
XEP-0305: XMPP Quickstart

Peter Saint-Andre
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org

https://stpeter.im/

2013-03-01
Version 0.3

Status Type Short Name
Deferred Standards Track N/A

This document defines methods for speeding the process of connecting or reconnecting to an XMPP
server.

mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2020 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Preparing to Connect 1

3 Pipelining 1

4 Discovery 2

5 TCP Binding 2

6 HTTP Bindings 6

7 Reconnection 11

8 Security Considerations 11

9 IANA Considerations 12

10 XMPP Registrar Considerations 12

11 Acknowledgements 12

3 PIPELINING

1 Introduction
Establishing an XMPP session can require a fairly large number of round trips between the
initiating entity and the receiving entity. However, in many deployment scenarios it would
be helpful to reduce the number of round trips and therefore the time needed to establish a
session. This document describes protocol optimizations and best practices to do just that.

2 Preparing to Connect
In accordance with RFC 6120 1, before attempting to establish a stream over TCP the initiating
entity needs to determine the IP address and port at which to connect, usually by means of
DNS lookups as described in Section 3.2 of RFC 6120. Implementations SHOULD cache the
results of DNS lookups in order to avoid this step whenever possible. Similar considerations
apply to connections established over one of the HTTP bindings, i.e., either BOSH (see BOSH
(XEP-0124) 2 and XMPP Over BOSH (XEP-0206) 3) or WebSocket (see RFC 6455 4 and RFC 7395
5).
XMPP applications SHOULD cache whatever information they can about the peer, especially
stream features data and Service Discovery (XEP-0030) 6 information. To facilitate such
caching, servers SHOULD include Entity Capabilities (XEP-0115) 7 data in stream features as
shown in Section 6.3 of XEP-0115. Note that for maximum benefit the server MUST include all
of the stream features it supports in its replies to ”disco#info” queries (i.e., not advertise such
features only during stream establishment).
XMPP clients SHOULD cache roster information, and servers SHOULD make such caching
possible, using Roster Versioning (XEP-0237) 8 as subsequently included in Section 2.1.1 of
RFC 6121 9.

3 Pipelining
The primary method of speeding the connection process is pipelining of requests, along the
lines of RFC 2920 10 and the QUICKSTART extension proposed for SMTP (The QUICKSTART

1RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
2XEP-0124: Bidirectional-streams Over Synchronous HTTP <https://xmpp.org/extensions/xep-0124.html>.
3XEP-0206: XMPP Over BOSH <https://xmpp.org/extensions/xep-0206.html>.
4RFC 6455: The WebSocket Protocol <http://tools.ietf.org/html/rfc6455>.
5RFC 7395: An Extensible Messaging and Presence Protocol (XMPP) Subprotocol forWebSocket <http://tools.i
etf.org/html/rfc7395>.

6XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.
7XEP-0115: Entity Capabilities <https://xmpp.org/extensions/xep-0115.html>.
8XEP-0237: Roster Versioning <https://xmpp.org/extensions/xep-0237.html>.
9RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc6121>.

10RFC 2920: SMTP Service Extension for Command Pipelining <http://tools.ietf.org/html/rfc2920>.

1

http://tools.ietf.org/html/rfc6120
https://xmpp.org/extensions/xep-0124.html
https://xmpp.org/extensions/xep-0124.html
https://xmpp.org/extensions/xep-0206.html
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc7395
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0237.html
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc2920
http://tools.ietf.org/id/draft-fanf-smtp-quickstart-01.txt
http://tools.ietf.org/id/draft-fanf-smtp-quickstart-01.txt
https://xmpp.org/extensions/xep-0124.html
https://xmpp.org/extensions/xep-0206.html
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc7395
http://tools.ietf.org/html/rfc7395
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0237.html
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc2920

5 TCP BINDING

SMTP service extension 11). The application of similar principles to XMPP was originally
suggested by Tony Finch in February 2008 in amessage to the standards@xmpp.org discussion
list <http://mail.jabber.org/pipermail/standards/2008-February/017966.html>.
In essence, pipelining relies on two assumptions:

1. The parties to a stream can proactively send multiple XMPP-related ”commands” in a
single TCP packet (as one simple example, the receiving entity can send both the re-
sponse stream header and stream features in a single packet).

2. The features that the receiving entity supports (e.g., stream features and SASL mecha-
nisms) are stable over time, which means the initiating entity can assume support for
certain features and send certain XMPP-related commands without discovering at the
time of each connection attempt that the receiving entity supports them.

Together, these assumptions enable the parties to reduce the number of round trips needed
to complete the stream negotiation process by ”pipelining” XMPP-related commands over
the stream.
Note well that pipelining at the XMPP layer is not to be confused with HTTP pipelining, which was added
to HTTP in version 1.1 and which is not encouraged when using the HTTP bindings for XMPP.

4 Discovery
If an XMPP server supports pipelining, it MUST advertise a stream feature of <pipelining
xmlns=’urn:xmpp:features:pipelining’/>.
As noted, a server SHOULD also include its entity capabilities data in stream features as shown
in Section 6.3 of XEP-0115.

5 TCP Binding
If both parties support pipelining, they can proceed as follows over the TCP binding (the
examples use the XML from Section 9.1 of RFC 6120 for the client-server stream establishment,
but the same principles apply to server-to-server streams).
In the client-to-server half of the first exchange, the client assumes that the server supports
the XMPP STARTTLS extension so it pipelines its initial stream header, the <starttls/> com-
mand, and the TLS ClientHello message.

Listing 1: Client Initiation
<stream:stream

11The QUICKSTART SMTP service extension <http://tools.ietf.org/id/draft-fanf-smtp-quickstart-01.t
xt>. Work in progress.

2

http://mail.jabber.org/pipermail/standards/2008-February/017966.html
http://tools.ietf.org/id/draft-fanf-smtp-quickstart-01.txt
http://tools.ietf.org/id/draft-fanf-smtp-quickstart-01.txt

5 TCP BINDING

from=’juliet@im.example.com’
to=’im.example.com’
version=’1.0’
xml:lang=’en’
xmlns=’jabber:client ’
xmlns:stream=’http: // etherx.jabber.org/streams ’>

<starttls xmlns=’urn:ietf:params:xml:ns:xmpp -tls’/>
TLS ClientHello

In the server-to-client half of the first exchange, the server pipelines its response stream
header, stream features advertisement, STARTTLS <proceed/> response, and TLS ServerHello
messages (which might include ServerHello, Certificate, ServerKeyExchange, Certifi-
cateRequest, and ServerHelloDone -- see RFC 5246 12 for details).

Listing 2: Server Response to Initiation
<stream:stream

from=’im.example.com’
id=’t7AMCin9zjMNwQKDnplntZPIDEI=’
to=’juliet@im.example.com’
version=’1.0’
xml:lang=’en’
xmlns=’jabber:client ’
xmlns:stream=’http: // etherx.jabber.org/streams ’>

<stream:features >
<starttls xmlns=’urn:ietf:params:xml:ns:xmpp -tls’>

<required/>
</starttls >
<pipelining xmlns=’urn:xmpp:features:pipelining ’/>
<c xmlns=’http: // jabber.org/protocol/caps’

hash=’sha -1’
node=’http: // prosody.im/’
ver=’ItBTI0XLDFvVxZ72NQElAzKS9sU=’/>

</stream:features >
<proceed xmlns=’urn:ietf:params:xml:ns:xmpp -tls’/>
TLS ServerHello

Without pipelining, the foregoing exchange would require 3 round trips; with pipelining it
requires 1 round trip.
Now the parties complete the TLS negotiation (i.e., some combination of the TLS messages
specified in RFC 5246); for our purposes we don’t count these round trips because they are the
same no matter whether we use pipelining or not.
At the end of the TLS negotiation, the server knows that the client will need to restart the
stream so it proactively attaches its response stream header and stream features in the same
TCP packet at the TLS Finished message, thus starting the next exchange.

12RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2 <http://tools.ietf.org/html/rfc5246>.

3

http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246

5 TCP BINDING

Listing 3: Server Proactively Restarts Stream and Sends Stream Features
TLS Finished
<stream:stream

from=’im.example.com’
id=’vgKi/bkYME8OAj4rlXMkpucAqe4=’
to=’juliet@im.example.com’
version=’1.0’
xml:lang=’en’
xmlns=’jabber:client ’
xmlns:stream=’http: // etherx.jabber.org/streams ’>

<stream:features >
<mechanisms xmlns=’urn:ietf:params:xml:ns:xmpp -sasl’>

<mechanism >SCRAM -SHA -1-PLUS</mechanism >
<mechanism >SCRAM -SHA -1</mechanism >
<mechanism >PLAIN </mechanism >

</mechanisms >
<pipelining xmlns=’urn:xmpp:features:pipelining ’/>
<c xmlns=’http: // jabber.org/protocol/caps’

hash=’sha -1’
node=’http: // prosody.im/’
ver=’ItBTI0XLDFvVxZ72NQElAzKS9sU=’/>

</stream:features >

In response, the client pipelines its initial stream header with the command for initiating
the SASL authentication process (including, if appropriate for the SASL mechanism used, the
”initial response” data as explained in Section 6.3.10 of RFC 6120).

Listing 4: Client Initiates SASL Authentication
<stream:stream

from=’juliet@im.example.com’
to=’im.example.com’
version=’1.0’
xml:lang=’en’
xmlns=’jabber:client ’
xmlns:stream=’http: // etherx.jabber.org/streams ’>

<auth xmlns=”urn:ietf:params:xml:ns:xmpp -sasl”
mechanism=”SCRAM -SHA -1”>

biwsbj1qdWxpZXQscj1vTXNUQUF3QUFBQU1BQUFBTlAwVEFBQUFBQUJQVTBBQQ ==
</auth>

Without pipelining, the second exchange would require another 2 round trips; with pipelining
it requires only 1.
At this point the client and servermight exchangemultiple SASL-relatedmessages, depending
on the SASL mechanism in use. Because this specification does not attempt to reduce the
number of round trips involved in the challenge-response sequence, we do not describe these
exchanges here.
When the client suspects that it is sending its final SASL response, with pipelining it appends

4

5 TCP BINDING

an initial stream header and resource binding request.

Listing 5: Client Sends Final SASL Response with Stream Header and Bind Request
<response xmlns=”urn:ietf:params:xml:ns:xmpp -sasl”>

Yz1iaXdzLHI9b01zVEFBd0FBQUFNQUFBQU5QMFRBQUFBQUFCUFUwQUFlMTI0N
jk1Yi02OWE5LTRkZTYtOWMzMC1iNTFiMzgwOGM1OWUscD1VQTU3dE0vU3ZwQV
RCa0gyRlhzMFdEWHZKWXc9

</response >
<stream:stream

from=’juliet@im.example.com’
to=’im.example.com’
version=’1.0’
xml:lang=’en’
xmlns=’jabber:client ’
xmlns:stream=’http: // etherx.jabber.org/streams ’>

<iq id=’yhc13a95 ’ type=’set’>
<bind xmlns=’urn:ietf:params:xml:ns:xmpp -bind’>

<resource >balcony </resource >
</bind>

</iq>

The server then informs the client of SASL success (including ”additional data with success” as
explained in Section 6.3.10 of RFC 6120), sends a response stream header and stream features,
and informs the client of successful resource binding.

Listing 6: Server Accepts Bind Request
<success xmlns=’urn:ietf:params:xml:ns:xmpp -sasl’>

dj1wTk5ERlZFUXh1WHhDb1NFaVc4R0VaKzFSU289
</success >
<stream:stream

from=’im.example.com’
id=’gPybzaOzBmaADgxKXu9UClbprp0=’
to=’juliet@im.example.com’
version=’1.0’
xml:lang=’en’
xmlns=’jabber:client ’
xmlns:stream=’http: // etherx.jabber.org/streams ’>

<stream:features >
<bind xmlns=’urn:ietf:params:xml:ns:xmpp -bind’/>
<sm xmlns=’urn:xmpp:sm:3 ’/>
<pipelining xmlns=’urn:xmpp:features:pipelining ’/>
<c xmlns=’http: // jabber.org/protocol/caps’

hash=’sha -1’
node=’http: // prosody.im/’
ver=’ItBTI0XLDFvVxZ72NQElAzKS9sU=’/>

</stream:features >
<iq id=’yhc13a95 ’ type=’result ’>

5

6 HTTP BINDINGS

<bind xmlns=’urn:ietf:params:xml:ns:xmpp -bind’>
<jid>

juliet@im.example.com/balcony
</jid>

</bind>
</iq>

Without pipelining, this exchange would require another 3 round trips; with pipelining it
requires only 1.
Therefore, without pipelining the XMPP exchanges for stream establishment require at least
6 round trips (and perhaps more depending on the SASL mechanism used); with pipelining
the minimum number of round trips is 3.
Naturally, for typical client-to-server sessions, additional round trips are needed so that the
client can gather service discovery information, retrieve the roster, etc. As noted, these steps
can be reduced or eliminated by using entity capabilities and roster versioning.

6 HTTP Bindings
In the HTTP bindings (BOSH and WebSocket) channel encryption occurs at the HTTP layer
and therefore the first exchange shown above for the TCP binding is not used.
For now, this section focuses on BOSH. A future version of this document will discuss Web-
Socket (once draft-moffitt-xmpp-over-websocket has been updated to include examples).
When pipelining is used, a BOSH client can include its XMPP authentication (SASL) request in
the BOSH session creation request, as shown in the following example.

Listing 7: BOSH Session Request with Pipelined SASL Authentication Request
POST /webclient HTTP /1.1
Host: httpcm.jabber.org
Accept -Encoding: gzip , deflate
Content -Type: text/xml; charset=utf -8
Content -Length: 104

<body content=’text/xml;␣charset=utf -8’
from=’user@example.com’
hold=’1’
rid=’1573741820 ’
to=’example.com’
route=’xmpp:example.com:9999 ’
secure=’true’
wait=’60’
xml:lang=’en’
xmpp:version=’1.0’
xmlns=’http: // jabber.org/protocol/httpbind ’
xmlns:xmpp=’urn:xmpp:xbosh ’>

<auth xmlns=”urn:ietf:params:xml:ns:xmpp -sasl”

6

6 HTTP BINDINGS

mechanism=”SCRAM -SHA -1”>
biwsbj1qdWxpZXQscj1vTXNUQUF3QUFBQU1BQUFBTlAwVEFBQUFBQUJQVTBBQQ ==

</auth>
</body>

Note: If the client does not expect to receive a SASL challenge from the server but simply a
success or failure notification (e.g., when using a simpler SASL mechanism such as PLAIN RFC
4616 13), then it can also pipeline its XMPP resource binding request with the BOSH session
creation request.
The BOSH connection manager then returns a session creation response with a pipelined
SASL authentication response.

Listing 8: Session Creation Response with Pipelined SASL Authentication Response
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 674

<body wait=’60’
inactivity=’30’
polling=’5’
requests=’2’
hold=’1’
from=’example.com’
accept=’deflate ,gzip’
sid=’SomeSID ’
secure=’true’
charsets=’ISO_8859 -1␣ISO -2022-JP’
xmpp:restartlogic=’true’
xmpp:version=’1.0’
authid=’ServerStreamID ’
xmlns=’http: // jabber.org/protocol/httpbind ’
xmlns:xmpp=’urn:xmpp:xbosh ’
xmlns:stream=’http: // etherx.jabber.org/streams ’>

<stream:features >
<pipelining xmlns=’urn:xmpp:features:pipelining ’/>
<c xmlns=’http: // jabber.org/protocol/caps’

hash=’sha -1’
node=’http: // prosody.im/’
ver=’ItBTI0XLDFvVxZ72NQElAzKS9sU=’/>

<mechanisms xmlns=’urn:ietf:params:xml:ns:xmpp -sasl’>
<mechanism >SCRAM -SHA -1</mechanism >
<mechanism >PLAIN </mechanism >

</mechanisms >
</stream:features >
<challenge xmlns=’urn:ietf:params:xml:ns:xmpp -sasl’>

13RFC 4616: The PLAIN Simple Authentication and Security Layer (SASL) Mechanism <http://tools.ietf.org/h
tml/rfc4616>.

7

http://tools.ietf.org/html/rfc4616
http://tools.ietf.org/html/rfc4616
http://tools.ietf.org/html/rfc4616
http://tools.ietf.org/html/rfc4616

6 HTTP BINDINGS

cj1vTXNUQUF3QUFBQU1BQUFBTlAwVEFBQUFBQUJQVTBBQWUxMjQ2OTViLTY5Y
TktNGRlNi05YzMwLWI1MWIzODA4YzU5ZSxzPU5qaGtZVE0wTURndE5HWTBaaT
AwTmpkbUxUa3hNbVV0TkRsbU5UTm1ORE5rTURNeixpPTQwOTY=

</challenge >
</body>

Without pipelining, this exchange would require 2 round trips; with pipelining, it requires
only 1.
If the SASL exchange involved a challenge, in its final SASL response the client includes an
XMPP resource binding request (note that the BOSH <body/> wrapper includes a restart=’true’
attribute, instead of sending this in a new empty <body/> as shown in XEP-0206).

Listing 9: SASL Response with Pipelined XMPP Resource Binding Request
POST /webclient HTTP /1.1
Host: httpcm.example.com
Accept -Encoding: gzip , deflate
Content -Type: text/xml; charset=utf -8
Content -Length: 295

<body rid=’1573741822 ’
sid=’SomeSID ’
xmpp:restart=’true’
xmlns=’http: // jabber.org/protocol/httpbind ’
xmlns:xmpp=’urn:xmpp:xbosh ’>

<response xmlns=’urn:ietf:params:xml:ns:xmpp -sasl’>
Yz1iaXdzLHI9b01zVEFBd0FBQUFNQUFBQU5QMFRBQUFBQUFCUFUwQUFlMTI0N
jk1Yi02OWE5LTRkZTYtOWMzMC1iNTFiMzgwOGM1OWUscD1VQTU3dE0vU3ZwQV
RCa0gyRlhzMFdEWHZKWXc9

</response >
<iq id=’bind_1 ’

type=’set’
xmlns=’jabber:client ’>

<bind xmlns=’urn:ietf:params:xml:ns:xmpp -bind’>
<resource >httpclient </resource >

</bind>
</iq>

</body>

An XMPP stream restart is required by RFC 6120 at this point; however, the server can include
the stream features element (if any) along with the SASL authentication success and XMPP
resource binding success notifications, as shown in the following example.

Listing 10: SASL Success with Pipelined Stream Features and XMPP Resource Binding Response
HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 149

8

6 HTTP BINDINGS

<body xmlns=’http: // jabber.org/protocol/httpbind ’>
<success xmlns=’urn:ietf:params:xml:ns:xmpp -sasl’>

dj1wTk5ERlZFUXh1WHhDb1NFaVc4R0VaKzFSU289
</success >
<stream:features >

<pipelining xmlns=’urn:xmpp:features:pipelining ’/>
<c xmlns=’http: // jabber.org/protocol/caps’

hash=’sha -1’
node=’http: // prosody.im/’
ver=’ItBTI0XLDFvVxZ72NQElAzKS9sU=’/>

<bind xmlns=’urn:ietf:params:xml:ns:xmpp -bind’/>
</stream:features >
<iq id=’bind_1 ’

type=’result ’
xmlns=’jabber:client ’>

<bind xmlns=’urn:ietf:params:xml:ns:xmpp -bind’>
<jid>user@example.com/httpclient </jid>

</bind>
</iq>

</body>

Without pipelining, this second exchange would require 3 round trips; with pipelining, it
requires only 1.
Therefore, without pipelining the XMPP exchanges for stream establishment over BOSH
require at least 5 round trips (if the SASL mechanism is not multi-stage, and perhaps more
depending on the SASL mechanism used); with pipelining the minimum number of round
trips is 1.
Note: It might seem that with pipelining the minimum number of round trips is 2. However,
consider the case of a session creation request that includes (a) a SASL authentication request
for a SASL mechanism that is not multi-stage, such as PLAIN, (b) an XMPP resource binding
request, and (c) a stream restart request; in the ”happy path” the session creation response
would include (a) stream features, (b) a SASL authentication success notification, and (c) an
XMPP resource binding response. This flow is shown in the following example.

Listing 11: BOSH Session Request with Pipelined SASL Authentication Request and XMPP Re-
source Binding Request, Including Stream Restart Request

POST /webclient HTTP /1.1
Host: httpcm.jabber.org
Accept -Encoding: gzip , deflate
Content -Type: text/xml; charset=utf -8
Content -Length: 104

<body content=’text/xml;␣charset=utf -8’
from=’user@example.com’
hold=’1’
rid=’1573741820 ’

9

6 HTTP BINDINGS

to=’example.com’
route=’xmpp:example.com:9999 ’
secure=’true’
wait=’60’
xml:lang=’en’
xmpp:restart=’true’
xmpp:version=’1.0’
xmlns=’http: // jabber.org/protocol/httpbind ’
xmlns:xmpp=’urn:xmpp:xbosh ’>

<auth xmlns=”urn:ietf:params:xml:ns:xmpp -sasl” mechanism=”PLAIN”>
[plain credentials here]

</auth>
<iq id=’bind_2 ’ type=’set’ xmlns=’jabber:client ’>

<bind xmlns=’urn:ietf:params:xml:ns:xmpp -bind’/>
</iq>

</body>

Listing 12: BOSH Session Response with Pipelined Stream Features, SASL Authentication Re-
quest, and XMPP Resource Binding Response

HTTP /1.1 200 OK
Content -Type: text/xml; charset=utf -8
Content -Length: 674

<body wait=’60’
inactivity=’30’
polling=’5’
requests=’2’
hold=’1’
from=’example.com’
accept=’deflate ,gzip’
sid=’SomeSID ’
secure=’true’
charsets=’ISO_8859 -1␣ISO -2022-JP’
xmpp:restartlogic=’true’
xmpp:version=’1.0’
authid=’ServerStreamID ’
xmlns=’http: // jabber.org/protocol/httpbind ’
xmlns:xmpp=’urn:xmpp:xbosh ’
xmlns:stream=’http: // etherx.jabber.org/streams ’>

<stream:features >
<pipelining xmlns=’urn:xmpp:features:pipelining ’/>
<c xmlns=’http: // jabber.org/protocol/caps’

hash=’sha -1’
node=’http: // prosody.im/’
ver=’ItBTI0XLDFvVxZ72NQElAzKS9sU=’/>

<mechanisms xmlns=’urn:ietf:params:xml:ns:xmpp -sasl’>
<mechanism >SCRAM -SHA -1</mechanism >
<mechanism >PLAIN </mechanism >

</mechanisms >

10

8 SECURITY CONSIDERATIONS

</stream:features >
<success xmlns=’urn:ietf:params:xml:ns:xmpp -sasl’/>
<iq id=’bind_2 ’ type=’result ’ xmlns=’jabber:client ’>

<bind xmlns=’urn:ietf:params:xml:ns:xmpp -bind’>
<jid>user@example.com/F580F69C -6E1E -41CF -94A5 -692 D96D0EC51 </jid>

</bind>
</iq>

</body>

7 Reconnection
The pain of multiple round trips is magnified if the initiating entity needs to reconnect
frequently (e.g., because of intermittent network outages). Although XEP-0124 can be used to
mitigate the pain, BOSH is not appropriate for all scenarios and is not currently used in others
(e.g., server-to-server streams).
To minimize the speed of reconnection, implementations are strongly encouraged to support
TLS Session Resumption (RFC 5077 14) in addition to the technologies already mentioned.
Reconnection can be further enhanced by using the stream resumption feature defined in
Stream Management (XEP-0198) 15. XEP-0198 does not legislate exactly when it is safe for
the server to allow the client to send the <resume/> request. Clearly, sending it before the
stream is encrypted would increase the possibility of replay attacks. However, sending it after
TLS negotiation (Step 4 above) but before SASL authentication and resource binding (Steps 5
through 8) would enable the client to begin sending stanzas more quickly. It is a matter of
server policy whether to advertise the SM feature after TLS negotiation or only after SASL
negotiation.

8 Security Considerations
Because pipelining does not skip any channel encryption or authentication steps, but merely
packs them into a smaller number of TCP packets or HTTP request/response pairs, it is
unlikely that the foregoing quickstart methods introduce security vulnerabilities. However,
the server needs to be careful not to send stream features that it would not otherwise send
before a security context is established.

14RFC 5077: Transport Layer Security (TLS) Session Resumption without Server-Side State <http://tools.ietf.o
rg/html/rfc5077>.

15XEP-0198: Stream Management <https://xmpp.org/extensions/xep-0198.html>.

11

http://tools.ietf.org/html/rfc5077
https://xmpp.org/extensions/xep-0198.html
http://tools.ietf.org/html/rfc5077
http://tools.ietf.org/html/rfc5077
https://xmpp.org/extensions/xep-0198.html

11 ACKNOWLEDGEMENTS

9 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
16.

10 XMPP Registrar Considerations
This specification defines the following XML namespace:

• urn:xmpp:features:pipelining

Upon advancement of this specification from a status of Experimental to a status of
Draft, the XMPP Registrar 17 shall add the foregoing namespace to the registry located at
<https://xmpp.org/registrar/stream-features.html>, as described in Section 4 of XMPP
Registrar Function (XEP-0053) 18.

11 Acknowledgements
Special thanks to Tony Finch for suggesting this work and for providing the initial outline of
how pipelining would work. Thanks also to Waqas Hussain, Jehan Pagès, and Kevin Smith for
their feedback.

16The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

17The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

18XEP-0053: XMPP Registrar Function <https://xmpp.org/extensions/xep-0053.html>.

12

http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/registrar/stream-features.html
https://xmpp.org/extensions/xep-0053.html
https://xmpp.org/extensions/xep-0053.html
http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/extensions/xep-0053.html

	Introduction
	Preparing to Connect
	Pipelining
	Discovery
	TCP Binding
	HTTP Bindings
	Reconnection
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Acknowledgements

