
XEP-0174: Serverless Messaging

Peter Saint-Andre
mailto:xsf@stpeter.im
xmpp:peter@jabber.org
http://stpeter.im/

2018-02-08
Version 2.0.1

Status Type Short Name
Final Standards Track linklocal

This specification defines how to communicate over local or wide-area networks using the principles of
zero-configuration networking for endpoint discovery and the syntax of XML streams and XMPPmessag-
ing for real-time communication. This method uses DNS-based Service Discovery and Multicast DNS to
discover entities that support the protocol, including their IP addresses and preferred ports. Any two en-
tities can then negotiate a serverless connection using XML streams in order to exchange XMPP message
and IQ stanzas.

mailto:xsf@stpeter.im
xmpp:peter@jabber.org
http://stpeter.im/

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2018 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 How It Works . 1

2 Glossary 4

3 DNS Records 5
3.1 TXT Record . 7

4 Discovering Other Users 8

5 Exchanging Presence 8

6 Initiating an XML Stream 8

7 Exchanging Stanzas 9

8 Ending an XML Stream 10

9 Going Offline 10

10 Discovering Capabilities 10

11 Implementation Notes 12
11.1 Multiple Network Interfaces . 12
11.2 Buddy Icons . 12
11.3 Port . 13
11.4 Wide-Area Networks . 13
11.5 User Interface . 13

12 Internationalization Considerations 14

13 Security Considerations 14
13.1 Authentication and Encryption . 14
13.2 Stanza Injection . 15
13.3 TXT Record Parameters . 15
13.4 Private Information . 15

14 IANA Considerations 15

15 XMPP Registrar Considerations 16
15.1 Link-Local Messaging TXT Record Parameters Registry 16

15.1.1 Registration Process . 16
15.1.2 Initial Registration . 17

16 Acknowledgements 20

1 INTRODUCTION

1 Introduction
1.1 Motivation
The Extensible Messaging and Presence Protocol (XMPP) as defined in XMPP Core 1 does not
support direct client-to-client interactions, since it requires authentication with a server: an
XMPP client is allowed access to the network only after it has authenticated with a server, and
the server will not grant access if authentication fails for any reason. If an unauthenticated
client attempts to communicate directly with another client, such communication will fail
because all XMPP communications are sent through one or more servers and a client cannot
inject messages onto the network unless it first authenticates with a server.
However, it is possible to establish an XMPP-like communication system on a local (or even
wide-area) network using the principles of zero-configuration networking. In this situation,
the clients obviate the XMPP requirement for authentication with a server by relying on zero-
configuration networking to establish serverless communication using the _presence._tcp
DNS SRV service type. Once discovery has been completed, the clients are able to negotiate
an XML stream between themselves and then exchange messages and other structured data
using the XMPP <message/> and <iq/> stanzas.
Serverless messaging is typically restricted to a local network (or ad-hoc wide-area network)
because of how zero-configuration networking works. It is impossible for clients that com-
municate via this serverless mode to insert messages into an XMPP network, which is why
this kind of ”mesh” is most accurately referred to as an XMPP-like system that exists outside
the context of existing XMPP networks (though see the Security Considerations regarding the
ability to ”forward” messages from a serverless mesh to an XMPP network or vice-versa).
Such a ”mesh” can be quite valuable in certain circumstances. For instance, participants
in a trade show or conference, users of the same wifi hotspot, or employees on the same
local area network can communicate without the need for a pre-configured server. For this
reason, support for serverless messaging has been a feature of Apple’s iChat client when
operating in Bonjour (formerly Rendezvous) mode since 2002. Because it is desirable for
other Jabber/XMPP clients to support such functionality, this document describes how to use
zero-configuration networking as the basis for serverless communication, mainly for use on
local links (although the protocol can also be used on ad-hoc wide-area networks).

1.2 How It Works
This section provides a friendly introduction to serverless messaging. The examples show
usage on a local link using dynamically configured link-local addresses as described in RFC
3927 2 (see the Wide-Area Networks section of this document regarding non-local usage).
Imagine that you are a Shakespearean character named Juliet. You are are using your laptop
computer (a machine named ”pronto”) at a wifi hotspot in downtown Verona and you want
to find other people to chat with on an ad-hoc basis (i.e., not people in your normal XMPP

1RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
2RFC 3927: Dynamic Configuration of IPv4 Link-Local Addresses <http://tools.ietf.org/html/rfc3927>.

1

http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc3927
http://tools.ietf.org/html/rfc3927
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc3927

1 INTRODUCTION

roster). Therefore your chat client advertises a serverless address of ”juliet@pronto” so that
other people can dynamically find you at the hotspot. Your client does this by invoking a
daemon on your machine that supports DNS-based Service Discovery (”DNS-SD”) as defined
in RFC 6763 3 and Multicast DNS (”mDNS”) as defined in RFC 6762 4. As a result, the daemon
(1) publishes the following DNS records to the multicast DNS address 224.0.0.251 (or FF02::FB
for IPv6) and (2) listens for multicast DNS queries requesting these records:

pronto.local. A 10.2.1.187

juliet@pronto._presence._tcp.local. SRV 5562 pronto.local.

_presence._tcp.local. PTR juliet@pronto._presence._tcp.local.

The meaning of these records is as follows:

• The A record specifies the IP address 10.2.1.187 atwhich the ”pronto”machinewill listen
for connections.

• The SRV record (see RFC 2782 5) maps the presence service instance ”juliet@pronto” to
the machine ”pronto.local.” on port 5562.

• The PTR (”pointer”) record (see RFC 2317 6 and RFC 1886 7) says that there is a service
of type ”presence” on the local subnet (”.local.”) called ”juliet@pronto” and that the
service communicates over TCP.

Your chat client also wants to advertise some information about you (subject to your control
so that you don’t divulge private information). Therefore it invokes the mDNS daemon to
also publish a single DNS TXT record (see RFC 1464 8) that encapsulates some strings of
information, where the record name is the same as the SRV record and the record value
follows the format described in the TXT Record section of this document. The strings are
typically key-value pairs such as the following:

txtvers =1
1st=Juliet
email=juliet@capulet.lit
hash=sha -1
jid=juliet@capulet.lit
last=Capulet
msg=Hanging out downtown

3RFC 6763: DNS-Based Service Discovery <http://tools.ietf.org/html/rfc6763>.
4RFC 6762: Multicast DNS <http://tools.ietf.org/html/rfc6762>.
5RFC 2782: A DNS RR for specifying the location of services (DNS SRV) <http://tools.ietf.org/html/rfc2782>.
6RFC 2317: Classless IN-ADDR.ARPA delegation <http://tools.ietf.org/html/rfc2317>.
7RFC 1886: DNS Extensions to support IP version 6 <http://tools.ietf.org/html/rfc1886>.
8RFC 1464: Using the Domain Name System To Store Arbitrary String Attributes <http://tools.ietf.org/htm
l/rfc1464>.

2

http://tools.ietf.org/html/rfc6763
http://tools.ietf.org/html/rfc6762
http://tools.ietf.org/html/rfc2782
http://tools.ietf.org/html/rfc2317
http://tools.ietf.org/html/rfc1886
http://tools.ietf.org/html/rfc1464
http://tools.ietf.org/html/rfc6763
http://tools.ietf.org/html/rfc6762
http://tools.ietf.org/html/rfc2782
http://tools.ietf.org/html/rfc2317
http://tools.ietf.org/html/rfc1886
http://tools.ietf.org/html/rfc1464
http://tools.ietf.org/html/rfc1464

1 INTRODUCTION

nick=JuliC
node=http: //www.adiumx.com
phsh=a3839614e1a382bcfebbcf20464f519e81770813
port.p2pj =5562
status=avail
vc=CA!
ver=QgayPKawpkPSDYmwT/WM94uAlu0=

Other people at the hotspot can also advertise similar DNS records for use on the local link.
Essentially, the mDNS daemons running on all of the machines at the hotspot collectively
manage the ”.local.” domain, which has meaning only at the hotspot (not across the broader
Internet). Queries and responses for services on the local link occur via multicast DNS over
UDP port 5353 instead of via normal DNS unicast over UDP port 53. When a new machine
joins the local link, it can send out queries for any number of service types, to which the other
machines will reply. For the purpose of serverless messaging we are interested only in the
”presence” service, but many other services could exist on the local link (see dns-sd.org for a
complete list).
Now let us imagine that a fine young gentleman named Romeo joins the hotspot and that his
chat client (actually his mDNS daemon) sends out multicast DNS queries for services of type
”presence”. To do this, his client essentially reverses the order of DNS record publication
(explained above) by asking for pointers to presence services (i.e., PTR records that match
”_presence._tcp.local.”), querying each service for its service instance and port (i.e., SRV
record), mapping each service instance to an IP address (i.e., A record), and finding out
additional information about the entity using the service (i.e., TXT record parameters). 9 As
a result, Romeo’s client will discover any number of local presence services, among them a
service named ”juliet@pronto” (with some intriguing TXT record parameters) at IP address
10.2.1.187 and port 5562. Being a romantic fellow, he then initiates a chat with you by opening
an XML stream to the advertised IP address and port.

<?xml version=’1.0’?>
<stream:stream

xmlns=’jabber:client ’
xmlns:stream=’http: // etherx.jabber.org/streams ’
from=’romeo@forza ’
to=’juliet@pronto ’
version=’1.0’>

Your client then responds with a response stream header.

<?xml version=’1.0’?>
<stream:stream

xmlns=’jabber:client ’
xmlns:stream=’http: // etherx.jabber.org/streams ’
from=’juliet@pronto ’

9As explained in the DNS-SD specification, these queries might all be returned in the same answer.

3

http://www.dns-sd.org/

2 GLOSSARY

to=’romeo@forza ’
version=’1.0’>

Romeo then sends you an XMPP message.

<message from=’romeo@forza ’ to=’juliet@pronto ’>
<body>M’lady ,␣I␣would␣be␣pleased␣to␣make␣your␣acquaintance .</body >

</message >

And you reply.

<message from=’juliet@pronto ’ to=’romeo@forza ’>
<body>Art thou not Romeo , and a Montague?</body>

</message >

You chat with Romeo for a while, then your client closes the stream.

</stream:stream >

And Romeo’s client does the same.

</stream:stream >

Finally you decide to head home, so your mDNS daemon sends a Multicast DNS ”Goodbye”
packet for your PTR record. As a result, everyone else at the hotspot receives a Multicast DNS
”Remove” event, at which point they cancel any outstanding A, SRV, TXT, or NULL record
queries related to your presence service.

2 Glossary

Term Description
Bonjour Apple Computer’s implementation of zero-configuration

networking, formerly known as Rendezvous. See
<http://www.apple.com/macosx/features/bonjour/>.

DNS-SD A convention for naming and structuring DNS SRV
records such that a client can dynamically discover a
domain for a service using only standard DNS queries.
See draft-cheshire-dnsext-dns-sd. For a full list of
registered DNS-SD records, see <http://www.dns-
sd.org/ServiceTypes.html>.

Multicast DNS (mDNS) A technology that provides the ability to perform DNS-
like operations on a local link in the absence of any con-
ventional unicast DNS server. See draft-cheshire-dnsext-
multicastdns.

4

3 DNS RECORDS

Term Description
Zero-configuration networking A set of technologies that enable the use of the Inter-

net Protocol for local or wide-area communications. See
<http://www.zeroconf.org/>.

3 DNS Records
In order to advertise its availability for serverless messaging, a client MUST publish four
different kinds of DNS records:

1. A PTR record of the following form:

_presence._tcp.local. PTR user@machine._presence._tcp.local.

2. An address (”A” or ”AAAA”) record of the following form (where the IP address can be
either an IPv4 address or an IPv6 address):

machine.local. A ip-address

3. An SRV record of the following form:

user@machine._presence._tcp.local <ttl> SRV <priority > <weight >
port -number machine.local.

4. A TXT record whose name is the same as the SRV record and whose value follows the
format described in the TXT Record section of this document, consisting of a set of
strings that typically represent a series of key-value pairs such as the following:

txtvers =1
1st=user -first -name
email=user -email -address
hash=entity -capabilities -algorithm
jid=user -jabber -id
last=user -last -name
msg=freeform -availability -status
n=entity -capabilities -application -name
nick=user -nickname
node=application -identifier
n=entity -capabilities -operating -system
phsh=sha1 -hash -of-avatar

5

3 DNS RECORDS

port.p2pj =5562
status=avail -away -or-dnd
vc=capabilities -string
ver=entity -capabilities -identity

Note: The DNS-SD specification stipulates that the TXT record MUST be published, but
that it MAY contain no more than a single zero byte (e.g., if the user does not wish to
publish any personal information).

The ”machine” is the name of the computer, the ”user” is the system username of the
principal currently logged into the computer, the ”port” can be any unassigned port number,
and the ”ip-address” is the physical address of the computer on the local network.
So, for example, if the machine name is ”pronto”, the username is ”juliet”, the chosen port is
”5562”, the IP address is ”10.2.1.187”, and the personal information is that plausibly associated
with a certain Shakespearean character, the DNS records would be as follows:

_presence._tcp.local. PTR juliet@pronto._presence._tcp.local.

juliet@pronto._presence._tcp.local. SRV 5562 pronto.local.

pronto.local. A 10.2.1.187

juliet@pronto._presence._tcp.local. IN TXT
”txtvers =1”
”1st=Juliet”
”email=juliet@capulet.lit␣”
”hash=sha -1”
”jid=juliet@capulet.lit”
”last=Capulet”
”msg=Hanging␣out␣downtown”
”nick=JuliC”
”node=http: //www.adiumx.com”
”phsh=a3839614e1a382bcfebbcf20464f519e81770813”
”port.p2pj =5562”
”status=avail”
”vc=CA!”
”ver=QgayPKawpkPSDYmwT/WM94uAlu0=””

The IPv4 and IPv6 addresses associated with a machine might vary depending on the local
network to which the machine is connected. For example, on an Ethernet connection the
physical address might be ”192.168.0.100” but when the machine is connected to a wireless
network the physical address might change to ”10.10.1.187”. See RFC 3927 for details.
If the machine name asserted by a client is already taken by another machine on the network,
the client MUST assert a different machine name, which SHOULD be formed by adding the
character ”-” and digit ”1” to the end of themachine name string (e.g., ”pronto-1”), adding the
character ”-” and digit ”2” if the resulting machine name is already taken (e.g., ”pronto-2”),

6

3 DNS RECORDS

and similarly incrementing the digit until a unique machine name is constructed.
If the username asserted by a client is already taken by another application on the machine,
the client MUST assert a different username, which SHOULD be formed by adding the charac-
ter ”-” and digit ”1” to the end of the username string (e.g., ”juliet-1”), adding the character
”-” and digit ”2” if the resulting username is already taken (e.g., ”juliet-2”), and similarly
incrementing the digit until a unique username is constructed.

3.1 TXT Record
DNS-SD enables service definitions to include a TXT record that specifies parameters to be
used in the context of the relevant service type. The name of the TXT record is the same
as that of the SRV record (i.e., ”user@machine._presence._tcp.local.”). The value of the TXT
record is one or more strings, where each string is a parameter that usually takes the form of
a key-value pair.
In the context of serverless messaging, the following rules apply:

1. The entire TXT record needs to comply with the suggested maximum TXT record size
(see Section 6.3 of the DNS-SD specification).

2. A given key MUST NOT occur more than once in a given TXT record value (see Section
6.4 of the DNS-SD specification).

3. The first parameter in the TXT record value SHOULD be ”txtvers” (see Section 6.7 of the
DNS-SD specification).

The XMPP Registrar 10 maintains a registry of the parameters that can be used in the TXT
record value for the _presence._tcp service type, as specified in the XMPP Registrar Con-
siderations section of this document. Those parameters are not listed here. It is OPTIONAL
to include any of these TXT record parameters, and an implementation MUST NOT fail (i.e.,
MUST enable serverless messaging) even if none of the parameters are provided by another
entity. However, as mentioned the TXT record MUST be published (although its value MAY
be a single zero byte).
Most of the registered TXT record parameters relate to human users, in which context certain
parameters are of greater interest than others, e.g. ”msg”, ”nick”, and ”status”; however,
serverless messaging can be used by non-human entities (e.g., devices).
Note: See the Security Considerations section of this document regarding the inclusion
of information that can have an impact on personal privacy (e.g., the ”1st”, ”last”, ”nick”,
”email”, and ”jid” parameters).

10The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

7

https://xmpp.org/registrar/
https://xmpp.org/registrar/

6 INITIATING AN XML STREAM

4 Discovering Other Users
In order to discover other users, a client sends an mDNS request for PTR records that match
”_presence._tcp.local.”. The client then receives replies from all machines that advertise
support for serverless messaging. 11 In accordance with Section 13 of the DNS-SD specifica-
tion, these replies can include the SRV, A/AAAA, and TXT records in the Additional Section
of the DNS message (subject to the size limits described in Section 19 of the Multicast DNS
specification).
The client MAY then find out detailed information about each machine by sending SRV and
TXT queries 12 to ”user@machine.local.” for each machine; however, to preserve bandwidth,
the client SHOULD NOT send these queries unless it is about to initiate communication with
the other user, and it MUST cancel the queries after it has received a response).

5 Exchanging Presence
When the _presence._tcp service is used, presence is exchanged via the format described in
the TXT Record section of this document. In particular, presence information is not pushed
as in XMPP (see RFC 3921 13). Instead, clients listen for presence announcements from other
entities on the local link or wide-area network. Recommended rates for sending updates can
be found in the Multicast DNS specification.

6 Initiating an XML Stream
In order to exchange serverless messages, the initiator and recipient MUST first establish
XML streams between themselves, as is familiar from RFC 6120.
First, the initiator opens a TCP connection at the IP address and port discovered via the DNS
lookup for an entity and opens an XML stream to the recipient, which SHOULD include ’to’
and ’from’ address:

Listing 1: Initiator Opens a Stream
I: <?xml version=’1.0’?>

<stream:stream
xmlns=’jabber:client ’
xmlns:stream=’http: // etherx.jabber.org/streams ’
from=’romeo@forza ’
to=’juliet@pronto ’
version=’1.0’>

11The replies will include a record corresponding to the client itself; the client MUST filter out this result.
12These questions MAY all be sent in one DNS query packet.
13RFC 3921: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool

s.ietf.org/html/rfc3921>.

8

http://tools.ietf.org/html/rfc3921
http://tools.ietf.org/html/rfc3921
http://tools.ietf.org/html/rfc3921

7 EXCHANGING STANZAS

Note: If the initiator supports stream features and the other stream-related aspects of XMPP
1.0 as specified in RFC 6120, then it SHOULD include the version=’1.0’ flag as shown in the
previous example.
The recipient then responds with a stream header as well:

Listing 2: Recipient Sends Stream Header Response
R: <?xml version=’1.0’?>

<stream:stream
xmlns=’jabber:client ’
xmlns:stream=’http: // etherx.jabber.org/streams ’
from=’juliet@pronto ’
to=’romeo@forza ’
version=’1.0’>

If both the initiator and recipient included the version=’1.0’ flag, the recipient SHOULD also
send stream features as specified in RFC 6120:

Listing 3: Recipient Sends Stream Features
R: <stream:features >

<starttls xmlns=’urn:ietf:params:xml:ns:xmpp -tls’>
<required/>

</starttls >
</stream:features >

The exchange of stream headers results in an unencrypted and unauthenticated channel
between the two entities. See the Security Considerations section of this document regarding
methods for authenticating and encrypting the stream.

7 Exchanging Stanzas
Once the streams are established, either entity then can send XMPP message or IQ stanzas by
specifying ’to’ and ’from’ addresses using the logical addresses: 14

Listing 4: Sending a Message
<message from=’romeo@forza ’ to=’juliet@pronto ’>

<body>M’lady ,␣I␣would␣be␣pleased␣to␣make␣your␣acquaintance .</body >
</message >

14The to and from addresses MUST be of the form ”user@machine” as discovered via SRV (this is the <Instance>
portion of the Service Instance Name).

9

10 DISCOVERING CAPABILITIES

Listing 5: A Reply
<message from=’juliet@pronto ’ to=’romeo@forza ’>

<body>Art thou not Romeo , and a Montague?</body>
</message >

8 Ending an XML Stream
To end the chat, either party closes the XML stream:

Listing 6: Ending the Chat
R: </stream:stream >

The other party MUST then also close the stream in the other direction:

Listing 7: Closing the Stream
I: </stream:stream >

The closing party (i.e., the party that sent the first closing stream tag) then MUST close the
TCP connection between them.
Note: The closing party might receive additional stanzas from the other party after sending
its closing stream tag and before receiving a closing stream tag from the other party (e.g.,
because of network latency or because the other party has messages queued up for delivery
when it receives the closing party’s closing stream tag). Therefore, the closing party needs
to be prepared to handle such messages, which it SHOULD do by presenting them to the
controlling user (if any).

9 Going Offline
In order to go offline, a link-local entity MUST send a Multicast DNS ”Goodbye” packet for the
user’s PTR record as described in Section 11.2 of the Multicast DNS specification. As a result,
all other entities on the local network will receive a Multicast DNS ”Remove” event, at which
point theyMUST cancel any outstanding TXT, SRV, or NULL record queries for the offline user.

10 Discovering Capabilities
Because serverless communication does not involve the exchange of XMPP presence, it is
not possible to use Entity Capabilities (XEP-0115) 15 for capabilities discovery. Therefore, it

15XEP-0115: Entity Capabilities <https://xmpp.org/extensions/xep-0115.html>.

10

https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0115.html

10 DISCOVERING CAPABILITIES

is RECOMMENDED to instead include the node, hash, and ver TXT record parameters (and
OPTIONAL to include the ext parameter). The values of these parameters MUST be the
same as the values for the ’node’, ’hash’, ’ver’, and ’ext’ attributes that are advertised for the
application in normal XMPP presence (if any) via the Entity Capabilities protocol as described
in XEP-0115.
As with Entity Capabilities over native XMPP networks, a client might not know the Service
Discovery (XEP-0030) 16 features associated with the ’ver’ value advertised by another entity.
However, in the case of serverless messaging there is no way for the client to discover the
entity’s supported features without initiating an XML stream to that entity and then sending
a Service Discovery information (”disco#info”) request over the negotiated stream.
Unfortunately, full stream negotiation (including TLS and SASL if appropriate) can require a
large number of packets. Therefore, as an optimization, it is RECOMMENDED for the receiving
entity in a serverless XML stream negotiation to include its disco#info data (including node)
as a stream feature, as shown in the following examples.

Listing 8: Initiator Opens a Stream
I: <?xml version=’1.0’?>

<stream:stream
xmlns=’jabber:client ’
xmlns:stream=’http: // etherx.jabber.org/streams ’
from=’romeo@forza ’
to=’juliet@pronto ’
version=’1.0’>

Listing 9: Recipient Sends Stream Header Response
R: <?xml version=’1.0’?>

<stream:stream
xmlns=’jabber:client ’
xmlns:stream=’http: // etherx.jabber.org/streams ’
from=’juliet@pronto ’
to=’romeo@forza ’
version=’1.0’>

Listing 10: Recipient Sends Stream Features
R: <stream:features >

<starttls xmlns=’urn:ietf:params:xml:ns:xmpp -tls’>
<required/>

</starttls >
<query xmlns=’http: // jabber.org/protocol/disco#info’

node=’http: //code.google.com/p/exodus#QgayPKawpkPSDYmwT/
WM94uAlu0=’>

<identity category=’client ’ name=’Exodus␣0.9.1 ’ type=’pc’/>
<feature var=’http: // jabber.org/protocol/caps’/>

16XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

11

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

11 IMPLEMENTATION NOTES

<feature var=’http: // jabber.org/protocol/disco#info’/>
<feature var=’http: // jabber.org/protocol/disco#items ’/>
<feature var=’http: // jabber.org/protocol/muc’/>

</query >
</stream:features >

If the initiating entity was connecting to the receiving entity only to perform a Service
Discovery query, it SHOULD then end the stream:

Listing 11: Initiating Entity Terminates XML Stream
I: </stream:stream >

Listing 12: Receiving Entity Mirrors Stream Termination
R: </stream:stream >

11 Implementation Notes
11.1 Multiple Network Interfaces
Devices that use serverless messaging can have multiple network interfaces. As a result, it
is possible to discover the same entity multiple times. Even if a client discovers the same
presence name onmultiple network interfaces, it MUST show only one entity in the serverless
roster. In addition, because local IP addresses can be dynamically re-assigned, the client
SHOULD NOT store the IP address to be used for communication when it discovers that
address in the initial DNS lookup phase; instead, it SHOULD delay sending the Multicast DNS
query until the client is ready to communicate with the other entity.

11.2 Buddy Icons
If an entity has an associated icon (e.g., a user avatar or photo), its client SHOULD publish the
raw binary data for that image via a DNS NULL record of the following form:

_presence._tcp.local. IN NULL raw -binary -data -here

Note: In accordance with RFC 1035 17, the data MUST be 65535 octets or less.
After retrieving the ”phsh” value from a Buddy’s TXT record, a client SHOULD search its local
picture database to learn the last recorded picture hash value for an entity and then compare
it to the ”phsh” value in the TXT record. If the values are equal, the client SHOULD use the
local copy of the icon. If the picture hash values are not equal, the client SHOULD issue a
Multicast DNS NULL record query to retrieve the new icon. After retrieving the NULL record,

17RFC 1035: Domain Names - Implementation and Specification <http://tools.ietf.org/html/rfc1035>.

12

http://tools.ietf.org/html/rfc1035
http://tools.ietf.org/html/rfc1035

11 IMPLEMENTATION NOTES

the client SHOULD replace the old ”phsh” value in the picture database with the new ”phsh”
value and save the icon to disk. If the client needs to send a Multicast DNS query in order
to retrieve the icon, it MUST cancel the NULL record query immediately after receiving a
response containing the new picture data.
If a user changes their picture, the user’s client MUST update the NULL record with the
contents of the new picture, calculate a new picture hash, and then update the ”phsh” value
in the TXT record with the new hash value. Since all users ”logged into” serverless presence
are monitoring for TXT record changes, they will see that the ”phsh” value was changed; if
they wish to view the new icon, their clients SHOULD issue a new Multicast DNS query to
retrieve the updated picture.

11.3 Port
The port used for serverless messaging MAY be any unassigned port number, as determined
by the messaging application on the device. The chosen port MUST be specified in the SRV
record and applications MUST use the port specified in the SRV record. However, the chosen
port SHOULD also be specifed in the ”port.p2pj” TXT record for backwards-compatibility with
older implementations, and if included the port specified in the TXT record MUST be the
same as the port specified in the SRV record.

11.4 Wide-Area Networks
Serverless messaging via the _presence._tcp DNS SRV service type is not limited to local net-
works, since it is possible to advertise this service type via Wide-Area DNS-SD as described at
<http://www.dns-sd.org/iChatWideArea.html>. Although the protocol is most commonly
used on local networks, there is nothing intrinsic to the protocol that limits its use to peers on
the same link, and it also works between any two peers that can discover each other via any
profile of DNS-SD (whether local or wide-area). Naturally, the DNS records used in Wide-Area
DNS-SD will not contain the ”.local.” domain, since the records are not intended for use over
a local link.

11.5 User Interface
The presence name to be used for display in a serverless ”roster” SHOULD be obtained from
the <Instance> portion of the received PTR record for each user; however, the client MAY
instead display a name or nickname derived from the TXT record if available.
A client MAY require user approval before allowing a human user to chat with other users
over serverless messaging.

13

http://www.dns-sd.org/iChatWideArea.html

13 SECURITY CONSIDERATIONS

12 Internationalization Considerations
RFC 1035 does not allow characters outside the US-ASCII 18 character range in DNS A records.
Therefore the ”machine” portion of an A record as used for serverless messaging MUST NOT
contain characters outside the US-ASCII character range.
Although RFC 2317 and RFC 2782 do not allow characters outside the US-ASCII character range
in PTR and SRV records respectively, Section 4.1 of DNS-Based Service Discovery recommends
support for UTF-8-encoded Unicode characters in the <Instance> portion of Service Instance
Names, which in serverless messaging is the ”user@machine” portion of the PTR or SRV
record. This document adheres to the recommendation in DNS-Based Service Discovery.
However, as mentioned above, the ”machine” portion of the <Instance> portion MUST NOT
contain characters outside the US-ASCII range.
Although RFC 1464 does not allow characters outside the US-ASCII character range in TXT
records, Section 6.5 of DNS-Based Service Discovery mentions support for UTF-8-encoded
Unicode characters in text record values (e.g., values of the TXT ”msg” name). This document
adheres to the recommendation in DNS-Based Service Discovery.

13 Security Considerations
13.1 Authentication and Encryption
XMPP networks use TLS (RFC 5246 19) for channel encryption, SASL (RFC 4422 20) for authen-
tication, and the Domain Name System (RFC 1034 21) for weak validation of server hostnames;
these technologies help to ensure the identity of sending entities and to encrypt XML streams.
By contrast, zero-configuration networking uses dynamic discovery and asserted machine
names as the basis of sender identity. Therefore, serverless messaging does not result in
authenticated identities in the same way that XMPP itself does, nor does it provide for an
encrypted channel between entities.
To secure communications between serverless entities, it is RECOMMENDED to negotiate
the use of TLS and SASL for the XML stream as described in RFC 6120. However, subject to
client configuration and local service policies, an entity MAY accept an unauthenticated and
unencrypted channel, in which case the client SHOULD warn the human user that the channel
is unauthenticated and unencrypted.

18Coded Character Set - 7-bit American Standard Code for Information Interchange (American National Standards
Institute X3.4, 1986).

19RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2 <http://tools.ietf.org/html/rfc5246>.
20RFC 4422: Simple Authentication and Security Layer (SASL) <http://tools.ietf.org/html/rfc4422>.
21RFC 1034: Domain Names - Concepts and Facilities <http://tools.ietf.org/html/rfc1034>.

14

http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc1034
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc1034

14 IANA CONSIDERATIONS

13.2 Stanza Injection
Because of fundamental differences between a true XMPP network and a serverless client
”mesh”, entities communicating via serverless messaging MUST NOT attempt to inject
serverless traffic onto an XMPP network and an XMPP server MUST reject communications
until an entity is properly authenticated in accordance with the rules defined in RFC 6120.
However, a client on a serverless mesh MAY forward traffic to an XMPP network after having
properly authenticated on such a network (e.g., to forward a message received on a serverless
client mesh to a contact on an XMPP network).

13.3 TXT Record Parameters
Because there is no mechanism for validating the information that is published in DNS
TXT records, it is possible for clients to ”poison” this information (e.g., by publishing email
addresses or Jabber IDs that are controlled by or associated with other users).

13.4 Private Information
The TXT record parameters optionally advertised as part of this protocol MAY result in
exposure of privacy-sensitive information about a human user (such as full name, email
address, and Jabber ID). A client MUST allow a user to disable publication of this personal
information (e.g., via client configuration).

14 IANA Considerations
DNS-SD service type names are not yet managed by the Internet Assigned Numbers Authority
(IANA) 22. Section 19 of DNS-Based Service Discovery proposes an IANA allocation policy for
unique application protocol or service type names. Until the proposal is adopted and in force,
Section 19 points to <http://www.dns-sd.org/ServiceTypes.html> regarding registration
of service type names for DNS-SD.
Before this specification was written, there was an existing registration for the ”presence”
service type, with registration information as follows:

1. Short name: presence

2. Long name: iChat AV

3. Responsible person: Jens Alfke <jens at apple.com>

22The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

15

http://www.iana.org/
http://www.iana.org/
http://www.dns-sd.org/ServiceTypes.html
http://www.iana.org/

15 XMPP REGISTRAR CONSIDERATIONS

4. Defined TXT keys: txtvers, port.p2pj, phsh, vc, 1st, AIM, msg, status, last

On 2007-05-14, the XMPP Registrar submitted the following proposed modification to the
existing registration, which was accepted on 2007-05-30:

1. Short name: presence

2. Long name: Link-Local Messaging

3. Responsible person: XMPP Registrar <registrar at xmpp.org>

4. Protocol URL: http://www.xmpp.org/extensions/xep-0174.html

5. Primary transport protocol: _tcp

6. TXT record URL: http://www.xmpp.org/registrar/linklocal.html

15 XMPP Registrar Considerations
15.1 Link-Local Messaging TXT Record Parameters Registry
The XMPP Registrar 23 maintains a registry of parameter strings contained in the TXT record
advertised for serverless messaging (see <https://xmpp.org/registrar/linklocal.html>).

15.1.1 Registration Process

In order to submit new values to this registry, the registrant shall define an XML fragment of
the following form and either include it in the relevant XMPP Extension Protocol or send it to
the email address <registrar@xmpp.org>:

<param >
<name>The name of the parameter as used a key -value pair.</name>
<desc>A natural -language description of the parameter.</desc>
<status >

The requirements status of the record. Should be one of:
- required
- recommended
- optional
- deprecated
- obsolete

</status >
</param >

23The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

16

https://xmpp.org/registrar/
https://xmpp.org/registrar/linklocal.html
https://xmpp.org/registrar/

15 XMPP REGISTRAR CONSIDERATIONS

The registrant can register more than one parameter at a time, each contained in a separate
<record/> element.

15.1.2 Initial Registration

The following submission registers parameters in use as of June 2007. Refer to the registry
itself for a complete and current list of parameters (this specification might or might not be
revised when new parameters are registered).

<param >
<name>1st</name>
<desc>The given or first name of the user.</desc>
<status >optional </status >

</param >

<param >
<name>email </name>
<desc>

The email address of the user; can contain a space -separated list
of more than one email address.

</desc>
<status >optional </status >

</param >

<param >
<name>ext</name>
<desc>

A space -separated list of extensions; the value of this record
MUST

be the same as that provided via normal XMPP presence (if
applicable)

in the ’ext’ attribute specified in Entity Capabilities (XEP -0115)
.

</desc>
<status >optional </status >

</param >

<param >
<name>hash</name>
<desc>

The hashing algorithm used to generated the ’ver’ attribute in
Entity Capabilities (XEP -0115) and therefore the ver parameter
in Link -Local Messaging.

</desc>
<status >recommended </status >

</param >

17

15 XMPP REGISTRAR CONSIDERATIONS

<param >
<name>jid</name>
<desc>

The Jabber ID of the user; can contain a space -separated list of
more than one JID.

</desc>
<status >recommended </status >

</param >

<param >
<name>last</name>
<desc>The family or last name of the user.</desc>
<status >optional </status >

</param >

<param >
<name>msg</name>
<desc>

Natural -language text describing the user’s␣state.␣This␣is
␣␣␣␣equivalent␣to␣the␣XMPP␣<status />;␣element.
␣␣ </desc >
␣␣<status >optional </status >
</param >

<param >
␣␣<name >nick </name >
␣␣<desc >A␣friendly␣or␣informal␣name␣for␣the␣user.</desc >
␣␣<status >recommended </status >
</param >

<param >
␣␣<name >node </name >
␣␣<desc >
␣␣␣␣A␣unique␣identifier␣for␣the␣application;␣the␣value␣of␣this␣record␣

MUST
␣␣␣␣be␣the␣same␣as␣that␣provided␣via␣normal␣XMPP␣presence␣(if␣

applicable)
␣␣␣␣in␣the␣’node’␣attribute␣specified␣in␣Entity␣Capabilities␣(XEP

-0115).
␣␣ </desc >
␣␣<status >recommended </status >
</param >

<param >
␣␣<name >phsh </name >
␣␣<desc >
␣␣␣␣The␣SHA -1␣hash␣of␣the␣user’s avatar icon or photo. This SHOULD be

requested using mDNS in unicast mode by sending a DNS query to the
mDNS multicast address (224.0.0.251 or its IPv6 equivalent

18

15 XMPP REGISTRAR CONSIDERATIONS

FF02::FB).
The client SHOULD keep a local cache of icons keyed by hash. If

the
phsh value is not in the cache , the client SHOULD fetch the

unknown
icon and then cache it. Implementations SHOULD also include logic

for
expiring avatar icons.

</desc>
<status >optional </status >

</param >

<param >
<name>port.p2pj</name>
<desc>

The port for serverless communication. This MUST be the same as
the

value provided for SRV lookups. Clients MUST use the port
discovered

via SRV lookups and MUST ignore the value of this parameter.
However ,

clients SHOULD advertise this parameter if it is important to
ensure

backwards -compatibility with some existing implementations. (Note:
In

some existing implementations this value was hardcoded to ”5298”.)
</desc>
<status >deprecated </status >

</param >

<param >
<name>status </name>
<desc>

The presence availability of the user. Allowable values are ”avail
”,

”away”, and ”dnd”, which map to mere XMPP presence (the user is
available) and the XMPP <show/> values of ”away” and ”dnd”,
respectively; if the status record is not included , the status

SHOULD
be assumed to be ”avail”.

</desc>
<status >recommended </status >

</param >

<param >
<name>txtvers </name>
<desc>

The version of the TXT record supported by the client. For
backwards

19

16 ACKNOWLEDGEMENTS

compatibility this is hardcoded at ”1”. This parameter SHOULD be
the

first one provided , in accordance with the DNS -SD specification.
</desc>
<status >deprecated </status >

</param >

<param >
<name>vc</name>
<desc>

A flag advertising the user’s␣ability␣to␣engage␣in␣audio␣or␣video
␣␣␣␣conferencing.␣If␣the␣user␣is␣able␣to␣engage␣in␣audio␣conferencing ,
␣␣␣␣the␣string␣MUST␣include␣the␣”A”␣character.␣If␣the␣user␣is␣able␣to
␣␣␣␣engage␣in␣video␣conferencing ,␣the␣string␣MUST␣include␣the␣”V”
␣␣␣␣character.␣If␣the␣user␣is␣able␣to␣engage␣in␣conferencing␣with␣more
␣␣␣␣than␣one␣participant ,␣the␣string␣MUST␣include␣the␣”C”␣character.␣

If
␣␣␣␣the␣user␣is␣not␣currently␣engaged␣in␣an␣audio␣or␣video␣conference ,
␣␣␣␣the␣string␣MUST␣include␣the␣”!”␣character.␣The␣order␣of␣characters
␣␣␣␣in␣the␣string␣is␣immaterial.␣NOTE:␣This␣flag␣is␣included␣only␣for
␣␣␣␣backwards -compatibility;␣implementations␣SHOULD␣use␣the␣node ,␣ver ,
␣␣␣␣and␣ext␣parameters␣for␣more␣robust␣capabilities␣discovery␣as␣

described
␣␣␣␣in␣the␣Discovering␣Capabilities␣section␣of␣XEP -0174.
␣␣ </desc >
␣␣<status >optional </status >
</param >

<param >
␣␣<name >ver </name >
␣␣<desc >
␣␣␣␣A␣hashed␣string␣that␣defines␣the␣XMPP␣service␣discovery␣(XEP -0030)
␣␣␣␣identity␣of␣the␣application␣and␣the␣XMPP␣service␣discovery␣

features
␣␣␣␣supported␣by␣the␣application;␣the␣value␣of␣this␣record␣MUST␣be␣the
␣␣␣␣same␣as␣that␣provided␣via␣normal␣XMPP␣presence␣(if␣applicable)␣in
␣␣␣␣the␣’ver’␣attribute␣specified␣in␣Entity␣Capabilities␣(XEP -0115).
␣␣ </desc >
␣␣<status >recommended </status >
</param >

16 Acknowledgements
Thanks to Emanuele Aina, Jens Alfke, Marco Barisione, Stuart Cheshire, Justin Karneges, Marc
Krochmal, Eric St. Onge, and Sjoerd Simons for their input. Some of the explanatory concepts

20

16 ACKNOWLEDGEMENTS

were loosely borrowed from SIP URI Service Discovery using DNS-SD 24.

24SIP URI Service Discovery using DNS-SD <http://tools.ietf.org/html/draft-lee-sip-dns-sd-uri>. Work
in progress.

21

http://tools.ietf.org/html/draft-lee-sip-dns-sd-uri
http://tools.ietf.org/html/draft-lee-sip-dns-sd-uri

	Introduction
	Motivation
	How It Works

	Glossary
	DNS Records
	TXT Record

	Discovering Other Users
	Exchanging Presence
	Initiating an XML Stream
	Exchanging Stanzas
	Ending an XML Stream
	Going Offline
	Discovering Capabilities
	Implementation Notes
	Multiple Network Interfaces
	Buddy Icons
	Port
	Wide-Area Networks
	User Interface

	Internationalization Considerations
	Security Considerations
	Authentication and Encryption
	Stanza Injection
	TXT Record Parameters
	Private Information

	IANA Considerations
	XMPP Registrar Considerations
	Link-Local Messaging TXT Record Parameters Registry
	Registration Process
	Initial Registration

	Acknowledgements

