
XEP-0316: MUC Eventing Protocol

Peter Saint-Andre
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org

https://stpeter.im/

2013-01-03
Version 0.1

Status Type Short Name
Deferred Standards Track mep

This specification defines semantics for using the XMPP publish-subscribe protocol to broadcast state
change events associated with a Multi-User Chat (MUC) room. This profile of pubsub therefore enables
a chatroom to function as a virtual pubsub service, easing the discovery of syndicated data and event
notifications associated with such a room.

mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2020 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Room Notifications 1

3 Occupant Notifications 3

4 Concepts and Approach 4
4.1 Every Room JID and Occupant JID a Pubsub Service 5
4.2 One Publisher Per Node . 5
4.3 Use Presence . 5
4.4 Filtered Notifications . 5
4.5 Smart Defaults . 5

5 Recommended Defaults 5

6 Determining Support 6

7 Security Considerations 7

8 IANA Considerations 7

9 XMPP Registrar Considerations 8
9.1 Service Discovery Category/Type . 8

10 XML Schema 8

11 Acknowledgements 8

2 ROOM NOTIFICATIONS

1 Introduction
Just as Personal Eventing Protocol (XEP-0163) 1 defines a profile of Publish-Subscribe (XEP-
0060) 2 that enables an instant messaging user to send updates or ”events” to other users, this
specification defines a profile that enables a room occupant or the chatroom itself to send
notifications in the context of Multi-User Chat (XEP-0045) 3 chatroom.
Note: Any use cases, error flows, and other protocols details not described herein are described
in XEP-0060. This documentmerely defines a ”subset” or ”profile” of XMPP publish-subscribe.

2 Room Notifications
Using the chatroom example from XEP-0045, imagine that the room itself wants to notify the
occupants of the coven@chat.shakespeare.lit chatroom about events of interest to the group
(say, notifications about multimedia aspects of the multi-user session, such as described in
Delivering Conference Information to Jingle Participants (Coin) (XEP-0298) 4).
When new information is available about the multimedia session (say, calling into a con-
ference ”bridge” or starting a Jingle (XEP-0166) 5 session to add a video feed), a multimedia
engine might capture that event and inform the chatroom by means of a backend API. The
chatroom itself then generates an event notification. That is, a chatroom does not publish
events, instead it simply generates them based on data of interest. As a result, everyone in
the room who is interested in that kind of data will receive a notification about the event:

Listing 1: Interested occupants receive event notification
<message from=’coven@chat.shakespeare.lit’

to=’crone1@shakespeare.lit/desktop ’
type=’headline ’
id=’zns61f38 ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<items node=’urn:ietf:params:xml:ns:conference -info’>

<item id=’ehs51f40 ’>
<conference -info

xmlns=’urn:ietf:params:xml:ns:conference -info’>
<conference -description >

<available -media label=’4’>
<type>video </type>
<status >sendonly </status >

</available -media>
</conference -description >

1XEP-0163: Personal Eventing Protocol <https://xmpp.org/extensions/xep-0163.html>.
2XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.
3XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>.
4XEP-0298: Delivering Conference Information to Jingle Participants (Coin) <https://xmpp.org/extensions/xe
p-0298.html>.

5XEP-0166: Jingle <https://xmpp.org/extensions/xep-0166.html>.

1

https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0298.html
https://xmpp.org/extensions/xep-0166.html
https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0298.html
https://xmpp.org/extensions/xep-0298.html
https://xmpp.org/extensions/xep-0166.html

2 ROOM NOTIFICATIONS

</conference -info>
</item>

</items >
</event >

</message >

<message from=’coven@chat.shakespeare.lit’
to=’wiccarocks@shakespeare.lit/laptop ’
type=’headline ’
id=’uh4gs519 ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<items node=’urn:ietf:params:xml:ns:conference -info’>

<item id=’ehs51f40 ’>
<conference -info

xmlns=’urn:ietf:params:xml:ns:conference -info’>
<conference -description >

<available -media label=’4’>
<type>video </type>
<status >sendonly </status >

</available -media>
</conference -description >

</conference -info>
</item>

</items >
</event >

</message >

But how do the occupants tell the room that they are interested in knowing what about
conference-info events? Whereas generic pubsub services require an explicit subscription
to a conference-info node, MEP services support the ”filtered-notification” feature from
XEP-0060 and obviously share presence (since MUC is based on directed presence in the room)
so the ”auto-subscribe” feature also applies.

Listing 2: Occupant sends directed presence to join the room, with caps
<presence from=’crone1.shakespeare.lit/desktop ’

to=’coven@chat.shakespeare.lit/firstwitch ’>
<x xmlns=’http: // jabber.org/protocol/muc’/>
<c xmlns=’http: // jabber.org/protocol/caps’

hash=’sha -1’
node=’http: // jisti.org’
ver=’054 H4A7280JuT6+IroVYxgCAjZo=’/>

</presence >

That chatroom knows to send conference-info notifications to crone1@shakespeare.lig
because when the room unpacks the value of the ’ver’ attribute
(”054H4A7280JuT6+IroVYxgCAjZo=”) in accordance with XEP-0115, it discovers that her client
advertises a service discovery feature of ”urn:ietf:params:xml:ns:conference-info+notify”,

2

3 OCCUPANT NOTIFICATIONS

where the ”+notify” suffix indicates interest in receiving notifications related to the protocol
that precedes the suffix. The server can verify this support if needed by sending a service
discovery request to crone1’s full JID (see XEP-0115 for details).

3 Occupant Notifications
The foregoing section described how the room itself can inform the occupants about data
of interest. However, in MEP any particular occupant can also publish information. An
occupant does so by sending a publish-subscribe publish request to the occupant’s Occupant
JID <room@service/nick> (similar to the way in which publishing via PEP happens by sending
a request to the user’s bare JID <user@host>). For instance, the following example shows how
a room occupant would inform the other occupants about an event of interest.

Listing 3: Occupant Publishes Activity
<iq from=’wiccarocks@shakespeare.lit/laptop ’

id=’vlk3h264 ’
to=’coven@chat.shakespeare.lit/secondwitch ’
type=’set’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<publish node=’http: // jabber.org/protocol/activity ’>

<item>
<activity xmlns=’http: // jabber.org/protocol/activity ’>

<other/>
<text xml:lang=’en’>I’ll␣give␣thee␣a␣wind.</text >

␣␣␣␣␣␣␣␣ </activity >
␣␣␣␣␣␣ </item >
␣␣␣␣</publish >
␣␣ </pubsub >
</iq >

Note: Publishing to an occupant’s MEP node happens by sending an explicit publish request
to the Occupant JID. Publishing to a user’s PEP node MUST NOT trigger a MEP publish request,
because PEP and MEP are separate pubsub contexts.
As a result, everyone in the room who is interested in that kind of data will receive a notifica-
tion about the event (note that even the publisher receives the event, if they have advertised
interest in the payload type):

Listing 4: Interested occupants receive event notification
<message from=’coven@chat.shakespeare.lit/secondwitch ’

to=’crone1@shakespeare.lit/desktop ’
type=’headline ’
id=’hs7bx143 ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>

3

4 CONCEPTS AND APPROACH

<items node=’http: // jabber.org/protocol/activity ’>
<item id=’bxg1c27r ’>

<activity xmlns=’http: // jabber.org/protocol/activity ’>
<other/>
<text xml:lang=’en’>I’ll␣give␣thee␣a␣wind.</text >

␣␣␣␣␣␣␣␣ </activity >
␣␣␣␣␣␣ </item >
␣␣␣␣</items >
␣␣ </event >
</message >

<message␣from=’coven@chat.shakespeare.lit’
␣␣␣␣␣␣␣␣␣to=’wiccarocks@shakespeare.lit/laptop ’
␣␣␣␣␣␣␣␣␣type=’headline ’
␣␣␣␣␣␣␣␣␣id=’ke2v1c95 ’>
␣␣<event␣xmlns=’http:// jabber.org/protocol/pubsub#event ’>
␣␣␣␣<items␣node=’http:// jabber.org/protocol/activity ’>
␣␣␣␣␣␣<item␣id=’bxg1c27r ’>
␣␣␣␣␣␣␣␣<activity␣xmlns=’http:// jabber.org/protocol/activity ’>
␣␣␣␣␣␣␣␣␣␣<other/>
␣␣␣␣␣␣␣␣␣␣<text␣xml:lang=’en’>I’ll give thee a wind.</text>

</activity >
</item>

</items >
</event >

</message >

4 Concepts and Approach
MUC eventing via pubsub (”MEP”) is based on the following principles:

1. Every room JID and occupant JID a pubsub service.

2. One publisher per node (the chatroom or occupant itself).

3. Use presence (implicit in multi-user chat).

4. Filter notifications based on expressed interest.

5. Smart defaults.

These principles are described more fully below.

4

5 RECOMMENDED DEFAULTS

4.1 Every Room JID and Occupant JID a Pubsub Service
Treating every MEP-enabled chatroom as a pubsub service simplifies the task of discovering
and subscribing to information of interest in or about the room.

4.2 One Publisher Per Node
There is no need for multiple publishers to a MEP service, since by definition only the
chatroom itself or the occupant itself publishes information.

4.3 Use Presence
By definition, a chatroom has presence information about the occupants, because they use
directed presence to join the room.

4.4 Filtered Notifications
By default, the use of directed presence is used to establish a MEP subscription to the chat-
room’s eventing data. In order to filter which notifications are sent by the MEP service, the
contact’s client includes extended Entity Capabilities (XEP-0115) 6 information in the directed
presence notifications it sends to the chatroom. Because the MEP-enabled room supports the
”filtered-notifications” feature, it sends only those notifications that match the occupant’s
expressed notification preferences.

4.5 Smart Defaults
Most pubsub configuration options and metadata are not needed for MUC eventing. Instead,
MEP services offer smart defaults to simplify node creation and management.

5 Recommended Defaults
A MEP service MUST:

• Support the node discovery, node creation, node deletion, publish item, subscribe, un-
subscribe, and item retrieval use cases specified in XEP-0060.

• Support the ”auto-create”, ”auto-subscribe”, and ”filtered-notifications” features.

6XEP-0115: Entity Capabilities <https://xmpp.org/extensions/xep-0115.html>.

5

https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0115.html

6 DETERMINING SUPPORT

• Support the ”owner” and ”subscriber” affiliations.

• Support the ”presence” access model and set it to the default.

• Treat the room JID and each occupant JID as a collection node (i.e., as the root collection
node for the virtual pubsub service associated with the chatroom or with each occupant
JID).

• Default the ’deliver_notifications’ configuration option to true (i.e., deliver payloads by
default).

• Default the ’send_last_published_item’ configuration option to on_sub_and_presence
(i.e., send the last published item on subscription and on receipt of presence), treating
the receipt of directed presence as equivalent to a subscription.

A PEP service MAY support other use cases, affiliations, access models, and features, but such
support is OPTIONAL.

6 Determining Support
If a chatroom supports MEP, it MUST advertise that fact in its responses to Service Discovery
(XEP-0030) 7 information (”disco#info”) requests by returning an identity of ”pubsub/mep”
and the relevant pubsub features:

Listing 5: A disco#info query
<iq type=’get’

from=’hag66@shakespeare.lit/pda’
to=’coven@chat.shakespeare.lit’
id=’k3hs5174 ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

Listing 6: A disco#info response
<iq type=’result ’

from=’coven@chat.shakespeare.lit’
to=’hag66@shakespeare.lit/pda’
id=’k3hs5174 ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
<identity category=’conference ’ type=’text’/>
<identity category=’pubsub ’ type=’mep’/>
...
<feature var=’http: // jabber.org/protocol/disco#info’/>
<feature var=’http: // jabber.org/protocol/disco#items ’/>

7XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

6

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

8 IANA CONSIDERATIONS

<feature var=’http: // jabber.org/protocol/muc’/>
<feature var=’http: // jabber.org/protocol/pubsub#access -presence ’/>
<feature var=’http: // jabber.org/protocol/pubsub#auto -create ’/>
<feature var=’http: // jabber.org/protocol/pubsub#auto -subscribe ’/>
<feature var=’http: // jabber.org/protocol/pubsub#config -node’/>
<feature var=’http: // jabber.org/protocol/pubsub#create -and -

configure ’/>
<feature var=’http: // jabber.org/protocol/pubsub#create -nodes ’/>
<feature var=’http: // jabber.org/protocol/pubsub#filtered -

notifications ’/>
<feature var=’http: // jabber.org/protocol/pubsub#persistent -items ’/

>
<feature var=’http: // jabber.org/protocol/pubsub#publish ’/>
<feature var=’http: // jabber.org/protocol/pubsub#retrieve -items ’/>
<feature var=’http: // jabber.org/protocol/pubsub#subscribe ’/>
<feature var=’muc_passwordprotected ’/>
<feature var=’muc_hidden ’/>
<feature var=’muc_temporary ’/>
<feature var=’muc_open ’/>
<feature var=’muc_unmoderated ’/>
<feature var=’muc_nonanonymous ’/>
...

</query >
</iq>

7 Security Considerations
The security considerations of XEP-0045 and XEP-0163 apply.

8 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
8.

8The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

7

http://www.iana.org/
http://www.iana.org/

11 ACKNOWLEDGEMENTS

9 XMPP Registrar Considerations
9.1 Service Discovery Category/Type
The XMPP Registrar 9 includes a category of ”pubsub” in its registry of Service Discovery
identities (see <https://xmpp.org/registrar/disco-categories.html>); as a result of this
document, the Registrar includes a type of ”pep” to that category.
The registry submission is as follows:

<category >
<name>pubsub </name>
<type>

<name>mep</name>
<desc>

A MUC eventing service that supports the
publish -subscribe subset defined herein.

</desc>
<doc>XEP -0316 </doc>

</type>
</category >

10 XML Schema
Because MEP simply reuses the protocol specified in XEP-0060, a separate schema is not
needed.

11 Acknowledgements
Thanks to Joe Hildebrand, Matt Miller, and Matthew Wild for their input.

9The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

8

https://xmpp.org/registrar/
https://xmpp.org/registrar/disco-categories.html
https://xmpp.org/registrar/

	Introduction
	Room Notifications
	Occupant Notifications
	Concepts and Approach
	Every Room JID and Occupant JID a Pubsub Service
	One Publisher Per Node
	Use Presence
	Filtered Notifications
	Smart Defaults

	Recommended Defaults
	Determining Support
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Service Discovery Category/Type

	XML Schema
	Acknowledgements

