
XEP-0273: Stanza Interception and Filtering Technology (SIFT)

Joe Hildebrand
mailto:jhildebr@cisco.com
xmpp:hildjj@jabber.org

Jack Moffitt
mailto:jack@chesspark.com
xmpp:jack@chesspark.com

Peter Saint-Andre
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org

https://stpeter.im/

2011-06-27
Version 0.4

Status Type Short Name
Deferred Standards Track sift

This specification defines an XMPP protocol extension that enables a client to exercise control over
the XML stanzas it will receive from the server by instructing the server to intercept and filter inbound
stanzas.

mailto:jhildebr@cisco.com
xmpp:hildjj@jabber.org
mailto:jack@chesspark.com
xmpp:jack@chesspark.com
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Requirements 2

3 Protocol 2
3.1 Features . 3

3.1.1 Stanza Kinds . 3
3.1.2 Sender . 3
3.1.3 Recipient . 4
3.1.4 Payload . 4
3.1.5 Advanced Matching . 4

3.2 Discovering Supported Features . 5
3.3 Enabling SIFT . 6
3.4 Disabling SIFT . 8

4 Business Rules 9
4.1 Handling IQ Stanzas . 9
4.2 Handling Message Stanzas . 9
4.3 Handling Presence Notifications . 9
4.4 Handling Subscriptions . 10
4.5 Lack of Sifting . 10

5 Use Cases 10
5.1 Negative Presence Priority . 10
5.2 Presence Hush . 11
5.3 Removing Extraneous Message Extensions . 11

6 Security Considerations 12

7 IANA Considerations 12

8 XMPP Registrar Considerations 12
8.1 Protocol Namespaces . 12
8.2 Protocol Versioning . 12

9 XML Schema 12

10 Acknowledgements 14

1 INTRODUCTION

1 Introduction
In some scenarios a client might want to control the XML stanzas it will receive over its
stream with the server. Some potential use cases include:

• Amobile client might want to receivemessages but not presence notifications, since the
latter are quite ”chatty” and can run down the battery.

• A softphone might want to receive IQ stanzas only if the payload is qualified by an XML
namespace related to the use of Jingle (XEP-0166) 1 for Internet telephony.

• A presence compositor might want to receive presence updates but not message stanzas
or IQ stanzas, and only from the user’s own resources (i.e., not from other entities).

AlthoughXMPP IM 2 specifies the use of a negative presence priority to block inboundmessage
delivery, it does not enable the client to block inbound presence notifications, filter inbound
IQ stanzas, or otherwise exercise fine-grained control over the delivery of inbound stanzas.
While it would be possible to define particular values of negative presence priorities for some
delivery control methods (e.g., <priority>-2<priority> could be hardcoded to mean ”don’t send
me messages or presence”), that would be an ugly hack and thus inconsistent with XMPP
Design Guidelines (XEP-0134) 3. Therefore, this specification defines a stanza interception
and filtering technology (a.k.a. ”SIFT”) that is more consistent with the underlying design of
XMPP.
The following taxonomy of client types is not exhaustive but might assist developers in
understanding the scenarios in which SIFT might be useful.

Type Sends Presence * Receives Presence ** Receives Messages
Normal User Yes Yes Yes
Invisible User No Yes Yes
Large-Scale Bot Yes No Yes
Presentity Yes Yes No
Presence Watcher No Yes No
Presence Publisher Yes No No
Message Subscriber No No Yes
Message Publisher No No No

1XEP-0166: Jingle <https://xmpp.org/extensions/xep-0166.html>.
2RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc6121>.

3XEP-0134: XMPP Design Guidelines <https://xmpp.org/extensions/xep-0134.html>.

1

https://xmpp.org/extensions/xep-0166.html
http://tools.ietf.org/html/rfc6121
https://xmpp.org/extensions/xep-0134.html
https://xmpp.org/extensions/xep-0134.html
https://xmpp.org/extensions/xep-0166.html
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121
https://xmpp.org/extensions/xep-0134.html

3 PROTOCOL

* Note: SIFT is not used to control outbound presence, since that use case is already covered
by Privacy Lists (XEP-0016) 4; this table includes information about outbound presence only
to motivate various scenarios in which SIFT can be used.
* Note: For purposes of this taxonomy, we refer only to presence notifications (available and
unavailable), not also to subscription-related presence stanzas (subscribe, unsubscribe, etc.).

2 Requirements
The SIFT protocol is designed to meet the following requirements.

1. Make it possible for a client to disable receipt of various inbound stanzas (presence noti-
fications, subscription-related presence stanzas, message stanzas, IQ stanzas) while still
receiving other kinds of stanzas.

2. Make it possible for a client to ”sift” based on all senders, local vs. remote senders, or
other senders vs. oneself.

3. Make it possible for a client to ”sift” based on whether the recipient is the user’s bare
JID or the particular client’s full JID.

4. Enable future extensibility based on regular expressions, XPath expressions, etc.

3 Protocol
The SIFT protocol is used to intercept or filter inbound stanzas only, not outbound stanzas sent
by the client to the server or other entities. By ”intercept” is meant that the server will not
deliver any such stanza kind (message, presence notification, presence subscription, or IQ) to
the client, and by ”filter” is meant that the server will apply a rule to determine if the specific
stanza will be delivered to the client (e.g., matching against a payload namespace); in general
we refer to these actions as ”sifting”. The SIFT protocol enables the server to support only
basic interception (even here to support interception only for particular kinds of stanzas),
basic filtering as defined by the rules described in this specification, or advanced filtering
using extensions to SIFT defined in other specifications. Each of the features supported by
the server can be discovered by the client for maximum interoperability. The features, the
process for discovering them, and the process for enabling them are described in the following
sections.

4XEP-0016: Privacy Lists <https://xmpp.org/extensions/xep-0016.html>.

2

https://xmpp.org/extensions/xep-0016.html
https://xmpp.org/extensions/xep-0016.html

3 PROTOCOL

3.1 Features
SIFT supports the features defined below. Each feature is identified by a separate value for
’var’ attribute qualified by the ’http://jabber.org/protocol/disco#info’ namespace as specified
in Service Discovery (XEP-0030) 5.

3.1.1 Stanza Kinds

A server MAY support any combination of sifting IQ stanzas, message stanzas, presence
notifications, and presence subscriptions, as advertised by the following service discovery
features.

urn:xmpp:sift:stanzas:iq The server enables the client to sift all <iq/> stanzas or ones that
match the specified criteria.

urn:xmpp:sift:stanzas:message The server enables the client to sift all <message/> stanzas
or ones that match the specified criteria.

urn:xmpp:sift:stanzas:presence The server enables the client to sift all <presence/> notifi-
cations (i.e., presence stanzas with no ’type’ or with a type of ”unavailable”) or ones that
match the specified criteria.

urn:xmpp:sift:stanzas:sub The server enables the client to sift all subscription-related
<presence/> stanzas (i.e., presence stanzaswith a type of ”subscribe”, ”subscribed”, ”un-
subscribe”, or ”unsubscribed”) or ones that match the specified criteria.

3.1.2 Sender

A server MAY enable the client to sift based on sender. The following features are supported.

urn:xmpp:sift:senders:all The server shall sift this kind of stanza no matter who the sender
is. This is the default.

urn:xmpp:sift:senders:local The server shall sift this kind of stanza only from entities asso-
ciated with the same local domain as the user itself (not from remote domains).

urn:xmpp:sift:senders:others The server shall sift this kind of stanza only from other enti-
ties (not from the user itself).

urn:xmpp:sift:senders:remote The server shall sift this kind of stanza only from entities as-
sociated with remote domains (not from the same local domain as the user itself).

urn:xmpp:sift:senders:self The server shall sift this kind of stanza only from the user itself
(not from other entities).

5XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

3

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

3 PROTOCOL

These values are child elements of the <iq/>, <message/>, <presence/>, and <sub/> elements
when the server returns a features discovery result, whereas they are values of the ’sender’
attribute when the client enables sift support.

3.1.3 Recipient

A server MAY enable the client to filter based on recipient. The following features are
supported.

urn:xmpp:sift:recipients:all The server shall sift this kind of stanza if the recipi-
ent is the bare JID <localpart@domain.tld> of the user or the full JID <local-
part@domain.tld/resource> of the particular resource. This is the default.

urn:xmpp:sift:recipients:bare The server shall sift this kind of stanza only if the recipient is
the bare JID <localpart@domain.tld> of the user.

urn:xmpp:sift:recipients:full The server shall sift this kind of stanza only if the recipient is
the full JID <localpart@domain.tld/resource> of the particular resource.

These values are child elements of the <iq/>, <message/>, <presence/>, and <sub/> elements
when the server returns a features discovery result, whereas they are values of the ’recipient’
attribute when the client enables sift support.

3.1.4 Payload

A server MAY enable the client to sift based on the XML namespace and element name of
the payload(s) that the client allows for delivery. If so, the server shall advertise a feature of
urn:xmpp:sift:payloads:qname.
By ”payload” is meant a first-level child element of an <iq/>, <message/>, or <presence/>
stanza. This includes elements defined in RFC 6120 6 and RFC 6121 7. As a result, if the
server supports payload matching then a client can even sift out elements allowed by the
’jabber:client’ namespace, such as message <subject/> and presence <status/>.

3.1.5 Advanced Matching

A server could match based on more complex criteria, e.g. Regular Expressions or XPath
Expressions; such functionality is implicitly allowed because the XML schema specifies the
<xs:any/> notation, but any such advanced matching shall be defined in separate specifica-
tions.

6RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
7RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc6121>.

4

http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121

3 PROTOCOL

3.2 Discovering Supported Features
A client can discover if its server supports SIFT by sending a disco#info request.

Listing 1: A disco#info query
<iq type=’get’

from=’romeo@montague.lit/pda’
to=’montague.lit’
id=’bf4vb167 ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

If a server supports the SIFT protocol, it MUST advertise that fact in its responses to
”disco#info” requests by returning a feature of ”urn:xmpp:sift:2” (see Namespace Versioning
regarding the possibility of incrementing the version number). The server MUST also specify
which features it supports.
In the following reply, the server indicates that it supports a minimal subset of SIFT features
merely for the sake of presence blocking.

Listing 2: Minimal server support
<iq type=’result ’

from=’montague.lit’
to=’romeo@montague.lit/pda’
id=’bf4vb167 ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
<feature var=’urn:xmpp:sift:2 ’/>
<feature var=’urn:xmpp:sift:stanzas:presence ’/>

</query >
</iq>

In the following reply, the server indicates that it supports a wider range of SIFT features.

Listing 3: More extensive server support
<iq type=’result ’

from=’montague.lit’
to=’romeo@montague.lit/pda’
id=’bf4vb167 ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
<feature var=’urn:xmpp:sift:2 ’/>
<feature var=’urn:xmpp:sift:recipients:all ’/>
<feature var=’urn:xmpp:sift:senders:all ’/>
<feature var=’urn:xmpp:sift:senders:others ’/>
<feature var=’urn:xmpp:sift:stanzas:iq ’/>
<feature var=’urn:xmpp:sift:stanzas:message ’/>
<feature var=’urn:xmpp:sift:stanzas:presence ’/>

5

3 PROTOCOL

<feature var=’urn:xmpp:sift:stanzas:sub ’/>
</query >

</iq>

To enable clients to cache information about supported features, a server SHOULD return
Entity Capabilities (XEP-0115) 8 data via stream features as described in Entity Capabilities
(XEP-0115) 9.

3.3 Enabling SIFT
To enable sifting of stanzas, the client sends an IQ-set to the server containing a <sift/> child
element that in turn contains an <iq/> element, a <message/> element, a <presence/> element,
or some combination of those elements. Each of these elements MAY include a ’recipient’
attribute whose value is ”all”, ”bare”, or ”full” (defaulting to ”all”). Each of these elements
MAY also include a ’sender’ attribute whose value is ”all”, ”local”, ”others”, ”remote”, or
”self” (defaulting to ”all”).
Note: The last SIFT request sent from the client to the server overrides all previous SIFT
requests; SIFT requests are not cumulative. Therefore, each SIFT request needs to contain
all the SIFT rules that the client wishes the server to enforce, not a delta from the previous
request.

Listing 4: Sifting of message and presence stanzas
<iq from=’romeo@montague.lit/pda’

id=’rv491g37 ’
to=’romeo@montague.lit’
type=’set’>

<sift xmlns=’urn:xmpp:sift:2 ’>
<message sender=’others ’/>
<presence/>

</sift>
</iq>

The foregoing IQ-set means ”sift messages from others and presence from all senders, no
matter if the recipient is my bare JID or my full JID”.
Each of the child elements <iq/>, <message/>, <presence/>, and <sub/> MAY also contain one
or more <allow/> children whose ’name’ attribute specifies the element name and whose ’ns’
attribute specifies the XML namespace of stanza payloads the client would like to allow. If
no <allow/> elements are included, then sifting of that kind of stanza is completed without
reference to the payload.

Listing 5: Sifting for particular IQ payloads

8XEP-0115: Entity Capabilities <https://xmpp.org/extensions/xep-0115.html>.
9XEP-0115: Entity Capabilities <https://xmpp.org/extensions/xep-0115.html>.

6

https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0115.html

3 PROTOCOL

<iq from=’romeo@montague.lit/pda’
id=’bs01jg75 ’
to=’romeo@montague.lit’
type=’set’>

<sift xmlns=’urn:xmpp:sift:2 ’>
<iq>

<allow name=’jingle ’ ns=’urn:xmpp:jingle:1 ’/>
<allow name=’query ’ ns=’http: // jabber.org/protocol/disco#info’/>

</iq>
<message/>

</sift>
</iq>

The foregoing IQ-set means ”filter out inbound IQ stanzas except if the payload matches <jin-
gle xmlns=’urn:xmpp:jingle:1’/> or <query xmlns=’http://jabber.org/protocol/disco#info’/>”.
In XMPP, an IQ stanza can contain only one payload element, so the filtering logic is straight-
forward. However, a message or presence stanza can contain multiple payload elements (cf.
Message Stanza Profiles (XEP-0226) 10). Therefore, filtering for message and presence stanzas
means that if the stanza contains the defined payload or payloads (perhaps in addition to
other payloads), the server shall deliver it to the client.
For instance, the following example shows how a client would filter inbound messages and
IQs to only receive SOAP payloads as specified in SOAP over XMPP (XEP-0072) 11.

Listing 6: Sifting for SOAP
<iq from=’romeo@montague.lit/pda’

id=’cid143n9 ’
to=’romeo@montague.lit’
type=’set’>

<sift xmlns=’urn:xmpp:sift:2 ’>
<iq>

<allow name=’Envelope ’ ns=’http: //www.w3.org /2003/05/ soap -
envelope ’/>

</iq>
<message >

<allow name=’Envelope ’ ns=’http: //www.w3.org /2003/05/ soap -
envelope ’/>

</message >
</sift>

</iq>

Similarly, the following example shows how a client would filter inbound presence notifica-
tions to only receive notifications that contain entity capabilities data as specified in Entity
Capabilities (XEP-0115) 12.
10XEP-0226: Message Stanza Profiles <https://xmpp.org/extensions/xep-0226.html>.
11XEP-0072: SOAP over XMPP <https://xmpp.org/extensions/xep-0072.html>.
12XEP-0115: Entity Capabilities <https://xmpp.org/extensions/xep-0115.html>.

7

https://xmpp.org/extensions/xep-0226.html
https://xmpp.org/extensions/xep-0072.html
https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0226.html
https://xmpp.org/extensions/xep-0072.html
https://xmpp.org/extensions/xep-0115.html

3 PROTOCOL

Listing 7: Sifting for entity capabilities
<iq from=’romeo@montague.lit/pda’

id=’zl2f36d8 ’
to=’romeo@montague.lit’
type=’set’>

<sift xmlns=’urn:xmpp:sift:2 ’>
<presence >

<allow name=’c’ ns=’http: // jabber.org/protocol/caps’/>
</presence >

</sift>
</iq>

An even more strict example is filtering out all children of the XMPP <message/> stanza
except <body/>.

Listing 8: Sifting Out All But Message Bodies
<iq from=’romeo@montague.lit/pda’

id=’b8dv163d ’
to=’romeo@montague.lit’
type=’set’>

<sift xmlns=’urn:xmpp:sift:2 ’>
<message >

<allow name=’body’ ns=’jabber:client ’/>
</message >

</sift>
</iq>

Naturally, the server could return the typical XMPP error conditions, such as <service-
unavailable/> if the server does not support the SIFT protocol or the version specified by
the client, <feature-not-implemented/> if the server does not support a particular feature
(e.g., <iq/> sifting) requested by the client, <bad-request/> if the request is malformed,
<internal-server-error/> if the server experiences a malfunction while attempting to process
the request, and so on.

3.4 Disabling SIFT
To completely disable all SIFT processing, the client sends an empty <sift/> element.

Listing 9: Disabling all SIFT processing
<iq from=’romeo@montague.lit/pda’

id=’mxi371g9 ’
to=’romeo@montague.lit’
type=’set’>

8

4 BUSINESS RULES

<sift xmlns=’urn:xmpp:sift:2 ’/>
</iq>

4 Business Rules
4.1 Handling IQ Stanzas
If the client does not request filtering of inbound IQ stanzas, the server MUST pass through to
the client all IQ stanzas that are addressed to the full JID of the client (subject to appropriate
security controls as defined in the relevant RFCs and XEPs).
If the client requests filtering of inbound IQ stanzas, for unfiltered payload name+namespace
combinations the server MUST pass through to the client all IQ stanzas that are addressed to
the full JID of the client (subject to appropriate security controls as defined in the relevant
RFCs and XEPs), whereas for filtered payload name+namespace combinations the server
MUST respond to all IQ stanzas in a way consistent with the specification for the given
payload namespace (if defined) or as specified in XMPP-CORE and XMPP-IM for IQs where
no full JID <localpart@domain.tld/resource> matches; typically that means returning a
<service-unavailable/> error.

4.2 Handling Message Stanzas
When a client indicates that it wishes to receive messages, the server SHOULD deliver to the
client all messages in the offlinemessage queue andMUST deliver to the client any subsequent
messages that would normally be delivered to the client in accordance with the rules defined
in XMPP Core 13 and XMPP-IM.
If the client subsequently indicates that it wants the server to intercept inbound messages
(and there are no other connected or available resources that have expressed interest in
receiving inboundmessages), the server SHOULD treatmessages as if there were no connected
or available resources (e.g., storing them offline for later delivery); if the client then indicates
again that it wishes to receive inbound messages, the server SHOULD send those queued mes-
sages to the client so that it can get back in sync regardingmessages received from its contacts.

4.3 Handling Presence Notifications
When the client indicates that it wishes to receive inbound presence notifications, the server
SHOULD send outbound presence probes on the client’s behalf. Responses to these presence
probes are addressed to the bare JID of the account and then broadcasted to all of the resources
that have expressed interest in receiving inbound presence notifications.
If the client subsequently indicates that it wants the server to intercept inbound presence
notifications, the server MUST NOT deliver to the client presence notifications that are

13RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.

9

http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6120

5 USE CASES

addressed to the bare JID or full JID as defined by the ’recipient’ attribute.
If the client then indicates again that it wishes to receive inbound presence notifications,
the server shall resynchronize the client regarding the presence states of its contacts (how it
does so is implementation-specific, e.g. whether it queues received presence notifications or
re-probes the user’s contacts).

4.4 Handling Subscriptions
When the client indicates that it wishes to receive inbound subscription-related presence
stanzas, it MUST deliver presence stanzas of type ”subscribe”, ”subscribed”, ”unsubscribe”,
and ”unsubscribed” to the client in accordane with the rules in XMPP IM 14.
If the client subsequently indicates that it wants the server to intercept inbound subscription-
related presence stanzas, the server MUST NOT deliver to the client such stanzas that are
addressed to the bare JID or full JID as defined by the ’recipient’ attribute.

4.5 Lack of Sifting
Naturally, if the server advertises support for the SIFT protocol but the client does not send
any IQ-set stanzas containing SIFT payloads, the server MUST proceed as it normally would in
accordance with the core XMPP specifications.

5 Use Cases
5.1 Negative Presence Priority
XMPP-IM defines the concept of negative values for the presence <priority/> element, where
a negative value instructs the server to not deliver to the client anymessages that are directed
to the bare JID of the user. This behavior can be emulated using SIFT by asking the server
to intercept inbound message stanzas for the bare JID, but not presence notifications or IQ
stanzas.

Listing 10: Emulating negative presence priority
<iq from=’romeo@montague.lit/pda’

id=’zkd71d37 ’
to=’romeo@montague.lit’
type=’set’>

<sift xmlns=’urn:xmpp:sift:2 ’>
<message recipient=’bare’/>

</sift>

14RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc6121>.

10

http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121

5 USE CASES

</iq>

If a client requests message sifting, but sends presence, it SHOULD specify a negative priority
as a hint to contacts.

5.2 Presence Hush
Because inbound presence notifications can be ”chatty”, mobile clients and other entities
with limited battery life might want to ”hush” the presence session by asking the server to
intercept inbound presence notifications but not message stanzas.

Listing 11: Hushing the presence session
<iq from=’romeo@montague.lit/pda’

id=’uh2s64g9 ’
to=’romeo@montague.lit’
type=’set’>

<sift xmlns=’urn:xmpp:sift:2 ’>
<presence/>

</sift>
</iq>

5.3 Removing Extraneous Message Extensions
Some XMPP-based services include a large number of extensions in messages (e.g., microblog-
ging extensions). A client might want to filter out those extensions and allow only the bare
minimum elements allowed by the base XMPP specifications. It can do so by specifying that
the only payloads it wants to receive are the <body/>, <subject/>, and <thread/> elements
qualified by the ’jabber:client’ namespace.

Listing 12: Removing extraneous message extensions
<iq from=’romeo@montague.lit/pda’

id=’nj3fac27 ’
to=’romeo@montague.lit’
type=’set’>

<sift xmlns=’urn:xmpp:sift:2 ’>
<message >

<allow name=’body’ ns=’jabber:client ’/>
<allow name=’subject ’ ns=’jabber:client ’/>
<allow name=’thread ’ ns=’jabber:client ’/>

</message >
</sift>

</iq>

11

9 XML SCHEMA

6 Security Considerations
To follow.

7 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
15.

8 XMPP Registrar Considerations
8.1 Protocol Namespaces
This specification defines the following XML namespace:

• urn:xmpp:sift:2

Upon advancement of this specification from a status of Experimental to a status of
Draft, the XMPP Registrar 16 shall add the foregoing namespace to the registry located
at <https://xmpp.org/registrar/namespaces.html>, as described in Section 4 of XMPP
Registrar Function (XEP-0053) 17.

8.2 Protocol Versioning
If the protocol defined in this specification undergoes a revision that is not fully backwards-
compatible with an older version, the XMPP Registrar shall increment the protocol version
number found at the end of the XML namespaces defined herein, as described in Section 4 of
XEP-0053.

9 XML Schema

15The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

16The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

17XEP-0053: XMPP Registrar Function <https://xmpp.org/extensions/xep-0053.html>.

12

http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/registrar/namespaces.html
https://xmpp.org/extensions/xep-0053.html
https://xmpp.org/extensions/xep-0053.html
http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/extensions/xep-0053.html

9 XML SCHEMA

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’urn:xmpp:sift:2 ’
xmlns=’urn:xmpp:sift:2 ’
elementFormDefault=’qualified ’>

<xs:element name=’sift’>
<xs:complexType >

<xs:sequence >
<xs:element name=’iq’

type=’siftElementType ’
minOccurs=’0’
maxOccurs=’1’/>

<xs:element name=’message ’
type=’siftElementType ’
minOccurs=’0’
maxOccurs=’1’/>

<xs:element name=’presence ’
type=’siftElementType ’
minOccurs=’0’
maxOccurs=’1’/>

<xs:element name=’sub’
type=’siftElementType ’
minOccurs=’0’
maxOccurs=’1’/>

</xs:sequence >
</xs:complexType >

</xs:element >

<xs:element name=’siftElementType ’>
<xs:complexType >

<xs:sequence >
<xs:element name=’allow ’

type=’allowElementType ’
minOccurs=’0’
maxOccurs=’unbounded ’/>

<xs:any namespace=’## other ’
minOccurs=’0’
maxOccurs=’unbounded ’/>

</xs:sequence >
<xs:attribute name=’recipient ’

use=’optional ’
default=’all’>

<xs:simpleType >
<xs:restriction base=’xs:NCName ’>

<xs:enumeration value=’all’/>
<xs:enumeration value=’bare’/>

13

10 ACKNOWLEDGEMENTS

<xs:enumeration value=’full’/>
</xs:restriction >

</xs:simpleType >
</xs:attribute >
<xs:attribute name=’sender ’

use=’optional ’
default=’all’>

<xs:simpleType >
<xs:restriction base=’xs:NCName ’>

<xs:enumeration value=’all’/>
<xs:enumeration value=’local ’/>
<xs:enumeration value=’others ’/>
<xs:enumeration value=’remote ’/>
<xs:enumeration value=’self’/>

</xs:restriction >
</xs:simpleType >

</xs:attribute >
</xs:complexType >

</xs:element >

<xs:simpleType name=’empty ’>
<xs:restriction base=’xs:string ’>

<xs:enumeration value=’’/>
</xs:restriction >

</xs:simpleType >

</xs:schema >

10 Acknowledgements
The authors wish to acknowledge feedback received from Dave Cridland, Jack Erwin, Fabio
Forno, Waqas Hussain, Craig Kaes, Dirk Meyer, Chris Newton, Christopher Orr, Robert
Quattlebaum, Travis Shirk, Mike Taylor, Matthew Wild, and Jiří Zárevúcký, as well as from
participants at XMPP Summit #7 in July 2009 and XMPP Summit #8 in February 2010.

14

	Introduction
	Requirements
	Protocol
	Features
	Stanza Kinds
	Sender
	Recipient
	Payload
	Advanced Matching

	Discovering Supported Features
	Enabling SIFT
	Disabling SIFT

	Business Rules
	Handling IQ Stanzas
	Handling Message Stanzas
	Handling Presence Notifications
	Handling Subscriptions
	Lack of Sifting

	Use Cases
	Negative Presence Priority
	Presence Hush
	Removing Extraneous Message Extensions

	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	Protocol Versioning

	XML Schema
	Acknowledgements

