENT NOTIFICATIONS

as described in Last Activity in Presence (XEP-0256) 17), then it MAY also send more items
than only the last published item to the newly-available resource.
Note: The ”on_sub_and_presence” setting relates to the subscriber’s presence, not the pub-
lisher’s presence.

Listing 7: Subscriber sends presence from newly-available resource
<presence from=’romeo@montague.lit/orchard ’>

<c xmlns=’http: // jabber.org/protocol/caps’
hash=’sha -1’
node=’http: //www.chatopus.com’
ver=’zHyEOgxTrkpSdGcQKH8EFPLsriY=’/>

</presence >

Listing 8: Subscriber’s server sends presence fromnewly-available resource to publisher’s bare
JID (i.e., PEP service)

<presence from=’romeo@montague.lit/orchard ’ to=’juliet@capulet.lit’>
<c xmlns=’http: // jabber.org/protocol/caps’

hash=’sha -1’
node=’http: //www.chatopus.com’
ver=’zHyEOgxTrkpSdGcQKH8EFPLsriY=’/>

</presence >

Listing 9: PEP service sends last published item to newly-available resource
<message from=’juliet@capulet.lit’

to=’romeo@montague.lit/orchard ’
type=’headline ’
id=’foo’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<items node=’http: // jabber.org/protocol/tune’>

<item>
<tune xmlns=’http: // jabber.org/protocol/tune’>

<artist >Gerald Finzi</artist >
<length >255</length >
<source >Music for ”Love ’s␣Labors␣Lost” (Suite for small

orchestra)</source >
<title >Introduction (Allegro vigoroso)</title >
<track >1</track >

</tune>
</item>

</items >
</event >
<delay xmlns=’urn:xmpp:delay ’ stamp=’2003 -12 -13 T23:58:37Z ’/>

</message >

17XEP-0256: Last Activity in Presence <https://xmpp.org/extensions/xep-0256.html>.

11

https://xmpp.org/extensions/xep-0256.html
https://xmpp.org/extensions/xep-0256.html

6 DETERMINING SUPPORT

5 Recommended Defaults
A PEP service MUST:

• Support the node discovery, node creation, node deletion, publish item, subscribe, un-
subscribe, and item retrieval use cases specified in XEP-0060.

• Support the ”auto-create”, ”auto-subscribe”, and ”filtered-notifications” features.

• Support the ”owner” and ”subscriber” affiliations.

• Support the ”presence” access model and set it to the default.

• Support the ”open”, ”roster”, and ”whitelist” access models.

• Treat the account owner’s bare JID (<localpart@domain.tld> or <domain.tld>) as a col-
lection node (i.e., as the root collection node for the account’s virtual pubsub service).

• Default the ’deliver_notifications’ configuration option to true (i.e., deliver payloads by
default).

• Default the ’send_last_published_item’ configuration option to on_sub_and_presence
(i.e., send the last published item on subscription and on receipt of presence). 18

A PEP service MAY support other use cases, affiliations, access models, and features, but such
support is OPTIONAL.

6 Determining Support
6.1 Account Owner Service Discovery
Naturally, before an account owner attempts to complete any PEP use cases, its client SHOULD
determine whether the account owner’s server supports PEP; to do so, it MUST send a Service
Discovery (XEP-0030) 19 information request to its own bare JID:

Listing 10: Account owner queries server regarding protocol support
<iq from=’juliet@capulet.lit/balcony ’

to=’juliet@capulet.lit’
id=’disco1 ’
type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

18Because subscriptions are implicit in PEP rather than explicit as in generic pubsub, the on_sub_and_presence
setting effectively means sending on presence.

19XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

12

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

6 DETERMINING SUPPORT

If the account owner’s server supports PEP and the account is provisioned for PEP, the server
MUST return an identity of ”pubsub/pep” on behalf of the account (as well as a list of the
namespaces and other features it supports, including all supported XEP-0060 features):

Listing 11: Server communicates protocol support
<iq from=’juliet@capulet.lit’

to=’juliet@capulet.lit/balcony ’
id=’disco1 ’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
<identity category=’account ’ type=’registered ’/>
<identity category=’pubsub ’ type=’pep’/>
<feature var=’http: // jabber.org/protocol/pubsub#access -presence ’/>
<feature var=’http: // jabber.org/protocol/pubsub#auto -create ’/>
<feature var=’http: // jabber.org/protocol/pubsub#auto -subscribe ’/>
<feature var=’http: // jabber.org/protocol/pubsub#config -node’/>
<feature var=’http: // jabber.org/protocol/pubsub#create -and -

configure ’/>
<feature var=’http: // jabber.org/protocol/pubsub#create -nodes ’/>
<feature var=’http: // jabber.org/protocol/pubsub#filtered -

notifications ’/>
<feature var=’http: // jabber.org/protocol/pubsub#persistent -items ’/

>
<feature var=’http: // jabber.org/protocol/pubsub#publish ’/>
<feature var=’http: // jabber.org/protocol/pubsub#retrieve -items ’/>
<feature var=’http: // jabber.org/protocol/pubsub#subscribe ’/>
...

</query >
</iq>

6.2 Contact Service Discovery
A contact MAY send service discovery requests to the account owner’s bare JID (<local-
part@domain.tld> or <domain.tld>). If the contact already has a subscription to the account
owner’s presence, this is not necessary in order to receive notifications from the account
owner via personal eventing. However, a user without a presence subscription needs to do
so in order to discover if the account owner is a virtual pubsub service and to discover the
account owner’s eventing nodes. The relevant protocol flows are demonstrated in XEP-0060.
Note: When returning disco#items results, the account owner’s server MUST check the access
model for each of the account owner’s PEP nodes and MUST return as service discovery items
only those nodes to which the contact is allowed to subscribe or from which the contact is
allowed to retrieve items without first subscribing.

13

8 SECURITY CONSIDERATIONS

7 Implementation Notes
7.1 Cancelling Subscriptions
In order to ensure appropriate access to information published at nodes of type ”presence”
and ”roster”, a PEP service MUST re-calculate access controls when:

1. A presence subscription state changes (e.g., when a subscription request is approved).

2. A roster item is modified (e.g., when the item is moved to a new roster group).

If the modification results in a loss of access, the service MUST cancel the entity’s subscrip-
tion. In addition, the service MAY send a message to the (former) subscriber informing it
of the cancellation (for information about the format of messages sent to notify subscribers
of subscription cancellation, see the ”Notification of Subscription Denial or Cancellation”
section of XEP-0060).

7.2 One Node Per Namespace
An earlier version of this document specified that there could be only one publish-subscribe
node associated with any given payload type (XML namespace) for the account owner (e.g.,
there could be only one pubsub node for geolocation events, one node for tune events, and one
node for mood events, etc.). However, this rule is now considered overly restrictive because
some data formats can be used to encapsulate many different kinds of information; the usual
example is Atom as defined in RFC 4287 20, for which many extensions exist. Therefore, this
document now does not specify that there is a one-to-one relationship between NodeIDs and
payload namespaces.
A specification that defines a given payload format for use in PEPMUST specify whether there
shall be only one node per namespace, or whether multiple NodeIDs for the same namespace
are allowable.

8 Security Considerations
A PEP service MAY enforce additional privacy and security policies when determining
whether an entity is allowed to subscribe to a node or retrieve items from a node; however,
any such policies shall be considered specific to an implementation or deployment and are
out of scope for this document.

20RFC 4287: The Atom Syndication Format <http://tools.ietf.org/html/rfc4287>.

14

http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc4287

12 ACKNOWLEDGEMENTS

9 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
21.

10 XMPP Registrar Considerations
10.1 Service Discovery Category/Type
The XMPP Registrar 22 includes a category of ”pubsub” in its registry of Service Discovery
identities (see <https://xmpp.org/registrar/disco-categories.html>); as a result of this
document, the Registrar includes a type of ”pep” to that category.
The registry submission is as follows:

<category >
<name>pubsub </name>
<type>

<name>pep</name>
<desc>

A personal eventing service that supports the
publish -subscribe subset defined in XEP -0163.

</desc>
<doc>XEP -0163 </doc>

</type>
</category >

11 XML Schema
Because PEP simply reuses the protocol specified in XEP-0060, a separate schema is not needed.

12 Acknowledgements
The authors wish to thank the participants in the XMPP Interoperability Testing Event held
July 24 and 25, 2006, who provided valuable feedback that resulted in radical simplification of
the protocol.

21The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

22The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

15

http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/registrar/disco-categories.html
http://www.iana.org/
https://xmpp.org/registrar/

12 ACKNOWLEDGEMENTS

Thanks also to the many members of the standards@xmpp.org discussion list who patiently
suffered through seemingly endless discussion of the auto-create and publish-and-configure
features.

16

	Introduction
	Motivation
	How It Works

	Concepts and Approach
	Every Account a Pubsub Service
	One Publisher Per Node
	Use Presence
	Filtered Notifications
	Smart Defaults

	Publishing Events
	Receiving Event Notifications
	Automatic Subscriptions
	Notification Filtering
	Generating Notifications
	Addressing
	Number of Notifications
	When to Generate Notifications
	Sending the Last Published Item

	Recommended Defaults
	Determining Support
	Account Owner Service Discovery
	Contact Service Discovery

	Implementation Notes
	Cancelling Subscriptions
	One Node Per Namespace

	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Service Discovery Category/Type

	XML Schema
	Acknowledgements

