
XEP-0223: Persistent Storage of Private Data via PubSub

Peter Saint-Andre
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org

https://stpeter.im/

2023-03-23
Version 1.1.1

Status Type Short Name
Active Informational N/A

This specification defines best practices for using the XMPP publish-subscribe extension to persistently
store private information such as bookmarks and client configuration options.

mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2020 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 How It Works . 1

2 Concepts and Approach 3

3 Storing Data 3

4 Composition 5

5 Determining Support 5

6 Security Considerations 6

7 IANA Considerations 6

8 XMPP Registrar Considerations 6

1 INTRODUCTION

1 Introduction
1.1 Motivation
Personal Eventing Protocol (XEP-0163) 1 introduced the idea of a virtual Publish-Subscribe
(XEP-0060) 2 service associated with an IM user’s bare JID <localpart@domain.tld>. However,
the default configuration of PEP nodes is not optimized for the persistent storage of data
objects that are meant to be accessed only by the account owner, à la Private XML Storage
(XEP-0049) 3. Therefore this document defines a set of best practices that enable IM users
to persistently store private information at their virtual pubsub service; in effect, we ”sub-
class” PEP by showing how a particular pubsub node can be configured for storing private data.

1.2 How It Works
Imagine that you are a Shakespearean character named Juliet and that you want to persis-
tently store some private information such as bookmarks (Bookmark Storage (XEP-0048) 4).
We assume that your server (capulet.lit) supports PEP along with the ”publish-options”
feature, and that your client discovered that support when you logged in.
You want to start bookmarking Multi-User Chat (XEP-0045) 5 rooms, so your client stores that
data privately.

Listing 1: Storing bookmarks
<iq from=’juliet@capulet.lit/balcony ’ type=’set’ id=’pdp1’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<publish node=’storage:bookmarks ’>

<item>
<conference xmlns=’storage:bookmarks ’

autojoin=’true’
jid=’theplay@conference.shakespeare.lit’
name=’The␣Play's␣the␣Thing ’>

<nick>JC</nick>
<password >Gl0b3 </password >

</conference >
</item>

</publish >
<publish -options >

<x xmlns=’jabber:x:data ’ type=’submit ’>
<field var=’FORM_TYPE ’ type=’hidden ’>

<value >http:// jabber.org/protocol/pubsub#publish -options </
value >

1XEP-0163: Personal Eventing Protocol <https://xmpp.org/extensions/xep-0163.html>.
2XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.
3XEP-0049: Private XML Storage <https://xmpp.org/extensions/xep-0049.html>.
4XEP-0048: Bookmark Storage <https://xmpp.org/extensions/xep-0048.html>.
5XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>.

1

https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0049.html
https://xmpp.org/extensions/xep-0049.html
https://xmpp.org/extensions/xep-0048.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0049.html
https://xmpp.org/extensions/xep-0048.html
https://xmpp.org/extensions/xep-0045.html

1 INTRODUCTION

</field >
<field var=’pubsub#persist_items ’>

<value >true</value >
</field >
<field var=’pubsub#access_model ’>

<value >whitelist </value >
</field >

</x>
</publish -options >

</pubsub >
</iq>

Your publish request is a standard pubsub request except that:

1. The item is persisted (pubsub#persist_items is set to true).

2. In this case, access is limited to yourself (the ”whitelist” access model defaults to allow-
ing access for the account owner, i.e., you).

If all goes well (see Storing Data), your bookmarks will be stored and the information will be
pushed out to all of your resources (here ”balcony” and ”chamber”).

Listing 2: Publisher receives event notification
<message from=’juliet@capulet.lit’

to=’juliet@capulet.lit/balcony ’
type=’headline ’
id=’bmfoo1 ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<items node=’storage:bookmarks ’>

<item id=’SomeID ’>
<conference xmlns=’storage:bookmarks ’

autojoin=’true’
jid=’theplay@conference.shakespeare.lit’
name=’The␣Play's␣the␣Thing ’>

<nick>JC</nick>
<password >Gl0b3 </password >

</conference >
</item>

</items >
</event >

</message >

<message from=’juliet@capulet.lit’
to=’juliet@capulet.lit/chamber ’
type=’headline ’
id=’bmfoo2 ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>

2

3 STORING DATA

<items node=’storage:bookmarks ’>
<item id=’SomeID ’>

<conference xmlns=’storage:bookmarks ’
autojoin=’true’
jid=’theplay@conference.shakespeare.lit’
name=’The␣Play's␣the␣Thing ’>

<nick>JC</nick>
<password >Gl0b3 </password >

</conference >
</item>

</items >
</event >

</message >

So that’s the general idea.

2 Concepts and Approach
The best practices defined herein re-use the concepts already defined in XEP-0060 and XEP-
0163. In order to optimize for object persistence of private information instead of transient
event notifications related to semi-public data, a node MUST be configured as follows:

1. Set pubsub#persist_items to true.

2. Set pubsub#access_model to ”whitelist”.

3 Storing Data
An account owner publishes an item to a node by following the protocol specified in XEP-0060:

Listing 3: Account owner stores data
<iq from=’juliet@capulet.lit/balcony ’ type=’set’ id=’pdp1’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<publish node=’storage:bookmarks ’>

<item>
<conference xmlns=’storage:bookmarks ’

autojoin=’true’
jid=’theplay@conference.shakespeare.lit’
name=’The␣Play's␣the␣Thing ’>

<nick>JC</nick>
<password >Gl0b3 </password >

</conference >
</item>

</publish >

3

3 STORING DATA

</pubsub >
</iq>

If the node does not already exist, the virtual pubsub service MUST create the node. As
described in XEP-0163, this ”auto-create” feature (defined in XEP-0060) MUST be supported
by a PEP service. (Naturally, the account owner’s client MAY follow the node creation use
case specified in XEP-0060 before attempting to publish an item.)
In order for the client to reliably persist private information, the virtual pubsub service must
also support the ”publish-options” feature defined in XEP-0060. Typically, a client will publish
with options so that the object is privately stored.

Listing 4: Storing bookmarks
<iq from=’juliet@capulet.lit/balcony ’ type=’set’ id=’pdp1’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<publish node=’storage:bookmarks ’>

<item>
<conference xmlns=’storage:bookmarks ’

autojoin=’true’
jid=’theplay@conference.shakespeare.lit’
name=’The␣Play's␣the␣Thing ’>

<nick>JC</nick>
<password >Gl0b3 </password >

</conference >
</item>

</publish >
<publish -options >

<x xmlns=’jabber:x:data ’ type=’submit ’>
<field var=’FORM_TYPE ’ type=’hidden ’>

<value >http:// jabber.org/protocol/pubsub#publish -options </
value >

</field >
<field var=’pubsub#persist_items ’>

<value >true</value >
</field >
<field var=’pubsub#access_model ’>

<value >whitelist </value >
</field >

</x>
</publish -options >

</pubsub >
</iq>

If the publication logic dictates that event notifications shall be sent, the account owner’s
server generates notifications and sends them to all appropriate entities as described in the
Receiving Event Notifications section of XEP-0163.

4

5 DETERMINING SUPPORT

4 Composition
Each item published to the node is a logically separate instance of the data to be stored. It
is the responsibility of the publishing and receiving entities to construct a complete view of
all such items, if desired. For example, each bookmark published to a private data node is
a separate piece of data, whereas the history of all items published to the node provides a
complete list of the user’s bookmarks. This history may include items that are republished
with an existing ItemID (thus overwriting the previous version of that item).

5 Determining Support
Before an account owner attempts to complete any of the use cases defined herein, its client
MUST verify that the account owner’s server supports both PEP and the ”publish-options”
feature; to do so, it MUST send a Service Discovery (XEP-0030) 6 information request to the
server (or cache Entity Capabilities information received from the server).

Listing 5: Account owner queries server regarding protocol support
<iq from=’juliet@capulet.lit/balcony ’

to=’capulet.lit’
id=’disco1 ’
type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

The server MUST return an identity of ”pubsub/pep” and include the ”publish-options”
feauture in the list of the namespaces and other features it supports:

Listing 6: Server communicates protocol support
<iq from=’capulet.lit’

to=’juliet@capulet.lit/balcony ’
id=’disco1 ’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
<identity category=’server ’ type=’im’/>
<identity category=’pubsub ’ type=’pep’/>
...
<feature var=’http: // jabber.org/protocol/pubsub#publish -options ’/>
...

</query >
</iq>

6XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

5

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

8 XMPP REGISTRAR CONSIDERATIONS

6 Security Considerations
Since private data is to be stored in a mechanism originally intended to publish data, it
is REQUIRED for entities to ensure that the restrictive <publish-options/> will actually be
honored by the server by performing the feature discovery procedure as specified in De-
termining Support. If an entity using that procedure finds that the server does not support
<publish-options/>, it MUST NOT store private data in PubSub, unless it can ensure privacy of
the data with other means.
The configuration of a local pubsub node does not prevent an attacker or a contact with a
misconfigured node from sending pubsub events with the same payload. Therefore clients
MUST verify that the ‘from’ attribute on incoming event messages is either absent or equal to
their own account JID.
The Security Considerations specified in XEP-0060 andXEP-0163 need to be taken into account.

7 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
7.

8 XMPP Registrar Considerations
This document requires no interaction with the XMPP Registrar 8.

7The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

8The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

6

http://www.iana.org/
https://xmpp.org/registrar/
http://www.iana.org/
https://xmpp.org/registrar/

	Introduction
	Motivation
	How It Works

	Concepts and Approach
	Storing Data
	Composition
	Determining Support
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations

