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1 Introduction

1.1 Why Dialback?

When Jabber technologies were first developed in 1998, they were conceived of as a client-
server system similar to email, wherein a client would connect to a server in order to
communicate with other clients. Similarly, servers would connect with peer servers to
provide inter-domain communication (often called "federation”). In a system that allows
federation, it is important for a server to be able to determine the identity of a peer server.
Therefore the Jabber developer community designed a protocol called ”Server Dialback” for
identity verification based on the Domain Name System (DNS), built support for that protocol
into the jabberd 1.2 server (released in October 2000), and mandated support for that protocol
on the emerging Jabber server network.

The basic idea behind Server Dialback is that a receiving server does not accept XMPP traffic
from a sending server until it has (a) "called back” the authoritative server for the domain
asserted by the sending server and (b) verified that the sending server is truly authorized to
generate XMPP traffic for that domain. The protocol also ensures that the receiving server is
accepting stanzas for the target domain.

When the early Jabber protocols were formalized by the XMPP Working Group of the Internet
Engineering Task Force (IETF) ! in 2002-2004, support for strong identity verification was
added (see RFC 3920 2, since updated by RFC 6120 ). That support takes the form of Trans-
port Layer Security (TLS) for encryption of server-to-server XML streams and the Simple
Authentication and Security Layer (SASL) for authentication of such streams, typically using
digital certificates issued by trusted root certification authorities (CAs). However, the Server
Dialback protocol is still in wide use. In addition, the slow but steady deployment of the DNS
security extensions (DNSSEC) RFC 4033 * can provide a stronger basis for using Server Dialback.

1.2 What Dialback Accomplishes

Server Dialback is a method for identity verification: if the dialback negotiation succeeds, the
receiving server for an XML stream can associate a pair of domain names with the stream;
those two domain names are the sender domain asserted by the initiating server and the
domain name at the receiving server that the initiating server has indicated it wishes to
communicate with.

Traditionally, the verification accomplished in Server Dialback has depended on the Domain
Name System (DNS) and the use of keys based on a shared secret known to all XMPP servers
within a given administrative domain. It is a proof-of-possession protocol in the sense of RFC

The Internet Engineering Task Force is the principal body engaged in the development of new Internet standard
specifications, best known for its work on standards such as HTTP and SMTP. For further information, see
<http://www.ietf.org/>.

’RFC 3920: Extensible Messaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc3920>.

RFC 6120: Extensible Messaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120=>.

“RFC 4033: DNS Security Introduction and Requirements <http://tools.ietf.org/html/rfc4033>.


http://www.ietf.org/
http://www.ietf.org/
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc4033
http://tools.ietf.org/html/rfc4949
http://tools.ietf.org/html/rfc4949
http://tools.ietf.org/html/rfc4949
http://tools.ietf.org/html/rfc4949
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc4033
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4949 > which asserts that the initiating server and the authoritative server are associated
with each other. The relative strength or weakness of the verification depends in part on
the strength or weakness of the process for resolving the domain names of the authoritative
server; in particular, if DNSSEC is not used then Server Dialback results in weak identity
verification, whereas if DNSSEC is used then Server Dialback can result in fairly strong
identity verification.

Since October 2000, the use of Server Dialback (even absent DNSSEC) has made it more difficult
to spoof the hostnames of servers (and therefore the addresses of sent messages) on the XMPP
network.

Server Dialback is unidirectional, and results in verification for one XML stream in one
direction. Because traditionally Server-to-Server connections are used unidirectionally,
Server Dialback needs to be completed in each direction in order to enable bidirectional
communication between two domains (unless Bidirectional Server-to-Server Connections
(XEP-0288) © is used).

Furthermore, because a separate TCP connection is mandated for each domain pair, the use of
server dialback results in significant scalability challenges for large XMPP service providers
that host many domains (see RFC 7712 7 for a possible solution).

Finally, dialback signalling can be used without basing the identity verification on checking of
the dialback key provided by the Initiating Server. As one example, if Transport Layer Security
(TLS) is used then the Receiving Server can attempt to verify the certificate presented by the
Initiating Server, either according to the PKIX-based rules specified in Best Practices for Use
of SASL EXTERNAL (XEP-0178) 8, RFC 6120 ?, and RFC 6125 ° or by checking that the public
key or certificate of the Initiating Server matches a public key or certificate obtained via
POSH !, However, this technique of using dialback signalling without verifying the dialback
key (sometimes called “dialback without dialing back” since the Receiving Server does not
contact the Authoritative Server) is not described in this document.

1.3 Terminology

This document uses the following terms.

Authoritative Server The machine that is discovered by means of a DNS lookup for the
Sender Domain; for simple deployments this will be the Initiating Server, but it could

°RFC 4949: Internet Security Glossary, Version 2 <http://tools.ietf.org/html/rfc4949>,
®XEP-0288: Bidirectional Server-to-Server Connections <https://xmpp.org/extensions/xep-0288.html>.
’RFC 7712: Domain Name Associations (DNA) in the Extensible Messaging and Presence Protocol (XMPP)<http:
//tools.ietf.org/html/rfc7712>,
8XEP-0178: Best Practices for Use of SASL EXTERNAL <https://xmpp.org/extensions/xep-0178.html>,
RFC 6120: Extensible Messaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
!RFC 6125: Representation and Verification of Domain-Based Application Service Identity within Internet Public
Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS) <http:
//tools.ietf.org/html/rfc6125>,
MPKIX Over Secure HTTP (POSH) <http://datatracker.ietf.org/doc/draft-miller-posh/>.


https://xmpp.org/extensions/xep-0288.html
https://xmpp.org/extensions/xep-0288.html
http://tools.ietf.org/html/rfc7712
https://xmpp.org/extensions/xep-0178.html
https://xmpp.org/extensions/xep-0178.html
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6125
http://datatracker.ietf.org/doc/draft-miller-posh/
http://tools.ietf.org/html/rfc4949
https://xmpp.org/extensions/xep-0288.html
http://tools.ietf.org/html/rfc7712
http://tools.ietf.org/html/rfc7712
https://xmpp.org/extensions/xep-0178.html
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125
http://datatracker.ietf.org/doc/draft-miller-posh/
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be a separate machine in the Initiating Server’s network (where "network” is defined by
knowledge of a shared secret for verification of dialback keys).

Domain Pair The combination of the Sender Domain and Target Domain.

Initiating Server The machine that wants to send a message from an entity at the Sender
Domain to an entity at the Target Domain (and thus the machine that is attempting to
establish a domain name association between (a) the Target Domain and (b) the XML
stream from the Initiating Server to the Receiving Server). Note well that in older doc-
umentation of the Server Dialback protocol, this was called the Originating Server.

Receiving Server The machine to which the Initiating Server has opened a connection for
the purpose of sending a message from the Sender Domain to the Target Domain (and
thus the machine that is trying to verify that the Initiating Server represents the Sender
Domain).

Sender Domain The domain name asserted by the Initiating Server as the domainpart of the
XMPP 'from’ address of stanzas that will flow over the XML stream from the Initiating
Server to the Receiving Server.

Target Domain The domain name specified by the Initiating Server as the domainpart of the
XMPP ’to’ address of stanzas that will flow over the XML stream from the Initiating
Server to the Receiving Server.

1.4 How Dialback Works

Server Dialback is used when a stanza that is to be sent from a Sender Domain must be routed
to a Target Domain and there is not yet an established connection between the domains. The
basic flow of events in Server Dialback consists of the following four steps:

1. The Initiating Server generates a dialback key and sends that value over its XML
stream with the Receiving Server. (If the Initiating Server does not yet have an XML
stream to the Receiving Server, it will first need to perform a DNS lookup on the
Target Domain and thus discover the Receiving Server, open a TCP connection to the
discovered IP address and port, and establish an XML stream with the Receiving Server.)

2. Instead of immediately accepting XML stanzas on the connection from the Initiating
Server, the Receiving Server sends the same dialback key over its XML stream with the
Authoritative Server for verification. (If the Receiving Server does not yet have an XML
stream to the Authoritative Server, it will first need to perform a DNS lookup on the
Sender Domain and thus discover the Authoritative Server, open a TCP connection to
the discovered IP address and port, and establish an XML stream with the Authoritative
Server.)
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3. The Authoritative Server informs the Receiving Server whether the key is valid or
invalid.

4. The Receiving Server informs the Initiating Server whether its identity has been verified
or not.

After Step 4, the Initiating Server is authorized to send stanzas from the Sender Domain to the
Target Domain as communicated in the 'to’ and 'from’ attributes of the dialback negotiation.
In addition to identity verification of the Sender Domain, this also ensures that the Receiving
Server is accepting stanzas for the Target Domain.

We can represent the flow of events graphically as follows.

Initiating Receiving
Server Server

[if necessary,

perform DNS lookup

on Target Domain,
open TCP connection,
and establish stream]

| send dialback key Server
| ------- (STEP 1)-------- > 1 mmmmmeeeeee

I
I
I
I
I
I
I
| | Authoritative
I
I
I
| [if necessary,
| perform DNS lookup,
| on Sender Domain,
| open TCP connection,
I

and establish stream]

| ------- (STEP 2)-------- >

I

| send verify response

| <------ (STEP 3)--------- |
|

I

report dialback result

I

I

I

I

I

I

I

I

| | send verify request
I

I

I

I

|

I

| <-=-=-=---- (STEP 4)-------- |
I




\V.)

PROTOCOL

2 Protocol

This section describes the protocol in detail.
Assumptions used in the examples:

Note:

The server hosting "capulet.example” is acting as the Initiating Server in sections 2.1.1
and 2.2.1 and as the Receiving Server in sections 2.1.2 and 2.2.2. A DNS SRV lookup on
"capulet.example” resolves to "orchard.capulet.example”.

The server hosting "montague.example” is acting as Receiving Server in sections 2.1.1
and 2.2.2 and as Authoritative Server in sections 2.1.2 and 2.2.2. A DNS SRV lookup on
"montague.example” resolves to the machine "home.montague.example”

The stream ID of the response stream header sent from “capulet.example” to "mon-
tague.example” is "D60000229F”.

The stream ID of the response stream header sent from “montague.example” to "ca-
pulet.example” is "417GAF25”.

The shared secret within the "capulet.example” domain is "s3cr3tford14lb4ck”.
The shared secret within the "montague.example” domain is "d14lb4ck43v3r”.

All XML elements qualified by the Server Dialback namespace MUST be prefixed with

the namespace prefix for the ’jabber:server:dialback’ namespace as advertised on the stream

header originally sent by the entity sending the elemen

t. 12

This section can be read in two ways:

1.

To understand the overall protocol flow of each dialback negotiation, read Section
2.1.1 and Section 2.2.1 (aspects of the dialback negotiation from capulet.example as
Initiating Server to montague.example as Receiving Server), then Section 2.1.2 and
2.2.2 (aspects of the dialback negotiation from montague.example as Initiating Server
to capulet.example as Receiving Server).

To implement the code for either an outbound connection or an inbound connection,
read Section 2.1 (outbound) or Section 2.2 (inbound). Note that both parts can be
implemented, tested, and used separately.

The following figure gives an overview of where each example is embedded in the process
and illustrates the changing roles of each server.

2RFC 3920 stipulated that ”an implementation SHOULD generate only the 'db:’ prefix for such elements and MAY
accept only the ’db:” prefix.” This restriction was included for the sake of backward compatibility with the
jabberd 1.x codebase.
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orchard. capulet. home . montague.

example example

(as Initiating) (as Receiving
Server) Server)

|

| [if necessary,
| perform DNS

| lookup on

| Target Domain,
| open TCP

| connection,

| and establish
I

Ex 2,3,4/10,11,12

- stanzas flow ->
from
capulet.example
to
montague.example

I

I

I

I

I

I

I

I

stream] |

| == > |
| (ID D600QO229F) |
I I
| send | capulet.example
| dialback key | (as Authoritative
| -=---- (STEP 1)----> | Server)
| Ex 1/ 9 il
| | [if necessary, [
| | perform DNS [
I | lookup on |
| | Sender Domain, |
| | open TCP |
| | connection, |
| | and establish |
| | stream] |
| et > |
I I I
| | send |
| | verify request |
| | ----(STEP 2)----- > |
I I I
| | send |
| | verify response |
| | <----(STEP 3)----- |
I I
| report |
| dialback result |
| <----- (STEP 4)---- |
I I
I I
I I
I I
I I
I I
I I




/2 PROTOCOL

montague.example capulet.example
(as Initiating (as Receiving
Server) Server)

connection or

I I
| [may reuse |
I I
| open new stream] |
I
I
I

- stanzas flow ->
from
montague.example
to
capulet.example

| —mmmmmmmm e >
| (ID 417GAF25)
| montague.
example
| | send | (as
Authoritative
| | dialback key | Server
)
| | ----- (STEP 1)----> |
I I I I
| | | [may reuse |
| | | connection or |
| | | open new stream] |
I I | === > |
I I I I
| | | send |
| | | verify request |
| | | ----- (STEP 2)----> |
| | | Ex 5/ 13 |
I I I I
| | | send |
| | | verify response |
| | | <----(STEP 3)----- |
| | | Ex 6,7,8/14,15,16
I I I
| | report |
| | dialback result |
| | <----(STEP 4)----- |
| I
| I
I I
I I
I I
| I
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2.1 Outbound Connection

On an outbound connection there are two different tasks:

1. Request authorization to send stanzas from a Sender Domain to a Target Domain, i.e., act
as an Initiating Server in relation to a Receiving Server; this is is described under Section
2.1.1.

2. Generate verification requests about the validity of dialback keys, i.e., act as a Receiving
Server in relation to an Authoritative Server; this is described under Section 2.1.2.

2.1.1 Initiating Server Generates Outbound Request for Authorization by Receiving
Server

This subsection describes the interaction between the server hosting capulet.example (acting
as an Initiating Server) and the server hosting montague.example (acting as a Receiving
Server), from the outbound perspective of the Initiating Server.

When the Initiating Server has stanzas to send from the Sender Domain to the Target Domain,
does not have a verified connection, is currently not attempting to get a verified connection
for this domain pair, it sends a new dialback key to the Receiving Server.

To do so, either it can reuse an existing XML stream or it needs to establish a new connection.
To establish a new connection, the Initiating Server performs a DNS lookup on the Target
Domain, thus finding the IP address and port for server-to-server communication at an
authoritative machine for the Target Domain (here that is "home.montague.example”).

After the XML stream is established from the Initiating Server to the Receiving Server, the
Initiating Server sends a dialback key to the Receiving Server. This is done by creating
a <db:result/> element whose XML character data is the dialback key; the element MUST
possess a 'from’ attribute whose value is the Sender Domain and MUST possess a 'to’ attribute
whose value is the Target Domain.

Listing 1: Initiating Server Sends Dialback Key (Step 1)

send: <db:result
from=’capulet.example’
to="montague.example’>
b4835385f37fe2895af6c196b59097b16862406db80559900d96bf6fa7d23df

</db:result>

The key sent is generated as described in Dialback Key Generation and Validation (XEP-0185) 3

key = HMAC-SHA256(
SHA256 (’s3cr3tfordi4lb4ck’),

BXEP-0185: Dialback Key Generation and Validation <https://xmpp.org/extensions/xep-0185.html>,


https://xmpp.org/extensions/xep-0185.html
https://xmpp.org/extensions/xep-0185.html
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{ ’montague.example’, ’_.’, ’capulet.example’, '.’, ’
D60Q00O229F’ 3

)
= b4835385f37fe2895af6c196b59097b16862406db80559900d96bf6fa7d23df3

Note: The Receiving Server MAY use any method to determine the validity of the dialback
key and the identity of the Initiating Server. The Initiating Server MUST NOT make any
assumptions about how the Receiving Server verifies the key, including even the assumption
that the key is actively verified by the Receiving Server through communication with the
Authoritative Server.

After sending the dialback key, the Initiating Server waits for the verification result from
the Receiving Server. If the Initiating Server wishes to send any stanzas for this domain
pair, it MUST queue them for sending after it has received authorization to send stanzas
from the Receiving Server, and MUST NOT attempt to send stanzas until it has received such
authorization.

Note: While waiting for the verification result, the Initiating Server SHOULD continue to
send stanzas for any domain pair that has already been verified on that connection. It MAY
send out additional dialback keys for different domain pairs and issue dialback verification
requests as described under Section 2.1.2. To avoid denial of service attacks (RFC 4732 ) or
deadlock situations, the Initiating Server MAY impose a timeout on dialback operations, i.e.
it ought to consider dialback operations as having failed when there is no response after a
certain amount of time.

If the stream or the underlying TCP connection is closed by the Receiving Server while the
Initiating Server is waiting for the verification result, the Initiating Server shall behave as it
does when receiving a dialback error as described below.

After the Receiving Server has verified the request, the Initiating Server receives the verifi-
cation result in the form of a <db:result/> element with a the 'type’ attribute whose value is
valid” or "invalid” (for the value of "error”, see below). The Initiating Server MUST ensure
that the 'from’ and ’to’ attributes in this response correlate to a request that was sent over the
same XML stream (see Section 3.1).

Thus the result is either valid...

Listing 2: Initiating Server Receives Valid Verification Result from Receiving Server (Step 4)

recv: <db:result
from="montague.example’
to=’capulet.example’
type=’valid’/>

... or invalid ...

Listing 3: Initiating Server Receives Invalid Verification Result from Receiving Server (Step 4)

recv: <db:result ‘

RFC 4732: Internet Denial-of-Service Considerations <http://tools.ietf.org/html/rfc4732>.


http://tools.ietf.org/html/rfc4732
http://tools.ietf.org/html/rfc4732
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from="montague.example’
to=’capulet.example’
type=’invalid’/>

Note: There are no examples for Step 2 and Step 3 in this section of the document; see the
examples under Sections 2.1.2 and 2.2.2.

If the value of the 'type’ attribute is "valid”, then the connection between the domain pair is
considered verified and the Initiating Server can send any outbound stanzas it has queued up
for routing to the Receiving Server for the domain pair (i.e., from the Sender Domain to the
Target Domain). Naturally, the Initiating Server can also enable or negotiate other stream
features at this point.

If the value of the ’type’ attribute is "invalid”, then the Receiving Server is reporting that
that Initiating Server’s identity (as valid for the Sender Domain) was deemed bogus by the
Authoritative Server. In this case, the Initiating Server MUST NOT attempt to send any
outbound stanzas it has queued up for routing to the Receiving Server for the domain pair
but instead MUST return such stanzas to the respective senders at the Sender Domain with
an <internal-server-error/> stanza error. Since the Receiving Server will most likely close
the stream and the underlying TCP connection if that occurs (see Section 2.2.1), the Initiating
Server SHOULD NOT attempt to send further stanzas for other domain pairs that have already
been authorized.

If the value of the 'type’ attribute is "error”, this indicates a problem which is not related to
the validity of the dialback key provided. The error conditions are explained in detail under
Dialback with Error Handling. Such an error is non-fatal for the XML stream, but the Initiating
Server MUST return any queued stanzas to the respective senders at the Sender Domain with
a <remote-server-timeout/> stanza error.

Listing 4: Initiating Server Receives Dialback Error from Receiving Server (Step 4)

recv: <db:result

from="montague.example’
to=’capulet.example’
type=’error’>

<error type=’cancel’>
<item-not-found xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/

>
</error>
</db:result>

2.1.2 Receiving Server Generates Outbound Request for Verification of Initiating
Server by Authoritative Server

This subsection describes the interaction between the server hosting capulet.example (acting
as a Receiving Server) and the server hosting montague.example (acting as an Authoritative
Server), from the outbound perspective of the Receiving Server.

To determine the validity of a dialback key received from the Initiating Server, the Receiving

10
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Server needs to establish communications with the Authoritative Server. To do so, it can reuse
an existing XML stream or establish a new connection. To establish a new connection, the
Receiving Server performs a DNS lookup on the Sender Domain, thus finding the IP address
and port for server-to-server communication at an authoritative machine for the Sender
Domain asserted by the Initiating Server (here the machine is ”orchard.capulet.example”).
After the XML stream is established from the Receiving Server to the Authoritative Server,
the Receiving Server sends a verification request. This is done by creating a <db:verify/>
element whose XML character data is the dialback key received from the Initiating Server;
the element MUST possess a 'from’ attribute whose value is the Target Domain, MUST possess
a’to’ attribute whose value is the Sender Domain as provided in the ’from’ attribute of Step 1,
and MUST possess an ’id attribute whose value is the stream ID of the response stream header
sent from the Receiving Server to the Initiating Server (here "417GAF25”). The combination
of 'from’, ’to’, and 'id’ attributes makes it possible for the Receiving Server to uniquely identify
the TCP connection on which it received the original request in Step 1.

Note: An implementation MAY open a separate connection to the Authoritative Server for the
sole purpose of doing key verification. Such an implementation SHOULD close the connection
immediately after receiving the verification result. Not using TLS or any other stream features
can reduce the number of round trips in that case.

Listing 5: Receiving Server Sends Verification Request to Authoritative Server (Step 2)

send: <db:verify
from=’capulet.example’
id="417GAF25’
to="montague.example’>
225
ccbaab6a071133249d25fef42ae516fc7a86c523aa1c6980a7f73e784c972

</db:verify>

After that, the Receiving Server waits for the verification result. While doing so, it can still
use the connection to send dialback packets or to send stanzas for domain pairs that have
already been validated.

Here again, the result is either valid...

Listing 6: Receiving Server is Informed by Authoritative Server that Key is Valid (Step 3)

recv: <db:verify
from="montague.example’
id="417GAF25’
to="capulet.example’
type=’valid’/>

... orinvalid ...

11
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Listing 7: Receiving Server is Informed by Authoritative Server that Key is Invalid (Step 3)

recv: <db:verify
from="montague.example’
id="417GAF25’
to=’capulet.example’
type=’invalid’/>

In addition to the values "valid” and "invalid”, the ’type’ attribute can also have a value of
"error”; see Dialback with Error Handling for a detailed explanation.

Listing 8: Receiving Server Receives Dialback Error from Authoritative Server (Step 3)

recv: <db:verify

from="montague.example’
id="417GAF25’
to=’capulet.example’
type=’error’>

<error type=’cancel’>
<item-not-found xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/

>
</error>
</db:verify>

Note: If the underlying TCP connection is closed by the remote side while there are pending
verification requests, those requests SHOULD be considered failed and therefore be treated
like an error response.

The Receiving Server MUST ensure that the values of the 'from’, ’to’ and ’id attributes correlate
to a request that was sent over the same XML stream (see Section 3.1).

After receiving the validation result from the Authoritative Server, the Receiving Server
determines the inbound connection that the dialback key was originally received on. This
connection is uniquely identified by the combination of the 'from’, to’, and 'id” attributes.
If no inbound connection is found that matches this combination, the verification result
SHOULD be dropped silently. If an inbound connection is found, the Receiving Server uses it
to communicate the verification result to the Initiating Server. A positive result indicates the
readiness of the Receiving Server to accept stanzas from the Initiating Server for this domain
pair.

When receiving a verification result of type "invalid”, the Receiving Server MAY choose not
to relay this result to the Initiating Server. Instead, it might send a dialback error such as
<forbidden/> to the Initiating Server. Compared to sending a result of type “invalid”, this
behavior will not result in the loss of the whole stream and any previously domain pairs
previously negotiated, while at the same time not accepting stanzas from the spoofed domain.
Even when not forwarding the "invalid” result, the incident ought to be logged.

12
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2.2 Inbound Connection

There are two different tasks on an inbound connection:

1. Authorize inbound connections, i.e., act as a Receiving Server in relation to an Initiating
Server; this is described under Section 2.2.1.

2. Answer verification requests about the validity of dialback keys, i.e., act as an Authori-
tative Server in relation to a Receiving Server; this is described under Section 2.2.2.

Note that, unless Bidirectional Server-to-Server Connections (XEP-0288) 1° is used, the "type’
should not be set on either <db:result/> or <db:verify/> elements received on an inbound
connection.

2.2.1 Receiving Server Handles Inbound Authorization Request from Initiating Server

This subsection describes the interaction between the server hosting capulet.example (acting
as an Initiating Server) and the server hosting montague.net (acting as a Receiving Server),
from the inbound perspective of the Receiving Server (i.e., this section is the mirror image of
Section 2.1.1).

Listing 9: Receiving Server Receives Dialback Key from Initiating Server (Step 1)

recv: <db:result
from=’capulet.example’
to="montague.example’>
b4835385f37fe2895af6c196b59097b16862406db80559900d96bf6fa7d23dff

</db:result>

Before the Receiving Server allows the Initiating Server to send stanzas from the Sender
Domain (here "capulet.example”) to the Target Domain (here "montague.example”), it MUST
verify the identity of the Initiating Server. Depending on how the server dialback protocol is
used, this can be done by verifying the dialback key or by using some out-of-band method as
in the POSH prooftype for XMPP domain name associations. Note that the verification process
might fail prematurely, for example, if the Receiving Server’s policy states that connections
from the Initiating Server or the Sender Domain are not allowed.

Note: The Receiving Server MUST continue to accept and process stanzas for already verified
domain pairs, and MUST continue to process both <db:result/> and <db:verify/> elements.

If the Target Domain as given in the ’to’ attribute of the element is not a configured domain
of the Receiving Server, this results in a dialback error. This error, which is explained further
under Section 2.4.2, is not a stream error and therefore MUST NOT result in closing of the
stream as described in Section 4.4 of RFC 6120 !¢, since the stream might already be used to

15XEP-0288: Bidirectional Server-to-Server Connections <https: //xmpp.org/extensions/xep-0288.html>,
1SRFC 6120: Extensible Messaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
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exchange XML stanzas for other domain pairs.

Listing 10: Receiving Server Sends Dialback Error to Initiating Server (Step 4)

send: <db:result

from="montague.example’
to="capulet.example’
type=’error’>

<error type=’cancel’>
<item-not-found xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/

>
</error>
</db:result>

After the validity of the dialback request has been established (for example, by the Authorita-
tive Server), the Receiving Server can safely accept stanzas from the Initiating Server for the
verified domain pair.

In addition, the Receiving Server SHALL notify the Initiating Server of the result and thus
signal its willingness to accept stanzas from the Initiating Server for the verified domain pair.
This is done by creating a <db:result/> element which MUST possess a 'from’ attribute whose
value is the Target Domain, MUST possess a 'to’ attribute whose value is the Sender Domain,
and MUST possess a 'type’ attribute whose value is either “valid” or "invalid” (or "error”, as
shown above).

Therefore, here again the result is either valid (this is the same as Example 2)...

Listing 11: Receiving Server Sends Valid Verification Result to Initiating Server (Step 4)

send: <db:result
from="montague.example’
to="capulet.example’
type=’valid’/>

... or invalid (this is the same as Example 3)...

Listing 12: Receiving Server Sends Invalid Verification Result to Initiating Server (Step 4)

send: <db:result
from="montague.example’
to=’capulet.example’
type=’invalid’/>

If the result is “invalid”, the Initiating Server is either attempting to spoof the Sender Domain
or is misconfigured. The Receiving Server MUST NOT accept stanzas from the Initiating
Server for the Sender Domain and ought to log the attempt. If no other valid domain pairs
exist for this connection (i.e., if this is the first attempt), the Receiving Server SHOULD send a
result with type "invalid” and MUST close the XML stream. If there exist other valid domain
pairs for this connection, the Initiating Server might merely have a misconfiguration for the

14
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Sender Domain. In this case, the Receiving Server MAY (instead of closing the connection)
return an error condition of <forbidden/> as described under Section 2.5 of this document.

2.2.2 Authoritative Server Handles Inbound Verification Request from Receiving
Server

This subsection describes the interaction between the server hosting capulet.example (acting
as a Receiving Server) and the server hosting montague.example (acting as an Authoritative
Server), from the inbound perspective of the Authoritative Server (i.e., this section is the
mirror image of Section 2.1.2 and the following example is the same as Example 5).

Listing 13: Authoritative Server Receives Verification Request from Receiving Server (Step 2)

recv: <db:verify
from=’capulet.example’
id="417GAF25’
to="montague.example’>
225
ccbaab6a071133249d25fef42ae516fc7a86c523aa1c6980a7f73e784c972

</db:verify>

If the Target Domain as given in the 'to’ attribute of the element does not match a configured
local domain according to the Authoritative Server, this results in a dialback error. This
error, which is explained further under Section 2.4, is not a stream error and therefore MUST
NOT result in closing of the stream (as described in Section 4.4 of RFC 6120 '7), since the
stream might already be used for sending XML stanzas for other domain pairs. (The following
example is the same as Example 8.)

Listing 14: Authoritative Server Sends Dialback Error to Receiving Server (Step 3)

send: <db:verify

from="montague.example’
id="417GAF25’
to=’capulet.example’
type=’error’>

<error type=’cancel’>
<item-not-found xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/

>
</error>
</db:verify>

Upon receiving this <db:verify/> element, the Authoritative Server determines the validity
of the dialback key provided in the XML character data of the element. This can be achieved

RFC 6120: Extensible Messaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
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for example by comparing the character data with the output of applying the same key
generation mechanism that was (presumably) used for the generation of the key, using as
input the values of the 'from’, ’to’, and "id’ attributes contained in the verification request and
the secret known only to the Sender Domain:

HMAC - SHA256 (
SHA256 (’d141b4ck43v3r’),

{ ’capulet.example’, ’_.’, ’montague.example’, ’.’, ’417GAF25
T}

key

)
225cc5aa6a071133249d25fef42ae516fc7a86c523aalc6980a7f73e784c972d

The Authoritative Server then notifies the Receiving Server whether the key is valid. This is
done by creating a <db:verify/> element which MUST possess 'from’ and 'to’ attributes whose
values are swapped from the request, MUST possess an 'id” attribute whose value is copied
from the ’id’ value of the request, and MUST possess a ’type’ attribute whose value is either
"valid” or "invalid”.

Therefore, here again the result is either valid (this is the same as Example 6)...

Listing 15: Authoritative Server Informs Receiving Server that Key is Valid (Step 3)

send: <db:verify
from="montague.example’
id=’417GAF25’
to=’capulet.example’
type=’valid’/>

... or invalid (this is the same as Example 7)...

Listing 16: Authoritative Server Informs Receiving Server that Key is Invalid (Step 3)

send: <db:verify
from="montague.example’
id="417GAF25’
to="capulet.example’
type="invalid’/>

There are several reasons why the key might be invalid (e.g., the Authoritative Server has a
different secret key or the Authoritative Server doesn’t know anything about the StreamID
communicated in the <db:result/> element it received from the Receiving Server).

2.3 Directionality

The result of the protocol exchanges shown in the foregoing two sections is that the server
hosting montague.example has verified the identity of the server hosting capulet.example.
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Since XMPP Server-to-Server connections are unidirectional (unless Bidirectional Server-to-
Server Connections (XEP-0288) '8 is used), dialback needs to be completed in each direction
before XML stanzas can be exchanged over the two TCP connections between the servers.

2.4 Advertisement
2.4.1 Traditional Dialback

Support for the traditional server dialback protocol (originally specified in RFC 3920 ?) is
indicated by inclusion of the dialback namespace declaration in the stream header.

Listing 17: Stream Header With Dialback Namespace Declaration

<stream:stream
xmlns=’jabber:server’
xmlns:db=’"jabber:server:dialback’
xmlns:stream="http://etherx. jabber.org/streams’
from="montague.example’
to="capulet.example’>

Note: Although in general advertising protocol support by means of an XML namespace
declaration has been superseded by the use of stream features as originally defined in RFC
3920 ?° and updated in RFC 6120, the server dialback protocol predates the existence of stream
features and therefore the namespace declaration method is still used in this instance.

Note: It is conventional to use a namespace prefix of "db” for Server Dialback elements.
Although the prefix is allowed to be other than ”db” according to the XML namespaces
specification (Namespaces in XML ?!), some existing implementations and deployments might
accept only the "db” prefix.

2.4.2 Dialback with Error Handling

If a server supports graceful handling of dialback errors as described in this document, it
MUST advertise that via a stream feature which is a <dialback/> element qualified by the
‘urn:xmpp:features:dialback’ namespace, including an empty <errors/> element.

Listing 18: Stream Features With <errors/> Element

<stream:features>
<dialback xmlns=’urn:xmpp:features:dialback’>
<errors/>

18XEP-0288: Bidirectional Server-to-Server Connections <https: //xmpp.org/extensions/xep-0288.html>,
YRFC 3920: Extensible Messaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc3920>.
“RFC 3920: Extensible Messaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc3920>.
*Namespaces in XML <http: //www.w3.0rg/TR/REC-xml-names/>.
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</dialback>
</stream:features>

Note: As a general rule, stream feature elements containing child elements that advertise
particular sub-features are not encouraged. The format shown above is used for the sake of
backward compatiblity with existing implementations and deployments.

2.5 Dialback Error Conditions

RFC 3920 % introduced stream errors for any errors related to dialback. However, this turned
out to be overly aggressive, particularly if the XML stream was used to multiplex stanzas
for more than one domain pair (since closing the stream would result in throwing away
accumulated dialback state for a potentially large number of domain pairs). Therefore this
specification defines a third value for the 'type’ attribute: "error”.

This usage of the ’error’ value for the ’type’ attribute is not fully backward compatible with
RFC 3920 %>, However, the server that generates the error SHOULD still attempt to send
the dialback error instead of terminating the stream, as the worst thing that can happen
is that the remote server terminates the stream if it does not understand the error or if it
eventually times out the connection. Dialback errors are to be considered non-fatal for the
XML stream, but the Initiating Server MUST return queued stanzas to the respective senders
with a <remote-server-timeout/> stanza error. If an error is encountered in Step 3 of the
dialback negotiation, the Receiving Server MUST send a <remote-server-not-found/> dialback
error to the Initiating Server.

When the <db:verify/> or <db:result/> element is of type "error”, the element MUST contain
an <error/> element (implicitly qualified by the ’jabber:server’ namespace), which MUST
in turn contain an XML element qualified by the 'urn:ietf:params:xmlins:xmpp-stanzas’
namespace (i.e., a stanza error condition) as those errors are defined in RFC 6120. The fol-
lowing table provides additional guidance regarding the most relevant stanza error conditions:

Condition Description Occurs in
<item-not-found/> The domain given in the 'to’  Step 3 or 4

attribute of the request is

not hosted on the Receiving

Server. Nonetheless, the do-

main is used in the 'from’ at-

tribute of the error packet,

for the purpose of identify-

ing the original request.

2RFC 3920: Extensible Messaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc3920>.
RFC 3920: Extensible Messaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc3920>.
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Condition

Description

Occurs in

<remote-connection-failed/>

<remote-server-not-found/>

<remote-server-timeout/>

<policy-violation/>

<not-authorized/>

<forbidden/>

The Receiving Server was
unable to establish a con-
nection to the Authoritative
Server and therefore could
not validate the identity of
the Initiating Server.

The  Receiving  Server
encountered an <item-not-
found/> error condition or
a <host-unknown/> stream
error when attempting to
contact the Authoritative

Server.
The Receiving Server en-

countered a problem with
the connection to the Au-
thoritative Server, for ex-
ample if the Authoritative
Server unexpectedly closed
the stream without verify-
ing the dialback key.

The Receiving Server en-
forces a policy mandating
usage of TLS before dialback
and the Initiating Server
sent the dialback request
without using TLS.

The Receiving Server en-
forces a policy requiring ei-
ther a valid PKIX certificate
containing the identity of
the Sender Domain or some
other proof of authorization
(e.g., via POSH), and the Ini-
tiating Server did not pro-

vide proof of authorization.
The Receiving Server re-

ceived an invalid” response
when attempting to verify
the dialback key with the
Authoritative Server.
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Condition Description Occurs in
<not-acceptable/> The Receiving Server was Step 4
unable to establish the as-
serted identity of the Initiat-
ing Server.
<resource-constraint/> The Receiving Server lacks Step 4
the resources to add the
requested domain  pair
to the list of connections
authorized for this connec-
tion. The initiating server
should attempt to establish
a new TCP connection to
the target domain using the
process described in RFC
6120 RFC 6120: Extensible
Messaging  and  Pres-
ence Protocol (XMPP): Core
<http://tools.ietf.org/html/rfc6120>.
and give up when receiving
the same error on the new
connection.

2.6 Multiplexing

A single XML stream between Initiating Server and Receiving Server can be used to multiplex
stanzas for more than one domain pair. We call this usage "multiplexing” (historically it has
also been known as ”piggybacking”).

One common motivation for multiplexing is virtual hosting, under which many domains
are hosted on the same server. This problem is described more fully in the Domain Name
Associations specification, draft-ietf-xmpp-dna).

Another common motivation for such reuse is the existence of additional services associ-
ated with the Sender Domain but hosted at "subdomains” thereof. For example, both the
"montague.example” and the “capulet.example” XMPP servers might host Multi-User Chat
(XEP-0045) 2* services at “chat.montague.example” and “rooms.capulet.example” respec-
tively. Because dialback operates on domain pairs, a total of eight dialback negotiations would
be necessary for a bidirectional exchange of stanzas between two sending domains and two
target domains.

If multiplexing is not used, the number of server-to-server connections needed to exchange
stanzas between virtual hosting providers or multi-service XMPP servers can increase signf-
icantly. Indeed, when the number of hosted domains becomes especially large, the number

2 XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>.
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of connections might exceed the maximum number of connections allowed from a single IP
address as explained in Best Practices to Discourage Denial of Service Attacks (XEP-0205) 2.
If multiplexing is used, the number of connections can be limited to only two (or, at the
operator’s discretion, more than two for operational reasons).

2.6.1 Multiplexing Sender Domains

In order to accept XML stanzas from rooms at “rooms.capulet.example” intended for ad-
dresses at "montague.example”, the "montague.example” domain will need to validate the
“rooms.capulet.example” domain (just as it already did for the "capulet.example” domain).
Thus the server hosting both capulet.example and rooms.capulet.example would now initiate
a dialback negotiation with the server hosting montague.example but specify the Sender
Domain as "rooms.capulet.example”. Specifying different Sender Domains is called "sender
multiplexing” and MAY be used without further negotation.

2.6.2 Multiplexing Target Domains

Likewise, to send stanzas to rooms at “chat.montague.example” from addresses at “ca-
pulet.example”, the server hosting both capulet.example and rooms.capulet.example would
initiate dialback negotiation with the server hosting chat.montague.example (probably on
the same connection that is already used to send stanzas from "capulet.example” to "mon-
tague.example”), specifying the Target Domain as ”chat.montague.example”. Specifying
different target domains is called "target multiplexing”.

The Initiating Server SHOULD NOT use target multiplexing unless the Receiving Server has
signalled support for dialback error handling via <stream:features/> as described under Dial-
back with Error Handling. The Initiating Server MAY then attempt to multiplex a new Sender
Domain on the stream to the Receiving Server that is already used for another Sender Domain
if the hostname and port resolution results in the same IP address and port combination. For
example:

Listing 19: DNS SRV Record for the montague.example Zone

_xmpp-server._tcp.montague.example. 86400 IN SRV 10 @ 5269 home.
montague.example
_xmpp-server._tcp.chat.montague.example. 86400 IN SRV 10 @ 5269 home.
montague.example
home . montague.example. 86400 IN A
10.44.0.4

Because DNS SRV lookups for both "montague.example” and ”chat.montague.example” point
to the same target ("home.montague.example”) and port (5269), or eventually resolve to

B XEP-0205: Best Practices to Discourage Denial of Service Attacks <https://xmpp.org/extensions/xep-0205.h
tml>,
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the same IP address (10.44.0.4) and port (5269), "capulet.example” MAY initiate a dialback
negotation from ”capulet.example” to ”chat.montague.example” over the same XML stream
that is already used to send stanzas from "capulet.example” to "montague.example”.
Bidirectional Server-to-Server Connections (XEP-0288) %¢ extends those rules since any
domain that has been used as a source domain can be used as a target domain without further
negotiation.

3 Security Considerations

Server Dialback helps protect against domain spoofing, thus making it difficult to spoof the
origin of XML stanzas. Absent the use of DNS security (DNSSEC, RFC 4033 ), Server Dialback
does not provide a mechanism for authenticating a stream, as is done via TLS and SASL, and
results in weak verification of server identities only. Furthermore, if DNSSEC is not used then
it is susceptible to DNS poisoning attacks.

If DNSSEC is used, Server Dialback provides stream authentication only (i.e., a strong associa-
tion between a domain name and an XML stream). However, Server Dialback by itself does not
provide confidentiality, data integrity, or stream encryption. Some existing implementations
are known to support dialback over TLS. In this case, Server Dialback is typically carried out
the same way as without TLS, but gains from the use of channel encryption.

3.1 Unsolicited Dialback

In mid-2012, several implementations turned out to be vulnerable to a number of attacks
against the protocol described in this document. These attacks were based on sending verify
(STEP 3) or result (STEP 4) responses without an associated request, in an unexpected direction
and/or on an unexpected XML stream. Failure to reject those 'unsolicited’ responses lets an
attacker either spoof stanzas with an arbitrary sender domain or enables him to impersonate
any target domain.

4 IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
28

26X EP-0288: Bidirectional Server-to-Server Connections <https://xmpp.org/extensions/xep-0288.html>,

?’RFC 4033: DNS Security Introduction and Requirements <http://tools.ietf.org/html/rfc4033>.

*The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.
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5 XMPP Registrar Considerations

5.1 Protocol Namespaces

The XMPP Registrar ?° includes "jabber:server:dialback’ in its registry of protocol namespaces
(see <https://xmpp.org/registrar/namespaces.html>).

5.2 Stream Features

The XMPP Registrar includes 'urn:xmpp:features:dialback’ in its registry of stream features
(see <https://xmpp.org/registrar/stream-features.html>).
The registration is as follows:

<feature>
<ns>urn:xmpp:features:dialback</ns>
<name>Server Dialback</name>
<element>dialback</element>
<desc>Support for Server Dialback with dialback errors</desc>
<doc>XEP-0220</doc>
</feature>

6 XML Schema

6.1 Dialback

Note Well: the ’error’ value for the 'type’ attribute and the <error/> child element were added
since RFC 3920.

<?xml version=’1.0’ encoding='UTF-8’7?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace=’jabber:server:dialback’
xmlns=’jabber:server:dialback’
elementFormDefault="qualified’>

<xs:annotation>
<xs:documentation>
The protocol documented by this schema is defined in
XEP-0220: http://www.xmpp.org/extensions/xep-0220.html
</xs:documentation>

*The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.
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</xs:annotation>

<xs:import namespace=’urn:ietf:params:xml:ns:xmpp-stanzas’
schemalocation="http://xmpp.org/schemas/stanzaerror.xsd’/
>

<xs:element name=’result’>
<xs:complexType mixed=’true’>
<xs:all>
<xs:element
</xs:all>
<xs:attribute

name='error’ type=’errorType’/>
name=’from’ type=’xs:string’ use=’required’/>
<xs:attribute name=’to’ type=’xs:string’ use=’required’/>
<xs:attribute name=’type’ use=’optional’>
<xs:simpleType>
<xs:restriction base=’xs:NCName’>
<xs:enumeration value=’error’/>
<xs:enumeration value=’invalid’/>
<xs:enumeration value=’valid’/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>

<xs:element name=’verify’>
<xs:complexType mixed=’true’>

<xs:all>

<xs:element name=’error’ type=’errorType’/>
</xs:all>
<xs:attribute name=’from’ type=’xs:string’ use=’required’/>
<xs:attribute name=’to’ type=’xs:string’ use=’required’/>
<xs:attribute name=’id’ type=’xs:NMTOKEN’ use=’required’/>
<xs:attribute name=’type’ use=’optional’>

<xs:simpleType>
<xs:restriction base=’xs:NCName’>

<xs:enumeration
<xs:enumeration
<Xs:enumeration

value=’error’/>
value=’invalid’/>
value=’valid’/>

</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>

<xs:complexType name=’errorType’>
<xs:sequence xmlns:err=’urn:ietf:params:xml:ns:xmpp-stanzas’>
<xs:group ref=’err:stanzakErrorGroup’/>
</Xs:sequence>
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/6 XML SCHEMA

</xs:complexType>

</xs:schema>

6.2 Stream Feature

<?xml version=’1.0’ encoding=’UTF-8’?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="urn:xmpp:features:dialback’
xmlns="urn:xmpp:features:dialback’
elementFormDefault="qualified’>

<xs:element name=’dialback’>
<xs:complexType>
<xs:sequence>
<xs:element name=’errors’ minOccurs=’0’ type='empty’/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:simpleType name=’empty’>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’’/>
</xs:restriction>
</xs:simpleType>

</xs:schema>

6.3 Application Specific Errors

<?xml version=’1.0’ encoding=’UTF-8’?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="urn:xmpp:dialback:errors’
xmlns="urn:xmpp:dialback:errors’
elementFormDefault="qualified’>

<xs:annotation>
<xs:documentation>
The protocol documented by this schema is defined in
XEP-0220: http://www.xmpp.org/extensions/xep-0220.html
</xs:documentation>
</xs:annotation>
</xs:schema>
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