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This document provides a protocol that can be used for limiting the amount of presence history needed
when rejoining a MUC room.
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1 Introduction

A client joining a Multi-User Chat (XEP-0045) ' room will receive a significant volume of
data, in the form of presence from the current room occupants and past ("context” or
"history”) messages. If the client has recently been in the room (for example if it has needed
to reconnect only because of a networking error) it may already know most of the current
state, and receipt of these data will be redundant. XEP-0045 provides a method for limiting
the context messages received when joining but no method for limiting the duplication of
known presence; this document expands slightly upon the former and provides the latter.

2 Requirements

Reduce the volume of redundant data sent to a client.

3 Discovery

MUC Rooms supporting this should have a disco feature of "urn:xmpp:presence-session:0”.
To avoid extra roundtrips for discovery, clients may speculatively send elements when
initially joining a MUC, and treat the absense of appropriate elements in the responses to
indicate a lack of support.

4 Use Cases

4.1 Initial Join

In this example, Romeo (romeo@montague.lit) is joining the MUC room or-
chard@chats.capulet.lit. To use MUC Fast Reconnect for future joins, the initial MUC
join presence stanza MUST also contain a presence-session element in the namespace
“urn:xmpp:presence-session:0” with no attributes.

Listing 1: Romeo sends 'room join’ presence

<presence
from="romeo@montague.lit/lane’
to=’orchard@chat.capulet.lit/Romeo’>
<x xmlns=’http://jabber.org/protocol/muc’/>
<presence-session xmlns="urn:xmpp:presence-session:0”/>
</presence>

1XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>,
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If a client has indicated that it’s using MUC Fast Reconnect on its session, the MUC service
MUST annotate the presence stanzas it sends with elements containing a presence-session
element with namespace "urn:xmpp:presence-session:0”, a "session” attribute and an ”id”
attribute, described below.

Listing 2: Romeo receives an occupant’s presence

<presence
from="orchard@chat.capulet.lit/Juliet’
to=’romeo@montague.lit/lane’>
<x xmlns=’http://jabber.org/protocol/muc#user’>
<item affiliation=’owner’ role=’moderator’/>
</ x>
<presence-session xmlns="urn:xmpp:presence-session:0” session="
u8e8t2thu” id=78930ehh”/>
</presence>

Attributes:

« session: This is an opaque, string, identifier provider by the MUC room and may be used
by the server to distinguish between stanzas that will potentially have the same id, but
be for logically different rooms (e.g. because the room was deleted and another created
with the same name in the time between the client leaving and trying to fast rejoin).

« id: This (also opaque, string) is a per-stanza identifier that, when paired with the session,
gives a unique identifier for every presence update.

« type: This is empty for the normal case, and has a value of "resume” when a client re-
quests a session resumption, or "truncated” when a room is announcing that it is not
transmitting the full history to a joining client (see below)

4.2 Fast rejoin

If Romeo then leaves the room and wants to rejoin, his client can attempt a fast rejoin. To re-
quest only the presence changes since he was last an occupant, it includes a presence-session
element in his room join stanza, again with namespace ”urn:xmpp:presence-session:0”, with
a type attribute whose value is "resume” and the session and id attributes of the last presence
it received from the room prior to leaving. This corresponds to the "last known state”.

Listing 3: Romeo performs a fast rejoin on the room

<presence
from="romeo@montague.lit/lane’
to=’orchard@chat.capulet.lit/Romeo’>
<x xmlns=’http://jabber.org/protocol/muc’/>
<presence-session xmlns="urn:xmpp:presence-session:0” session="
u8e8t2thu” id=78930ehh” type="resume”/>
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‘</presence>

When the MUC room receives a room fast rejoin request, it MUST either satisfy the request by
sending incremental updates to the room state or send a complete set of stanzas to reestablish
the current state.

If the room is able to update the client’s state incrementally, it SHOULD only send those
presence stanzas needed by the client to remove any occupants no longer in the room, add
any newly joined occupants and update the state of any occupants whose status has changed
(either because they have changed their presence sent to the room (e.g. changed to an
‘away’ state) or because their status within the MUC has changed (e.g. they have become a
moderator). If the incremental stanzas would present a greater volume of data than a fresh
join, it is RECOMMENDED that the server sends fresh join information instead.

If the server is unable to calculate the stanzas required to send the client an incremental
update (or if it is to send a fresh join for some other reason), it MUST first send an 'unavailable’
presence from the room’s bare JID, followed by a normal full join, as above

All the presence stanzas (apart from the initial unavailable presence used to reset state before
a clean join) MUST contain the presence-session element as described above.

Listing 4: Romeo receives an "unavailable’ presence from the room, indicating that it is a clean
join.

<presence
to=’romeo@montague.lit/lane’
from=’orchard@chat.capulet.lit’
type=’unavailable’/>

The room SHOULD only send the unavailable presence, forcing a sending of all the occupants’
presence, if it would either result in fewer transmitted stanzas than sending the necessary
delta, or it is unable to provide the necessary delta (such as if too much time has past and it
no longer has records of the old state).

4.3 Receiving only unseen messages

XEP-0045 provides several ways to limit the history/context messages received on join, but
none of these allow a client to accurately request only the messages they have yet to see.
To address this, the MUC service annotates each message with an id (in the same manner as
presence, above), and the room will consider only messages since the last stanza the client
received when applying the default/maxchars/maxstanzas/seconds/since rules from -45 for
sending context. If the room doesn’t send the full history of messages that the client has yet
to receive (e.g. due to the application of history controls or because the server hasn’t stored
them) it sends a message to the client such the client knows it only has partial history.

Some informal examples:
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« There have been 9 messages since the client was last in the room, and the client joins
requesting a maximum of 20 stanzas. The client receives the 9 messages.

« There have been 9 messages since the client was last in the room, and the client joins
requesting a maximum of 5 stanzas. The client first receives a message that the history
has been truncated and then the 5 most recent messages.

« There have been 9 messages since the client was last in the room, and the client requests
that no history be sent. The client receives the truncation message and no history

Listing 5: Romeo receives annotated message while in room

<message
to=’romeo@montague.lit/lane’
from=’orchard@chat.capulet.lit/Juliet’
type=’groupchat’>
<body>Ay me!</body>
<presence-session xmlns="urn:xmpp:presence-session:0” session="
u8e8t2thu” id="8930u22”/>
</message>

When sending broadcast messages from the room, the service MUST annotate them with
a presence-session stanza with xmlns “urn:xmpp:presence-session:0” and session and id
attributes as defined above for presence stanzas.

Listing 6: Room informs Romeo’s client that it will not transmit the full missing history

<message
to=’romeo@montague.lit/lane’
from=’orchard@chat.capulet.lit’
type=’groupchat’>
<presence-session xmlns="urn:xmpp:presence-session:0” type=”
truncated”/>
</message>

When the room does not send the full history of all messages that the client has not re-
ceived, it MUST (prior to sending any history and subsequent to sending presence) send
a message stanza with a payload whose name is 'presence-session’ and namespace is
“urn:xmpp:presence-session:0” with an attribute named "type” whose value is "truncated”.
This lets the client know that it is missing history and it could choose to display this to the
user in some way.

5 Security Considerations

This specification doesn’t add additional security considerations beyond those of its depen-
dencies..
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6 IANA Considerations

None.

7 XMPP Registrar Considerations

Needs a namespace.

8 XML Schema

When advanced.
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