XVIPP

XEP-0304: Whitespace Keepalive Negotiation

Ming Ji
mailto:mingj@cisco.com
Xmpp:mingj@cisco.com

2011-08-18
Version 0.1

Status Type Short Name
Deferred Standards Track NOT_YET_ASSIGNED

This specification defines a method for negotiating how to send keepalives in XMPP.

mailto:mingj@cisco.com
xmpp:mingj@cisco.com

Legal

Copyright

This XMPP Extension Protocol is copyright © 1999 - 2024 by the XMPP Standards Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
"Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https: //xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction
2 Protocol

3 Use Cases
3.1 StreamFeature e e e e e e e e e e e
3.2 NegotiateKeepalive

4 Implementation Notes
5 Security Considerations
6 IANA Considerations

7 XMPP Registrar Considerations
7.1 Protocol Namespaces v v v v v v v it
7.2 StreamFeatures e

8 XML Schema

9 Acknowledgements

/'3 USECASES

1 Introduction

RFC 6120 ! specifies that XMPP servers and clients can send whitespace characters between
first-level elements of an XML stream as a way to maintain the state of the stream. These
“whitespace keepalives” are widely used on the XMPP network. However, currently it is not
possible to negotiate the frequency of sending keepalives, or even whether to send keepalives
at all (the server simply sends them according to its own schedule). Because certain kinds of
devices might not want to use keepalives, or might wish to receive keepalives more frequently
or less frequently than the server’s default, this specification defines a method for negotiating
how to send whitespace keepalives between an XMPP server and an XMPP client (this method
could also be used between two servers, although that usage is expected to be rare).

2 Protocol

The protocol defined in this document enables a client negotiate the time interval between
whitespace keepalives, within a range determined by the server. Normally, the client starts
the negotiation since not all kinds of the client support the feature.

The protocol defines a keepalive element and the normal negotaition process is quite simple,
demonstrated as following:

1. Server announces keepalive feature with a range of time intervals.
2. Client starts the keepalive negotiation by specifying a time interval.
3. Server checks the value and relpies with success or failure.

Then server and client send whitespace keepalive to each other at the agreed time interval.

3 Use Cases

3.1 Stream Feature

During the stream negotiation process, the server can advertise this feature. The feature is
negotiated after the resource binding. (See Recommended Order of Stream Feature Negotia-
tion (XEP-0170) ? regarding the recommended order of stream feature negotiation.)

Listing 1: Server lists feature in the stream negotiation stage

‘C: <stream:stream

IRFC 6120: Extensible Messaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
*XEP-0170: Recommended Order of Stream Feature Negotiation <https://xmpp.org/extensions/xep-0170.h
tml>,

http://tools.ietf.org/html/rfc6120
https://xmpp.org/extensions/xep-0170.html
https://xmpp.org/extensions/xep-0170.html
http://tools.ietf.org/html/rfc6120
https://xmpp.org/extensions/xep-0170.html
https://xmpp.org/extensions/xep-0170.html

/'3 USECASES

to="example.com’

version=’1.0"

xmlns=’jabber:client’
xmlns:stream="http://etherx. jabber.org/streams’>

C: <stream:stream
from=’example.com’
id="KskA202BEn5mL7mABTq9X3DTPHO044vAMalginG901vo’
version=’1.0"
xmlns=’jabber:client’
xmlns:stream="http://etherx. jabber.org/streams’>
S: <stream:features>
<bind xmlns=’urn:ietf:params:xml:ns:xmpp-bind’/>
<keepalive xmlns=’urn:xmpp:keepalive:0’>
<interval min=’60’ max=’300’/>
</keepalive>
</stream:features>

3.2 Negotiate Keepalive

Client negotiates the keepalive feature by providing an interval value based on server limits
and its own condition. The interval SHOULD be a positive interger, and zero is invalid.

Listing 2: Client sends its negotiating keepalive time interval

<ig from=’client@example.com/foo’ id=’p@3ns6lg’ to=’example.com’ type=
‘set’>
<keepalive xmlns=’urn:xmpp:keepalive:0’>
<interval>60</interval>
</keepalive>
</iqg>

The server checks the keepalive interval value and returns a success:

Listing 3: Server returns success of keepalive negotiation

<ig from=’example.com’ id=’p@3ns61g’ to=’client@example.com/foo’ type=
"result’/>

If a problem occurs, the server returns an error (in this example, the client sent a value
outside the range of the server’s preferences):

Listing 4: Server returns failure of keepalive negotiation

<ig from=’example.com’ id=’p@3ns61g’ to=’client@example.com/foo’ type=
‘error’>
<error type=’cancel’>

/6 IANA CONSIDERATIONS

<not-acceptable xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/>
</error>
</ig>

Then both the server and the client send whitespace keepalives at the interval of the nego-
tiated value. The server SHOULD check to see if has received keepalives and MAY drop the
connection if it has not received a keepalive for a period of time significantly longer than the
negotiated value (the client MAY also implement this behavior).

4 Implementation Notes
Several things need to be noted:
1. Both parties SHOULD keep a record of the keepalive status and honor the negotiated

value when allowing stream resumption and session recreation. See Stream Manage-
ment (XEP-0198) 3

2. The length of the keepalive interval depends on the service type and network environ-
ment. Implementations are encouraged to use appropriate values based on implemen-
tation and deployment experience.

5 Security Considerations

During negotiation, the server MUST check the keepalive interval value and reject any invalid
values.

6 IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (TANA)
4

3XEP—0198:StreamManagement<https://xmpp.org/extensions/xep—0198.htm1>

“The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assighment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>

https://xmpp.org/extensions/xep-0198.html
https://xmpp.org/extensions/xep-0198.html
http://www.iana.org/
https://xmpp.org/extensions/xep-0198.html
http://www.iana.org/

/8 XML SCHEMA

7 XMPP Registrar Considerations

7.1 Protocol Namespaces

The XMPP Registrar ° is requested to issue an initial namespace "urn:xmpp:keepalive:0’

7.2 Stream Features

The XMPP Registrar © is requested to issue an initial stream feature namespace
"urn:xmpp:keepalive:0’.

8 XML Schema

<?xml version=’1.0’ encoding=’utf-8’?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema’
targetNamespace=’urn:xmpp:keepalive:0’
xmlns=’urn:xmpp:keepalive:0’
elementFormDefault="unqualified’>

<xsd:element name=’keepalive’>
<xsd:complexType>
<xsd:attribute name=’"min’ type=’positiveShort’ use=’optional’/>
<xsd:attribute name=’"max’ type=’positiveShort’ use=’optional’/>
<xsd:assert test=’@min_le_@max’/>
<xsd:element name=’interval’ type=’positiveShort’ minOccurs="0’
maxOccurs=’1"/>
</xsd:complexType>
</xsd:element>

<xsd:simpleType name=’positiveShort’>
<xsd:restriction base=’xsd:unsignedShort’>
<xsd:minExclusive value='0’/>
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

>The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

https://xmpp.org/registrar/
https://xmpp.org/registrar/
https://xmpp.org/registrar/
https://xmpp.org/registrar/

/9 ACKNOWLEDGEMENTS

9 Acknowledgements

Thanks to Matt Miller and Peter Saint-Andre for their feedback.

	Introduction
	Protocol
	Use Cases
	Stream Feature
	Negotiate Keepalive

	Implementation Notes
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	Stream Features

	XML Schema
	Acknowledgements

