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2 HOW IT WORKS

1 Introduction
Rayo is a protocol to allow third-party remote control over media sessions, audio/video
mixers and a variety of advanced media resources such as speech recognizers, speech
synthesizers and audio/video recorders. These capabilities can be combined to create a
wide variety of applications such as menu-based phone systems, in-game conferencing and
anonymous dating services. Unlike Jingle (XEP-0166) 1 or even SIP (RFC 3261 2), a Rayo client
is not concernedwith being a party to either the session negotiation or themedia stream itself.

• A Rayo server takes on the role of negotiating a media session between itself and some
other endpoint, or between two external endpoints, by way of an implementation-
specific means, be that Jingle, SIP, the public-switched telephone network, or anything
else. The server may even bridge multiple networks.

• The server then presents the Rayo protocol as an interface to a Rayo client, allowing it
to monitor and/or exercise third-party control over the established media sessions.

• The client has the option to accept/reject/answer inbound session requests, request the
creation of outbound sessions and monitor their progress, execute media operations
such as speech synthesis, speech recognition & recording, and to end sessions.

The relationship between the calling parties, the Rayo server and the Rayo client looks
something like this:

[caller] ----e.g. SIP ---- [rayo server] ( -----e.g. Jingle ---- [callee
] ) optional

|
|

rayo client

This document defines the core Rayo protocol, and contains provisions for its extension by
further specifications.

2 How it works
In order to understand the nature of a Rayo interaction, here we show a simple example of a
control session.

Listing 1: New call announces itself to a potential controlling party
<presence from=’9f00061@call.shakespeare.lit’

1XEP-0166: Jingle <https://xmpp.org/extensions/xep-0166.html>.
2RFC 3261: Session Initiation Protocol (SIP) <http://tools.ietf.org/html/rfc3261>.

1

https://xmpp.org/extensions/xep-0166.html
http://tools.ietf.org/html/rfc3261
https://xmpp.org/extensions/xep-0166.html
http://tools.ietf.org/html/rfc3261
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to=’juliet@capulet.lit/balcony ’>
<c xmlns=’http: // jabber.org/protocol/caps’

hash=’sha -1’
node=’urn:xmpp:rayo:call:1 ’
ver=’QgayPKawpkPSDYmwT/WM94uAlu0=’/>

<offer xmlns=’urn:xmpp:rayo:1 ’
to=’tel: +18003211212 ’
from=’tel: +13058881212 ’/>

</presence >

In this example, a call from ’tel:+13058881212’ has reached the Rayo server ’shakespeare.lit’ by
calling ’tel:+18003211212’, and been assigned an ID ’9f00061’. The server has determined that
’juliet@capulet.lit’ is a valid candidate to be the client to whom the server delegates control
of the call, and so has directed an offer event to her ’balcony’ resource.
The client, ’juliet@capulet.lit’, then decides that it is able to handle the incoming call, and so
accepts it from the server, thus gaining exclusive control and indicating to the calling party
that the call will be processed and that it should ring.

Listing 2: Potential controlling party attempts to become definitive controlling party by send-
ing the call an accept command

<iq from=’juliet@capulet.lit/balcony ’
to=’9f00061@call.shakespeare.lit’
type=’set’
id=’hd721 ’>

<accept xmlns=’urn:xmpp:rayo:1 ’/>
</iq>

Listing 3: Call acknowledges accept command to the (now) definitive controlling party
<iq from=’9f00061@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’hd721 ’/>

Following confirmation from the server that the attempt to gain control of the call was
successful, the client proceeds to answer the call, opening up the media stream between the
caller and the server.

Listing 4: Controlling party answers the call
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit’
type=’set’
id=’43jo3’>

<answer xmlns=’urn:xmpp:rayo:1 ’/>
</iq>
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Listing 5: Call acknowledges answer command to controlling party
<iq from=’9f00061@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’43jo3’/>

Once the client has confirmation that the call has been answered, it triggers the start of amedia
output component in order to play amessage to the caller using a Text-to-speech (TTS) engine.

Listing 6: Controlling party requests a new output component
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit’
type=’set’
id=’j9d3j ’>

<output xmlns=’urn:xmpp:rayo:output:1 ’
voice=’allison ’>

<document content -type=”text/plain”>
<![CDATA[

You have no new messages. Goodbye!
]]>

</document >
</output >

</iq>

Listing 7: Call acknowledges request for new output component and provides its ID
<iq from=’9f00061@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’j9d3j ’>

<ref xmlns=’urn:xmpp:rayo:1 ’ uri=’xmpp:9f00061@call.shakespeare.lit/
fgh4590 ’/>

</iq>

After confirmation that the output component was successfully created, the client then awaits
notification of its completion.

Listing 8: Output component announces its completion, giving the reason
<presence from=’9f00061@call.shakespeare.lit/fgh4590 ’

to=’juliet@capulet.lit/balcony ’
type=’unavailable ’>

<complete xmlns=’urn:xmpp:rayo:ext:1 ’>
<finish xmlns=’urn:xmpp:rayo:output:complete:1 ’ />

</complete >
</presence >

3
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The client then decides it has no further operations to perform on the call, and that the call
should end. It instructs the server to hang up the call gracefully.

Listing 9: Controlling party hangs up the call
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit’
type=’set’
id=’f3wh8 ’>

<hangup xmlns=’urn:xmpp:rayo:1 ’/>
</iq>

Listing 10: Call acknowledges hangup command to controlling party
<iq from=’9f00061@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’f3wh8 ’/>

Listing 11: Controlling party receives notification of the call being terminated
<presence from=’9f00061@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’unavailable ’>

<end xmlns=’urn:xmpp:rayo:1 ’>
<hangup -command/>

</end>
</presence >

3 Requirements
The protocol defined herein is designed to provide the following features:

1. Call Control: Incoming calls are ”offered” to clients at which point they can be an-
swered, rejected, redirected to another destination, etc. Outbound calls may also be
made and monitored. Every attempt is made to be shield the Rayo client from the low
level telephony protocol (e.g. SIP, Jingle, PSTN, etc).

2. Audio File Playback: A compatible Rayo server will fetch a file from a a specified URL
and play the containing audio to the caller.

3. Speech Synthesis / TTS: In cases where dynamic data must be spoken, a Speech Syn-
thesis engine may be used to play computer generated speech to the caller.

4. Touch-tone Events / DTMF: Rayo surfaces real-time event when the caller presses keys
on their touch-tone keypad.

4
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5. Speech Recognition: Enables the phone application to take spoken queues allowing for
sophisticated voice-driven menus and directory services.

6. Call Recording: Can be used to capture the caller’s voice (e.g. Voicemail) or both sides
of the call for auditing and compliance purposes.

7. Mixing: Typically referred to as an audio ”conference”; calls can be joined together so
that the participants can hear each other in real-time.

Many third-party call control protocols have preceeded Rayo (see Asterisk’s AGI/AMI,
FreeSWITCH’s eventsocket, Microsoft’s TAPI, Java’s JTAPI, Novell/AT&T’s TSAPI, CSTA, etc).
None of these protocols is ideal, and all have one or more of the following drawbacks:

• Totally ground-up wire protocol requiring implementation all the way down to the
socket.

• Platform/vendor/hardware specific - each system implements its own proprietary
protocol (in many cases, without a formal published specification) which does not allow
easily porting an application from one back-end to another.

• Synchronous interface - Operations on calls or other entities are often blocking, and
one must serialise all control messages.

• Inconsistent - evolved, rather than designed.

• Lacking in scalability - client/server sometimes tied one-to-one, servers rarely clus-
tered, advanced message routing not possible.

• Poor security - lack of wire-level encryption, lack of or sub-standard authentication
mechanisms, lack of or limited authorization mechanisms, lack of or poor sandboxing
between multiple tenants on one system.

• Inextensible - The specification of extensions to the core protocol is either impossible
or very difficult.

Rayo has been designed with these failings in mind, and intends to address many concerns
not addressed by these earlier attempts. The following considerations were made:

• Simple client library implementation - XMPP client libraries exist in all modern lan-
guages, and many are of a high standard of quality and maturity.

• Cross-platform standard - The protocol must not expose any platform specifics and
all elements should be candidates for implementation on any suitable platform. Addidi-
tionally, the protocol must be ratified as a standard following a community discussion.

• Asynchronous interface - The protocol should present an asynchronous interface for
the purposes of performance and flexibility in performing parallel operations.

5



4 TERMINOLOGY

• Consistent - The protocol must provide a considered, unobtrusive, logically and phili-
sophically consistent interface.

• Federated - The protocol must support communication between client and server enti-
ties on separately owned, operated and addressed networks.

• Flexible routing - The protocol must lend itself to routing across wide networks such
as the internet, and to potential complex routing such as proxying or redirection. Addi-
tionally, the client and server should each be aware of the presence of the other and be
able to use such information to make routing decisions.

• Extensible - The protocol must provide for the possibility of extra functionality being
added by future specifications or an individual implementation.

• Secure - The protocol should include appropriate measures for authentication and au-
thorization of participants, as well as preventing third-parties from intercepting control
messages.

Many of the features in the above list are available to Rayo at no specification or implementa-
tion cost, since they are core to XMPP itself and thus Rayo inherits these ’for free’.
Additionally, the protocol is required to abstract away the complexity of the back-end
negotiation, especially the details of the transport protocols such as SIP or Jingle, but to map
conceptually to such protocols.

4 Terminology
4.1 Glossary
Third-party call control (3PCC) The observation and/or control of a live media session by

an entity which is not a direct party to the session.

Command Commands instruct the receiving entity to perform some atomic action. Com-
mands may be executed against a given call, component or mixer and can be considered
completed as soon as they receive a response. Some commands create components, and
return a reference to the component in their response.

Component Components extend the Rayo protocol by providing additional media and call
control functionality. Components are created by an appropriate command, which re-
turns a reference to the component. Components are executed asynchronously, and
have a lifecycle attached to them, with the ability to trigger events or have commands
issued to it. Once a component is stopped or comes to an end naturally, it will issue a spe-
cial <complete/> event, indicating that it has ceased executing and deliver any required
data.

Potential controlling party (PCP) An XMPP entity to which an offer to control an incoming
call may be sent.

6
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Definitive controlling party (DCP) The XMPP entity which gains a lock on control of a ses-
sion, either by requesting the session’s creation, or being the first respondent to an offer.

Security Zone A security zone is the conceptual border around a call which defines which
parties may interact with the call’s media or signaling. A security zone MUST contain
the rayo server’s internal implementation, the media server to which the call is joined,
the DCP, and any JID whose bare form is the same as the DCP. A server MAY relax this
definition further, for example to consider all JIDs at the same domain to be in the same
security zone.

4.2 Conventions
In examples, the following JIDs are used:

• juliet@capulet.lit/balcony, romeo@montague.lit/orchard - Potential controlling
parties

• shakespeare.lit - The root domain of the Rayo service

5 Concepts and Approach
A complete Rayo deployment has several elements and interacting entities which must be
understood.

5.1 Actors
5.1.1 Server

A Rayo server is an entity which is capable of receiving and initiating calls and being party
to their media stream, while exposing a Rayo interface to a client in order to permit control
over its calls. The Rayo server may handle calls in any way supported by the implementation,
such as SIP, Jingle, etc, and should expose a full XMPP domain at the root level of the service
deployment (eg shakespeare.lit).
The Rayo server is responsible for keeping track of valid clients, routing calls to the correct
potential controlling parties, performing authorization measures on received stanzas, etc.
For the purposes of this specification, complex server-side deployments such as clusters,
proxies, gateways, protocol translators, etc are not considered. Further details of such
concepts may be found in their (present or future) relevant specifications.

5.1.2 Client(s)

A Rayo client is an entity which implements the Rayo protocol for the purpose of asserting
control over calls made available by a Rayo server. The method by which such control
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measures are determined is outside the scope of this document, but may be the result of
human interaction or some automated decision-making process.
A Rayo client is responsible for indicating its availability to a Rayo server and responding to
offer messages appropriately.

5.1.3 Calls

A Rayo call is a short-lived XMPP entity within the scope of the deployment’s root domain,
perhaps at a sub-domain, with the purpose of representing a single session. It is usually a
simple alias for the main server process.
A Rayo call is the entity with which most client interactions are made, and is responsible for
sending its events to and receiving commands from a client. Calls may host components.
Calls have separate presence from the root domain of the service and thus appear to be
separate entities.

5.1.4 Mixers

A Rayo mixer is an XMPP entity within the scope of the deployment’s root domain, perhaps
at a sub-domain, with the purpose of representing a service for the linking of media streams
from several calls. It is usually a simple alias for the main server process.
A Rayo mixer is responsible for sending its events to and receiving commands from one or
more clients, and can host components.
Mixers have separate presence from the root domain of the service and its calls and thus
appear to be separate entities.

5.1.5 Commands

A Rayo command is a simple combination of request and response and may be issued directly
to the service domain, a call, a mixer or a component attached to any of the former. Com-
mands are executed serially and are generally very short-lived.

5.1.6 Components

Components extend the Rayo protocol by providing additional media and call control func-
tionality.
Components have a lifecycle and are started by sending a specialized command to a call or
mixer. Thus, a request for creation of a component will return a reference to the component’s
ID, and the component will continue to execute until it completes, potentially sending events
and processing commands along the way (such as an instruction to pause or terminate),
before finally issuing an event indicating its completion and thus unavailability. Multiple
components may be active on a call or mixer at any one time, and commands may be executed
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on any entity during the execution of a component.

5.1.7 Remote Party

A call’s Remote Party is the software or device with which the Call’s signalling (and optionally
media) connection is established. This might be a software or hardware phone, a PBX, a
gateway or some other such system.

5.2 Addressing Scheme
All of the actors described in the previous section (with the exception of commands) are
represented by XMPP entities with a JID of their own. Thus, a scheme for determining the JIDs
of each of these entities is required. The following is the required naming scheme for Rayo
deployments, where elements in square brackets are optional.

Actor JID format Example JID
Server [service domain] shakespeare.lit
Client any JID juliet@capulet.lit/balcony
Call <call ID>@[<call sub-

domain>.]<service domain>
f88eh2@call.shakespeare.lit

Mixer <mixer name>@[<mixer sub-
domain>.]<service domain>

conf1@mixer.shakespeare.lit

Call Component <call ID>@[<call sub-
domain>.]<service do-
main>/<component ID>

f88eh2@call.shakespeare.lit/8f83jf

Mixer Component <mixer name>@[<mixer
sub-domain>.]<service do-
main>/<component ID>

conf1@mixer.shakespeare.lit/932eu

Server Component <service domain>/<component
ID>

shakespeare.lit/f3fg4

Commands should be addressed to the entity on which they should be enacted. Individual
commands only apply to certain object (for example instructing a component to hangup will
return an error). In general, commands may be sent from a client to the service, a call, a mixer
or a component. Events may be sent from a call, a mixer or a component to a client.

5.3 Delivery Mechanism
Rayo defines several events and commands which may be executed on one of the above ac-
tors. These payloadsmust be sentwithin anXMPPprimitive element, and the rules are as such:
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• Events: Sent as directed presence from the entity producing the event to a client. Rayo
servers SHOULD timestamp all events using Delayed Delivery (XEP-0203) 3 in order to
allow clients to reliably use Rayo events for billing purposes.

• Commands: Sent as an <iq/> with the ’type’ attribute ’set’ from the client to the entity
to be acted on. Responses returned as an <iq/> with the ’type’ attribute either ’result’ or
’error’.

6 Session Flow
This section describes the form, function and order of Rayo stanzas sent across the wire, and
the circumstances in which they apply and/or may arise.

6.1 Client Registration
In order for a Rayo client to be considered a potential controlling party for incoming sessions,
it MUST first notify the Rayo server that it is available for the receipt of calls. This is done by
sending directed presence to the Rayo server with a <show/> element containing ’chat’ as in
the example:

Listing 12: Client presents itself as available to the Rayo server
<presence from=’juliet@capulet.lit/balcony ’

to=’shakespeare.lit’>
<c xmlns=’http: // jabber.org/protocol/caps’

hash=’sha -1’
node=’urn:xmpp:rayo:client:1 ’
ver=’QgayPKawpkPSDYmwT/WM94uAlu0=’/>

<show>chat</show>
</presence >

Conversely, when a Rayo client wishes not to be considered a potential controlling party, it
SHOULD send directed presence to the Rayo server with a <show/> element containing ’dnd’
as in the example:

Listing 13: Client presents itself as unavailable to the Rayo server
<presence from=’juliet@capulet.lit/balcony ’

to=’shakespeare.lit’>
<c xmlns=’http: // jabber.org/protocol/caps’

hash=’sha -1’
node=’urn:xmpp:rayo:client:1 ’

3XEP-0203: Delayed Delivery <https://xmpp.org/extensions/xep-0203.html>.
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ver=’QgayPKawpkPSDYmwT/WM94uAlu0=’/>
<show>dnd</show>

</presence >

6.2 Session Establishment
Sessions may be established either at the request of the Rayo client (an outbound call) or as a
result of a 3rd party request (an inbound call). Each scenario differs in the Rayo protocol only
up to the point at which the session is established and media begins to flow. First we shall
examine the sequence of stanzas passed between server and client in each of these scenarios.

6.2.1 Outbound Call

In order for a client to establish a new outbound call, it MUST first send a dial command to
the server, indicating the proposed target for the call, its apparent source, and any metadata
to send to the target as headers.

Listing 14: Client requests establishment of a new outbound session
<iq from=’juliet@capulet.lit/balcony ’

to=’shakespeare.lit’
type=’set’
id=’h7ed2 ’>

<dial xmlns=’urn:xmpp:rayo:1 ’
to=’tel: +13055195825 ’
from=’tel: +14152226789 ’>

<header name=”x-skill” value=”agent” />
<header name=”x-customer -id” value=”8877” />

</dial>
</iq>

On successfully receiving and parsing the dial command, the server SHOULD perform its
own proprietary authorization measures to ensure that only desirable outbound sessions are
created. If it is established that the command should not be allowed, the server MUST return
an error giving an authorization reason.
If a ’uri’ attribute is set on the dial command, the server MUST attempt to create the call at the
requested URI. This allows clients to know the URI of the call prior to it coming into existence,
for clients where this distinction might be important. Such a URI MUST be a valid Rayo call
address.
The specified metadata in the form of the ’from’ attribute and any <header/> elements
SHOULD be mapped to the underlying signalling protocol for communication to the remote
party.
There are several reasons why the server might immediately return an error instead of
acknowledging the creation of a new call:
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• The client is unknown to the server and the server does not permit session creation by
unknown clients.

• The client is not authorized to create this new session.

• The server does not support outbound calls.

• The server does not have sufficient resources to create a new session.

• The dial command was malformed.

• The requested URI conflicts with an existing call.

If the client is unknown to the server and the server does not permit session creation by
unknownclients, the serverMUST return a <registration-required/> errorwith a type of ’auth’.

Listing 15: Server indicates client is unknown and the server does not permit session creation
by unknown clients

<iq from=’shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<dial xmlns=’urn:xmpp:rayo:1 ’
to=’tel: +13055195825 ’
from=’tel: +14152226789 ’>

<header name=”x-skill” value=”agent” />
<header name=”x-customer -id” value=”8877” />

</dial>
<error type=’auth’>

<registration -required xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’
/>

</error >
</iq>

If the client is not authorized (as determined by an implementation/deployment-specific
algorithm) to create a new outbound session given the parameters provided, the server MUST
return a <not-authorized/> error with a type of ’auth’.

Listing 16: Server indicates client is not authorized to create a new outbound session given the
parameters provided

<iq from=’shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<dial xmlns=’urn:xmpp:rayo:1 ’
to=’tel: +13055195825 ’
from=’tel: +14152226789 ’>

<header name=”x-skill” value=”agent” />
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<header name=”x-customer -id” value=”8877” />
</dial>
<error type=’auth’>

<not -authorized xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

If the server does not support outbound calls, the server MUST return a <feature-not-
implemented/> error with a type of ’cancel’.

Listing 17: Server indicates that it does not support outbound calls
<iq from=’shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<dial xmlns=’urn:xmpp:rayo:1 ’
to=’tel: +13055195825 ’
from=’tel: +14152226789 ’>

<header name=”x-skill” value=”agent” />
<header name=”x-customer -id” value=”8877” />

</dial>
<error type=’cancel ’>

<feature -not -implemented xmlns=’urn:ietf:params:xml:ns:xmpp -
stanzas ’/>

</error >
</iq>

If the server does not have sufficient resources to create a new session, the server MUST
return a <resource-constraint/> error with a type of ’wait’.

Listing 18: Server indicates that it does not have sufficient resources to create a new session
<iq from=’shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<dial xmlns=’urn:xmpp:rayo:1 ’
to=’tel: +13055195825 ’
from=’tel: +14152226789 ’>

<header name=”x-skill” value=”agent” />
<header name=”x-customer -id” value=”8877” />

</dial>
<error type=’wait’>

<resource -constraint xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>
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If the dial command was malformed, the server MUST return a <bad-request/> error with a
type of ’modify’.

Listing 19: Server indicates the dial command was malformed
<iq from=’shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<dial xmlns=’urn:xmpp:rayo:1 ’
to=’foo:bar ’
from=’tel: +14152226789 ’>

<header name=”x-skill” value=”agent” />
<header name=”x-customer -id” value=”8877” />

</dial>
<error type=’modify ’>

<bad -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

If the requested URI conflicts with an existing call, the server MUST return a <conflict/> error
with a type of ’modify’.

Listing 20: Server indicates the requested URI conflicts with an existing call
<iq from=’shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<dial xmlns=’urn:xmpp:rayo:1 ’
to=’foo:bar ’
from=’tel: +14152226789 ’
uri=’xmpp:somecall@capulet.lit’>

<header name=”x-skill” value=”agent” />
<header name=”x-customer -id” value=”8877” />

</dial>
<error type=’modify ’>

<conflict xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

If the command is successful and the call is queued, however, confirmation of such should be
sent to the client, including a reference to the unique ID of the call. This call ID may be used
to execute commands and filter events for the duration of the session.

Listing 21: Confirmation of successful dial request and call ID
<iq from=’shakespeare.lit’
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to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’>

<ref xmlns=’urn:xmpp:rayo:1 ’ uri=’xmpp:9f00061@call.shakespeare.lit’
/>

</iq>

Once the server receives notification that the session has been accepted by the remote party,
it should send a ringing event to the client to indicate such:

Listing 22: Call announces its ringing state (accepted by 3rd party but not yet answered).
<presence from=’9f00061@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’>
<ringing xmlns=’urn:xmpp:rayo:1 ’/>

</presence >

Similarly, once the server receives notification that the session has been answered, it should
negotiate media between the remote party and its local media server. Once media negotiation
is complete, it should send an answered event to the client to indicate such:

Listing 23: Call announces its answered state (media connected).
<presence from=’9f00061@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’>
<answered xmlns=’urn:xmpp:rayo:1 ’/>

</presence >

When sending a dial request, a client MAY specify a join target within the dial element:

Listing 24: Client requests establishment of a new outbound session, with a nested join
<iq from=’juliet@capulet.lit/balcony ’

to=’shakespeare.lit’
type=’set’
id=’h7ed2 ’>

<dial xmlns=’urn:xmpp:rayo:1 ’
to=’tel: +13055195825 ’
from=’tel: +14152226789 ’>

<join call -uri=’xmpp:e8u398d902i90@call.shakespeare.lit’ />
</dial>

</iq>

In this case, the server MUST negotiate media as specified by the join element, in accordance
with the rules defined in joining calls. Media MUST NOT be negotiated with the local media
server, unless the join specifies so. The join operation MUST behave as described in joining
calls.
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6.2.2 Inbound Call

When the Server receives a call from one of its connected networks, it MUST then expose that
requested session to Rayo clients. It SHOULD use an implementation-specific routing mech-
anism to map incoming calls to some set of registered JIDs which are considered appropriate
controlling parties. From this set, it SHOULD then remove any parties whom it can identify
as being temporarily inappropriate for control (either unavailable based on presence, under
too much load, or any other metric which the server has available). If, as a result, the set of
Potentially Controlling Parties is empty, the server MUST reject the call indicating that the
requested service was unavailable.
If the server can identify active Potential Controlling Parties, it MUST offer them control of
the call according to its particular distributionmethod, whichMAY be simultaneous or staged.
The server must broadcast an offer on behalf of the call to all Potential Controlling Parties,
using applicable to/from/header data from the incoming session. The server MUST also
include entity capabilities information in the presence stanza containing the offer, in order
to advertise the fact that the entity is a call, qualified by the node name ”urn:xmpp:rayo:call:1”.

Listing 25: New call announces itself to a potential controlling party
<presence from=’9f00061@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’>
<c xmlns=’http: // jabber.org/protocol/caps’

hash=’sha -1’
node=’urn:xmpp:rayo:call:1 ’
ver=’QgayPKawpkPSDYmwT/WM94uAlu0=’/>

<offer xmlns=’urn:xmpp:rayo:1 ’
to=’tel: +18003211212 ’
from=’tel: +13058881212 ’>

<header name=”x-skill” value=”agent” />
<header name=”x-customer -id” value=”8877” />

</offer >
</presence >

Once the server has offered control, it MUST wait for a response from a PCP or for the remote
party to end the call. The server SHOULDmonitor the availability of PCPs to whom offers have
been sent. If they all cease to be PCPs (eg by going offline) then the call should be rejected in
the same way as if there had not been any available PCPs to begin with.
If an offered PCP executes a command against the call, by sending a command node to the
call’s JID inside an IQ ’set’, the server should execute the following routine:

1. If the call does not have a DCP, set it to the PCP from which the command originated.

2. If the call has a DCP, and the command did not originate from the DCP, return a conflict
(cancel) error in response to the command of the following format:

Listing 26: Server indicates that the call already has another DCP and that control of the call is
no longer available.
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<iq from=’9f00061@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<accept xmlns=’urn:xmpp:rayo:1 ’/>
<error type=’cancel ’>

<conflict xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

otherwise;

3. If the command is an accept command, notify the remote calling party that the call has
been accepted. Return an empty IQ result to the command issuing party to confirm
successful execution.

4. If the command is an answer command, notify the remote calling party that the call
has been answered and negotiate media between the calling party and the server’s lo-
cal media server. Return an empty IQ result to the command issuing party to confirm
successful execution.

5. If the command is any other, handle it in the manner detailed in the following sections.

6.3 Joining Calls
Calls on a Rayo Server are capable of having their media streams moved/manipulated. Once
suchmanipulation is to join themedia streams of two calls. In a scenario where callA and callB
should be joined, the client MUST send a join command to either call (not both) specifying
the call ID of the other call, and optionally media attributes (direction and media) specified in
the schema, like so:

Listing 27: Client instructs callA to join to callB and the server acknowledges the join was
completed

<iq from=’juliet@capulet.lit/balcony ’
to=’callA@call.shakespeare.lit’
type=’set’
id=’h7ed2 ’>

<join xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callB@call.shakespeare.
lit’/>

</iq>

<iq from=’callA@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’/>
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If the calls to be joined to each other are in the same security zone, the server MUST join the
media streams of the two calls and return an empty IQ result to confirm that the operation
has been successful. If the parties to be joined are not within the same security zone, an error
should be returned as detailed below.
When calls are joined to each other by any mechanism, each call MUST dispatch a joined
event specifying who they have been joined to:

Listing 28: Call A and B were joined, both calls emit joined events
<presence from=’callA@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’>
<joined xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callB@call.

shakespeare.lit’/>
</presence >

<presence from=’callB@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’>

<joined xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callA@call.
shakespeare.lit’/>

</presence >

By default, the server MUST join the calls by bridging their audio through its local media
server, with bidirectional media. In order to specify alternative behaviour, the client MAY
specify a media option (either ’bridge’ or ’direct’) and/or a direction option (either ’duplex’,
’send’ or ’recv’), and the server MUST bridge accordingly.

6.3.1 Errors

There are several reasons why the call might return an error instead of acknowledging a join:

• The specified join party does not exist or cannot be found.

• The specified join party is inaccessible for the purposes of being joined due to security
restrictions.

• The server does not have sufficient resources to complete the join.

• The join command was malformed.

• The specifiedmedia/direction options or their combination are not possible/supported.

If the specified join party does not exist or cannot be found, the server MUST return a
<service-unavailable/> error with a type of ’cancel’.
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Listing 29: Call indicates that the specified join party does not exist or cannot be found
<iq from=’callA@shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<join xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callC@call.shakespeare.
lit’/>

<error type=’cancel ’>
<service -unavailable xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

If the specified join party is inaccessible for the purposes of being joined due to security
restrictions, the server MUST return a <not-allowed/> error with a type of ’cancel’.

Listing 30: Call indicates that the specified join party is inaccessible for the purposes of being
joined due to security restrictionss

<iq from=’callA@shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<join xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callC@call.shakespeare.
lit’/>

<error type=’cancel ’>
<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

If the server does not have sufficient resources to complete the join, the server MUST return
a <resource-constraint/> error with a type of ’wait’.

Listing 31: Call indicates that there are not sufficient resources to complete the join
<iq from=’callA@shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<join xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callB@call.shakespeare.
lit’/>

<error type=’wait’>
<resource -constraint xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

If the join command was malformed (eg no call URI specified), the server MUST return a
<bad-request/> error with a type of ’modify’.
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Listing 32: Call indicates that the join command was malformed
<iq from=’callA@shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<join xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp: ’/>
<error type=’modify ’>

<bad -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

If the specified media/direction options or their combination are not possible/supported, the
server MUST return a <feature-not-implemented/> error with a type of ’modify’.

Listing 33: Call indicates that the specified media/direction options or their combination are
not possible/supported.

<iq from=’callA@shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<join xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callB@call.shakespeare.
lit’ media=’direct ’ direction=’recv’/>

<error type=’modify ’>
<feature -not -implemented xmlns=’urn:ietf:params:xml:ns:xmpp -

stanzas ’/>
</error >

</iq>

6.3.2 Unjoin Command

When the client wishes to terminate an existing join, it MUST send an unjoin command
specifying the join to break (call-id).

Listing 34: Client instructs callA to unjoin from callB
<iq from=’juliet@capulet.lit/balcony ’

to=’callA@call.shakespeare.lit’
type=’set’
id=’h7ed2 ’>

<unjoin xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callB@call.
shakespeare.lit’/>

</iq>

The server MUST unjoin the media streams of the two calls, rejoin both to the media server
and return an empty IQ result to confirm that the operation has been successful:
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Listing 35: CallA acknowledges unjoin from callB
<iq from=’callA@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’/>

Optionally, if no join is specified on the unjoin command, all existing joins must be broken:

Listing 36: Client instructs callA to unjoin from every existing join
<iq from=’juliet@capulet.lit/balcony ’

to=’callA@call.shakespeare.lit’
type=’set’
id=’h7ed2 ’>

<unjoin xmlns=’urn:xmpp:rayo:1 ’/>
</iq>

<iq from=’callA@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’/>

There are several reasons why the call might return an error instead of acknowledging an
unjoin command:

• The specified join does not exist.

• The unjoin command was malformed.

If the specified join does not exist, the server MUST return a <service-unavailable/> error
with a type of ’cancel’.

Listing 37: Call indicates that the specified join does not exist
<iq from=’callA@shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<join xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callC@call.
shakespeare.lit’/>

<error type=’cancel ’>
<service -unavailable xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’

/>
</error >

</iq>

If the unjoin command was malformed (eg an empty call URI specified), the server MUST
return a <bad-request/> error with a type of ’modify’.
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Listing 38: Call indicates that the join command was malformed
<iq from=’callA@shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<unjoin xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp: ’/>
<error type=’modify ’>

<bad -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

6.3.3 Unjoined Event

Calls may be unjoined from other calls either in response to an unjoin command, as the result
of one of the calls disconnecting, or as the result of an error. The server MUST monitor calls
for being unjoined from another call, and emit an unjoined event when this is detected.

Listing 39: CallA announces that it has been unjoined from callB, and vice versa
<presence from=’callA@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’>
<unjoined xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callB@call.

shakespeare.lit’/>
</presence >

<presence from=’callB@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’>

<unjoined xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callA@call.
shakespeare.lit’/>

</presence >

6.3.4 Multiple Joins

If a client wishes to modify the parameters of a join, it MUST send a new join command to
the target call with the new parameters. The server MUST renegotiate media using the new
parameters, and acknowledge the command’s completion. The server MUST NOT re-send
joined events.

Listing 40: Client joins callA to callB in receive-only mode, and then ’upgrades’ the join to full-
duplex

<iq from=’juliet@capulet.lit/balcony ’
to=’callA@call.shakespeare.lit’
type=’set’
id=’h7ed2 ’>
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<join xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callB@call.shakespeare.
lit’ direction=’recv’/>

</iq>

<iq from=’callA@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’/>

<presence from=’callA@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’>

<joined xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callB@call.
shakespeare.lit’/>

</presence >

<presence from=’callB@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’>

<joined xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callA@call.
shakespeare.lit’/>

</presence >

<iq from=’juliet@capulet.lit/balcony ’
to=’callA@call.shakespeare.lit’
type=’set’
id=’h7ed3 ’>

<join xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callB@call.shakespeare.
lit’ direction=’duplex ’/>

</iq>

<iq from=’callA@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed3 ’/>

Rayo calls SHOULD support being joined to more than one other call at a time, each join
having different parameters. Creating a new join MUST NOT destroy existing joins. If a join
is requested but cannot be created without destroying existing joins, the call MUST return a
conflict (cancel) error.

Listing 41: Call indicates that the requested joins cannot be created in parallel
<iq from=’juliet@capulet.lit/balcony ’

to=’callA@call.shakespeare.lit’
type=’set’
id=’h7ed2 ’>

<join xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callB@call.shakespeare.
lit’/>

</iq>
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<iq from=’callA@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’/>

<presence from=’callA@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’>

<joined xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callB@call.
shakespeare.lit’/>

</presence >

<presence from=’callB@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’>

<joined xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callA@call.
shakespeare.lit’/>

</presence >

<iq from=’juliet@capulet.lit/balcony ’
to=’callA@call.shakespeare.lit’
type=’set’
id=’h7ed3 ’>

<join xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callC@call.shakespeare.
lit’/>

</iq>

<iq from=’callA@shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed3 ’>

<join xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callC@call.shakespeare.
lit’/>

<error type=’cancel ’>
<conflict xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

6.4 Mixers
While calls may generally be joined peer-to-peer in any desirable combination, such an
implementation is not necessarily scalable or practical to manage. Rayo, therefore, includes
the concept of mixers, which are entities like calls, to which calls or other mixers may be
joined in the same way as joining multiple calls directly. A mixer MUST be implicitly created
the first time a call attempts to join it, MUST immediately broadcast presence to all controlling
parties who have calls joined to it, and must respond to the join command with a reference
to the mixer. If a mixer cannot be created, an error similar to those specified for <dial/>
should be returned in response to the <join/> command. The server MUST include entity
capabilities information in the first presence stanza it sends, in order to advertise the fact that
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the entity is a mixer, qualified by the node name ”urn:xmpp:rayo:mixer:1”. A mixer MUST
emit events (joined, unjoined) to all controlling parties who have calls joined to it, using the
same semantics as joining calls.
In order to support friendly-named mixers without causing naming collisions between secu-
rity zones, a server SHOULD represent a mixer internally using some alternative name scoped
to the client’s security zone and mapped to the friendly name/URI presented to the client for
the emission of events and processing of commands. A serverMUSTNOT allow clients to inter-
actwithmixers allocatedwithin other security zones either by observing their status ormedia.

Listing 42: Client instructs call to join a mixer
<iq from=’juliet@capulet.lit/balcony ’

to=’callA@call.shakespeare.lit’
type=’set’
id=’h7ed2 ’>

<join xmlns=’urn:xmpp:rayo:1 ’ mixer -name=’myMixer ’/>
</iq>

<presence from=’myMixer@mixer.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’>

<c xmlns=’http: // jabber.org/protocol/caps’
hash=’sha -1’
node=’urn:xmpp:rayo:mixer:1 ’
ver=’QgayPKawpkPSDYmwT/WM94uAlu0=’/>

</presence >

<iq from=’callA@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’>

<ref xmlns=’urn:xmpp:rayo:1 ’ uri=’xmpp:myMixer@mixer.shakespeare.lit
’/>

</iq>

<presence from=’callA@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’>

<joined xmlns=’urn:xmpp:rayo:1 ’ mixer -name=’myMixer ’/>
</presence >

<presence from=’myMixer@mixer.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’>

<joined xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callA@call.
shakespeare.lit’/>

</presence >

Mixers MUST respect the normal rules of XMPP presence subscriptions, and presence
subscriptions from clients within the same security zone as the mixer must be implicitly
permitted.
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The error conditions on joining a mixer are the same as for calls, as are the unjoin and join
modification semantics. Additionally, mixers SHOULD be able to host components just like
calls, following the rules defined for each component.

Listing 43: Client renders output to a mixer
<iq from=’juliet@capulet.lit/balcony ’

to=’myMixer@mixer.shakespeare.lit’
type=’set’
id=’h7ed2 ’>

<output xmlns=’urn:xmpp:rayo:output:1 ’>
<document content -type=’text/plain ’>

Thanks for calling , goodbye!
</document >

</output >
</iq>

<iq from=’myMixer@mixer.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’>

<ref xmlns=’urn:xmpp:rayo:1 ’ uri=’xmpp:myMixer@mixer.shakespeare.lit
/d38d3 ’/>

</iq>

If the media server providing the mixer supports active speaker detection, it MUST emit
active speaker events to all clients with a presence subscription. Such events MUST indicate
the start and end of speaking for a particular call ID joined to the mixer.

Listing 44: Mixer indicates overlapping speaking status of two joined calls
<presence from=’myMixer@mixer.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’>
<started -speaking xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callA@call.

shakespeare.lit’/>
</presence >

<presence from=’myMixer@mixer.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’>

<started -speaking xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callB@call.
shakespeare.lit’/>

</presence >

<presence from=’myMixer@mixer.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’>

<stopped -speaking xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callB@call.
shakespeare.lit’/>

</presence >
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<presence from=’myMixer@mixer.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’>

<stopped -speaking xmlns=’urn:xmpp:rayo:1 ’ call -uri=’xmpp:callA@call.
shakespeare.lit’/>

</presence >

Once the last participant unjoins from the mixer, the mixer SHOULD be destroyed. When a
mixer is destroyed, it MUST send unavailable presence to all entities which have a presence
subscription.

6.5 Component Execution
Components are long-lived elements of a call or mixer which may execute in parallel, have a
lifecycle (may send events and/or process commands during their execution, indicate their
completion asynchronously) and typically implement media operations. A server SHOULD
implement components in such a way that it is acceptable to execute multiple components
of the same type or of differing types simultaneously. A server SHOULD implement all core
components.
In the event that a call or mixer receives a command which triggers the execution of a
component, it MUST use the normal command handling routine, schedule the component for
immediate execution and return a reference to the requesting client as confirmation of the
component’s creation:

Listing 45: Client requests execution of an output component
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit’
type=’set’
id=’h7ed2 ’>

<output xmlns=’urn:xmpp:rayo:output:1 ’>
<document content -type=’text/plain ’>

Thanks for calling , goodbye!
</document >

</output >
</iq>

Listing 46: Server provides reference to output component
<iq from=’9f00061@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’>

<ref xmlns=’urn:xmpp:rayo:1 ’ uri=’xmpp:9f00061@call.shakespeare.lit/
eh3u82 ’/>

</iq>
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If a component execution command is received prior to the call being answered, the server
MUST NOT answer the call, and SHOULD attempt to use early-media techniques to perform
the relevant operation without answering the call. If such early-media is not possible, it MUST
return an error indicating that the call state is incorrect (unexpected-request).
The whole command MUST be parsed up-front, and any applicable validation performed
before acknowledgement of the command.

6.5.1 Initial Errors

There are several reasons why the server might immediately return an error instead of
acknowledging the creation of a new component:

• The server does not implement the component.

• The server does not implement a particular option value for the component.

• Some aspect of the component does not comply with this specification.

• The server does not have sufficient resources to create a new component on this cal-
l/mixer.

• The component would cause a resource conflict with another component on this cal-
l/mixer.

• The call/mixer is not in the correct state to begin executing the component.

If the server does not implement the command/component, it should return a feature-not-
implemented (cancel) error:

Listing 47: Server indicates a lack of support for the requested component/command
<iq from=’9f00061@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<output xmlns=’urn:xmpp:rayo:output:1 ’>
<document content -type=’text/plain ’>

Thanks for calling , goodbye!
</document >

</output >
<error type=’cancel ’>

<feature -not -implemented xmlns=’urn:ietf:params:xml:ns:xmpp -
stanzas ’/>

</error >
</iq>
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If the server does not implement a particular option value for the command/component, it
should return a feature-not-implemented (modify) error:

Listing 48: Server indicates a lack of support for some aspect of the requested
component/command

<iq from=’9f00061@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<output xmlns=’urn:xmpp:rayo:output:1 ’
repeat -times=’4’/>

<error type=’modify ’>
<feature -not -implemented xmlns=’urn:ietf:params:xml:ns:xmpp -

stanzas ’/>
</error >

</iq>

If the command does not meet the specification, the server should return a bad-request
(modify) error:

Listing 49: Server indicates the requested component/command does not meet the
specification

<iq from=’9f00061@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<output xmlns=’urn:xmpp:rayo:output:1 ’
repeat -times=’foo’/>

<error type=’modify ’>
<bad -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

If the server does not have sufficient resources to create the component, it should return a
resource-constraint (wait) error:

Listing 50: Server indicates a lack of resources to create the requested component
<iq from=’9f00061@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<output xmlns=’urn:xmpp:rayo:output:1 ’>
<document content -type=’text/plain ’>

Thanks for calling , goodbye!
</document >

</output >
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<error type=’wait’>
<resource -constraint xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

If the server is not able to create the component due to a resource conflict with another
component, it should return a resource-constraint (wait) error:

Listing 51: Server indicates a resource conflict with another component
<iq from=’9f00061@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<output xmlns=’urn:xmpp:rayo:output:1 ’>
<document content -type=’text/plain ’>

Thanks for calling , goodbye!
</document >

</output >
<error type=’wait’>

<resource -constraint xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

If the server is not able to create the component due to the call being in an incorrect state, it
should return an unexpected-request (wait) error:

Listing 52: Server indicates incorrect call state
<iq from=’9f00061@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<output xmlns=’urn:xmpp:rayo:output:1 ’>
<document content -type=’text/plain ’>

Thanks for calling , goodbye!
</document >

</output >
<error type=’wait’>

<unexpected -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

Once acknowleged, the componentMUST begin execution according to its particular specifica-
tion. During its execution, it MAY emit events relevant to its progress, and an implementation
MUST be capable of emitting events specified for each component. Any events should be sent
inside a directed presence element to the executing party.
During execution, the component MUST respond to commands addressed to it. Each compo-
nent has its own set of commands, but all components have the ’stop’ command in common.
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On receipt of the stop command, the component MUST acknowledge that it has been in-
structed to stop and gracefully cease its execution in whatever way is appropriate to the
particular component.

Listing 53: Client requests component stop, server confirms
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit/eh3u28 ’
type=’set’
id=’h7ed2 ’>

<stop xmlns=’urn:xmpp:rayo:ext:1 ’/>
</iq>

<iq from=’9f00061@call.shakespeare.lit/eh3u28 ’
to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’/>

6.5.2 Command Errors

There are several reasons why a component might return an error instead of acknowledging
a command:

• The component does not implement the command.

• The component does not implement a particular option value for the command.

• Some aspect of the command does not comply with the components specification.

• The command is not appropriate for the component at its current stage of execution.

• The command is issued by a party other than that which created the component.

If the component does not implement the command, it should return a feature-not-
implemented (cancel) error:

Listing 54: Component indicates a lack of support for the requested command
<iq from=’9f00061@call.shakespeare.lit/eh3u28 ’

to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<stop xmlns=’urn:xmpp:rayo:ext:1 ’/>
<error type=’cancel ’>

<feature -not -implemented xmlns=’urn:ietf:params:xml:ns:xmpp -
stanzas ’/>

</error >
</iq>
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If the component does not implement a particular option/value for the command, it should
return a feature-not-implemented (modify) error:

Listing 55: Component indicates a lack of support for some option/value on the command
<iq from=’9f00061@call.shakespeare.lit/eh3u28 ’

to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<stop xmlns=’urn:xmpp:rayo:ext:1 ’/>
<error type=’modify ’>

<feature -not -implemented xmlns=’urn:ietf:params:xml:ns:xmpp -
stanzas ’/>

</error >
</iq>

If some aspect of the command does not comply with the component’s spec, it should return
a bad-request (modify) error:

Listing 56: Component indicates some aspect of the command is not spec compliant
<iq from=’9f00061@call.shakespeare.lit/eh3u28 ’

to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<stop xmlns=’urn:xmpp:rayo:ext:1 ’/>
<error type=’modify ’>

<bad -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

If the command is not appropriate for the component’s current stage of execution, it should
return a unexpected-request (wait) error:

Listing 57: Component indicates that the command is not appropriate for the component’s cur-
rent stage of execution

<iq from=’9f00061@call.shakespeare.lit/eh3u28 ’
to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<stop xmlns=’urn:xmpp:rayo:ext:1 ’/>
<error type=’wait’>

<unexpected -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

If the command is issued by a party other than the component creator, it should return a
conflict (cancel) error:
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Listing 58: Component indicates command cannot be executed by anyone other than the com-
ponent owner

<iq from=’9f00061@call.shakespeare.lit/eh3u28 ’
to=’juliet@capulet.lit/courtyard ’
type=’error ’
id=’h7ed2 ’>

<stop xmlns=’urn:xmpp:rayo:ext:1 ’/>
<error type=’cancel ’>

<conflict xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

When the component ceases to execute, it MUST send a complete event with a valid reason to
the requesting party as directed presence with a type of ’unavailable’.

Listing 59: Component indicates it has completed due to being stopped
<presence from=’9f00061@call.shakespeare.lit/eh3u28 ’

to=’juliet@capulet.lit/courtyard ’
type=’unavailable ’>

<complete xmlns=’urn:xmpp:rayo:ext:1 ’>
<stop xmlns=’urn:xmpp:rayo:ext:complete:1 ’/>

</complete >
</presence >

Once a component is completed, or if it did not exist, the server should return an item-not-
found (cancel) error as response to any commands:

Listing 60: Non-existant component receives a command
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit/eh3u28 ’
type=’set’
id=’h7ed2 ’>

<stop xmlns=’urn:xmpp:rayo:ext:1 ’/>
</iq>

<iq from=’9f00061@call.shakespeare.lit/eh3u28 ’
to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<stop xmlns=’urn:xmpp:rayo:ext:1 ’/>
<error type=’cancel ’>

<item -not -found xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>
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6.5.3 Output Component

Media output is a core concept in Rayo, and is provided by the output component. The
component allows media to be rendered to a call or a mixer, using the server’s local media
server. A server MUST support audio file playback and MUST support the text/uri-list
document format. A server MAY support speech synthesis and MAY support SSML (in which
case the document should be escaped or enclosed in CDATA). The component is created using
an <output/> command, containing one or more documents to render, along with a set of
options to determine the nature of the rendering.

Listing 61: Client renders a simple SSML document to a call
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit’
type=’set’
id=’h7ed2 ’>

<output xmlns=’urn:xmpp:rayo:output:1 ’>
<document content -type=’application/ssml+xml’>

<![CDATA[
<?xml version =”1.0”? >
<!DOCTYPE speak PUBLIC ”-//W3C//DTD SYNTHESIS 1.0//EN”

”http://www.w3.org/TR/speech -synthesis/
synthesis.dtd”>

<speak version =”1.0”
xmlns=”http://www.w3.org /2001/10/ synthesis”
xmlns:xsi =”http://www.w3.org /2001/ XMLSchema -instance”
xsi:schemaLocation =”http://www.w3.org /2001/10/ synthesis

http://www.w3.org/TR/speech -synthesis/
synthesis.xsd”

xml:lang =”en-US”>
<p>

<s>You have 4 new messages.</s>
<s>The first is from Stephanie Williams and arrived at <

break/> 3:45pm.</s>
<s>

The subject is <prosody rate =”-20%”>ski trip </prosody >
</s>

</p>
</speak >

]]>
</document >

</output >
</iq>

Listing 62: Client renders a plain text document to a call
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit’
type=’set’
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id=’h7ed2 ’>
<output xmlns=’urn:xmpp:rayo:output:1 ’>

<document content -type=’text/plain ’>
Thanks for calling , goodbye!

</document >
</output >

</iq>

The server MUST validate that it has apropriate resources/mechanisms to render the re-
quested document before acknowledging the component creation.
In the case that an output component is executed on a call joined to other calls or mixers, the
output MUST be rendered only to the call and not the joined parties (also known as ’whisper’).
In the case that an output component is executed on a mixer, the output should be rendered
into the mixer, such that all participants receive the output (also known as ’announce’).
The output component implements several commands for manipulating the output during its
execution.
A client may instruct an output component to pause by sending a pause command. The server
MUST cause the media server to pause rendering, maintaining position within the document
and allowing for later resumption.

Listing 63: Client requests output component pause, server confirms
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit/eh3u28 ’
type=’set’
id=’h7ed2 ’>

<pause xmlns=’urn:xmpp:rayo:output:1 ’/>
</iq>

<iq from=’9f00061@call.shakespeare.lit/eh3u28 ’
to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’/>

A client may instruct an output component to resume rendering if it has previously been
paused. The serverMUST cause themedia server to resume rendering at the last pausemarker.

Listing 64: Client requests output component resume, server confirms
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit/eh3u28 ’
type=’set’
id=’h7ed2 ’>

<resume xmlns=’urn:xmpp:rayo:output:1 ’/>
</iq>

<iq from=’9f00061@call.shakespeare.lit/eh3u28 ’
to=’juliet@capulet.lit/balcony ’
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type=’result ’
id=’h7ed2 ’/>

A client may instruct an output component to increase the rendering rate by a unit amount,
defined by the media server. The server MUST cause the media server to perform the rate
increase and acknowledge the command.

Listing 65: Client requests output component speed up, server confirms
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit/eh3u28 ’
type=’set’
id=’h7ed2 ’>

<speed -up xmlns=’urn:xmpp:rayo:output:1 ’/>
</iq>

<iq from=’9f00061@call.shakespeare.lit/eh3u28 ’
to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’/>

A client may instruct an output component to decrease the rendering rate by a unit amount,
defined by the media server. The server MUST cause the media server to perform the rate
decrease and acknowledge the command.

Listing 66: Client requests output component speed down, server confirms
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit/eh3u28 ’
type=’set’
id=’h7ed2 ’>

<speed -down xmlns=’urn:xmpp:rayo:output:1 ’/>
</iq>

<iq from=’9f00061@call.shakespeare.lit/eh3u28 ’
to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’/>

A client may instruct an output component to increase the rendering volume by a unit
amount, defined by the media server. The server MUST cause the media server to perform
the volume increase and acknowledge the command.

Listing 67: Client requests output component volume up, server confirms
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit/eh3u28 ’
type=’set’
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id=’h7ed2 ’>
<volume -up xmlns=’urn:xmpp:rayo:output:1 ’/>

</iq>

<iq from=’9f00061@call.shakespeare.lit/eh3u28 ’
to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’/>

A client may instruct an output component to decrease the rendering volume by a unit
amount, defined by the media server. The server MUST cause the media server to perform
the volume decrease and acknowledge the command.

Listing 68: Client requests output component volume down, server confirms
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit/eh3u28 ’
type=’set’
id=’h7ed2 ’>

<volume -down xmlns=’urn:xmpp:rayo:output:1 ’/>
</iq>

<iq from=’9f00061@call.shakespeare.lit/eh3u28 ’
to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’/>

A client may instruct an output component to move the play marker forward or back in time
by a specified amount before resuming output. The server MUST cause the media to seek as
instructed and acknowledge the command.
The attributes of the <seek/> element are as follows.

Listing 69: Client requests output seek forward by 20s, server confirms
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit/eh3u28 ’
type=’set’
id=’h7ed2 ’>

<seek xmlns=’urn:xmpp:rayo:output:1 ’ direction=’forward ’ amount=’
20000 ’/>

</iq>

<iq from=’9f00061@call.shakespeare.lit/eh3u28 ’
to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’/>

The output component does not provide any intermediate events.
The output completion reason MUST be one of the core Rayo reasons, finish (indicating that
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the document finished rendering naturally) or max-time (indicating that the maximum time
was exceeded). Output component completion does not provide any metadata.

Listing 70: Component indicates it has completed due to reaching the end of the document
<presence from=’9f00061@call.shakespeare.lit/eh3u28 ’

to=’juliet@capulet.lit/courtyard ’
type=’unavailable ’>

<complete xmlns=’urn:xmpp:rayo:ext:1 ’>
<finish xmlns=’urn:xmpp:rayo:output:complete:1 ’/>

</complete >
</presence >

6.5.4 Input Component

Media input is a core concept in Rayo, and is provided by the input component. The component
allows input to be collected from a call by way of either DTMF (dual-tone multi-frequency)
or ASR (automatic speech recognition), using the server’s local media server. A Rayo server
MUST support DTMF input and MUST support SRGS XML grammars (application/srgs+xml).
A server MAY suport speech input, and MAY support other grammar formats. The compo-
nent is created using an <input/> command, containing one or more grammar documents
bywhich to control input, alongwith a set of options to determine the nature of the collection.

Listing 71: Client requests DTMF input collection from a call
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit’
type=’set’
id=’h7ed2 ’>

<input xmlns=’urn:xmpp:rayo:input:1 ’ mode=’dtmf’>
<grammar content -type=’application/srgs+xml’>

<![CDATA[
<?xml version =”1.0”? >
<grammar mode=”dtmf” version =”1.0”

xmlns:xsi =”http://www.w3.org /2001/ XMLSchema -instance”
xsi:schemaLocation =”http://www.w3.org /2001/06/ grammar

http://www.w3.org/TR/speech -
grammar/grammar.xsd”

xmlns=”http://www.w3.org /2001/06/ grammar”>

<rule id=”digit”>
<one -of>

<item > 0 </item >
<item > 1 </item >
<item > 2 </item >
<item > 3 </item >
<item > 4 </item >
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<item > 5 </item >
<item > 6 </item >
<item > 7 </item >
<item > 8 </item >
<item > 9 </item >

</one -of>
</rule >

<rule id=”pin” scope=” public”>
<one -of>

<item >
<item repeat =”4”>< ruleref uri=”# digit”/></item >
#

</item >
<item >

* 9
</item >

</one -of>
</rule >

</grammar >
]]>

</grammar >
</input >

</iq>

The server MUST validate that it has appropriate resources/mechanisms to collect the
requested input before acknowledging the component creation.
In the case that an input component is executed on a call joined to other calls or mixers, the
input MUST be collected only from the call and not the joined parties. Input components
executed on a mixer MUST collect and combine input from all participants joined to the
mixer.
The input component does not implement any intermediate commands, other than those
specified for all components.
The input component does not provide any intermediate events.
The input completion reason MUST be one of the core Rayo reasons, or one of the following
reasons. Input component completion provides matchmetadata for the <finish/> reason only.

• match (indicating that one of the grammars matched the received input).

• noinput (indicating that no input was received before a timeout was encountered).

• nomatch (indicating that input was received which did not match any of the specified
grammars).

If themedia server reports amatch to one of the provided grammars, the serverMUST present
the results of the match to the client by way of a match document in the format requested by
the client. A server MUST be capable of supporting NLSML, and may support other formats.
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Listing 72: Component indicates it has completed due to one of the grammars returning a
match

<presence from=’9f00061@call.shakespeare.lit/eh3u28 ’
to=’juliet@capulet.lit/courtyard ’
type=’unavailable ’>

<complete xmlns=’urn:xmpp:rayo:ext:1 ’>
<match xmlns=’urn:xmpp:rayo:input:complete:1 ’ content -type=”

application/nlsml+xml”>
<![CDATA[

<result xmlns=”http://www.ietf.org/xml/ns/mrcpv2” grammar =”
http:// foodorder”>

<interpretation >
<input mode=”dtmf” confidence =”100” >1 2 3 4</input >

</interpretation >
</result >

]]>
</match >

</complete >
</presence >

6.5.5 Prompt Component

Prompt is a convenience component to wrap input and output components, combine their
lifecycles, and allow input to barge-in on an output component in the standard sense.

Listing 73: Client requests DTMF input collection from a call
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit’
type=’set’
id=’h7ed2 ’>

<prompt xmlns=’urn:xmpp:rayo:prompt:1 ’>
<output xmlns=’urn:xmpp:rayo:output:1 ’>

<document content -type=’application/ssml+xml’>
<![CDATA[

<?xml version =”1.0”? >
<!DOCTYPE speak PUBLIC ”-//W3C//DTD SYNTHESIS 1.0//EN”

”http://www.w3.org/TR/speech -synthesis/
synthesis.dtd”>

<speak version =”1.0”
xmlns=”http://www.w3.org /2001/10/ synthesis”
xmlns:xsi =”http://www.w3.org /2001/ XMLSchema -instance”
xsi:schemaLocation =”http://www.w3.org /2001/10/

synthesis
http://www.w3.org/TR/speech -synthesis/

synthesis.xsd”
xml:lang =”en-US”>

<p>
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<s>Please enter your pin number now.</s>
</p>

</speak >
]]>

</document >
</output >

<input xmlns=’urn:xmpp:rayo:input:1 ’ mode=’dtmf’>
<grammar content -type=’application/srgs+xml’>

<![CDATA[
<?xml version =”1.0”? >
<grammar mode=”dtmf” version =”1.0”

xmlns:xsi =” http://www.w3.org /2001/ XMLSchema -
instance”

xsi:schemaLocation =”http://www.w3.org /2001/06/
grammar

http://www.w3.org/TR/speech -
grammar/grammar.xsd”

xmlns=”http://www.w3.org /2001/06/ grammar”>

<rule id=”digit”>
<one -of>

<item > 0 </item >
<item > 1 </item >
<item > 2 </item >
<item > 3 </item >
<item > 4 </item >
<item > 5 </item >
<item > 6 </item >
<item > 7 </item >
<item > 8 </item >
<item > 9 </item >

</one -of>
</rule >

<rule id=”pin” scope=” public”>
<one -of>

<item >
<item repeat =”4”>< ruleref uri=”# digit”/></item >
#

</item >
<item >

* 9
</item >

</one -of>
</rule >

</grammar >
]]>

</grammar >
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</input >
</prompt >

</iq>

The server MUST validate that it has appropriate resources/mechanisms to render the
requested output and collect the requested input before acknowledging the component
creation.
The prompt component follows the same combined join considerations as output and input
components.
The prompt component implements implements all intermediate commands from output and
input and behaves the same. If output component commands are executed after the output
component has ceased executing, a <unexpected-request> error MUST be returned.
The prompt component emits intermediate events from the nested output and input compo-
nents.
It also emits an ’input-timers-started’ event when the input component’s timers are started,
which corresponds to the completion of the output sub-component.

Listing 74: Prompt component announces that the input timers have started
<presence from=’9f00061@call.shakespeare.lit/eh3u28 ’

to=’juliet@capulet.lit/courtyard ’>
<input -timers -started xmlns=’urn:xmpp:rayo:prompt:1 ’/>

</presence >

The input completion reason MUST be one of the core Rayo reasons, or one of the Input
component reasons. Events signalling completion of the output components are suppressed.

6.5.6 Record Component

Call recording is a core concept in Rayo, and is provided by the record component. The
component allows media to be captured from a call or a mixer, using the server’s local media
server, stored, and made available to clients. The component is created using a <record/>
command, potentially with a set of options to determine the nature of the recording.

Listing 75: Client requests a simple recording
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit’
type=’set’
id=’h7ed2 ’>

<record xmlns=’urn:xmpp:rayo:record:1 ’/>
</iq>

The serverMUST validate that it has apropriate resources/mechanisms tomake the recording
before acknowledging the component creation. The component MUST ignore any hints that
it does not understand.
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In the case that a record component is executed on a call joined to other calls or mixers, the
direction attibute will specify if the sent audio, received audio, or both will be present in the
recording.
In send mode, only the audio sent by the caller is recorded.
In recv mode, when just joined to the media server, should record TTS, audio playback, etc;
when joined to another call, should record that other call’s sending audio (probably a human
talking) also. When joined to a mixer, should record the audio send from the mixer (other
people talking) also.
Duplex mode is a combination of send and recv. The platform may mix these or record them
as separate channels.
When executing a record against a mixer, send mode is not supported. Recv mode records
audio from all mixer participants. Duplex is a clone of recv.
The record component implements several commands for manipulating the recording during
its execution.
A client may instruct a record component to pause by sending a pause command. The server
MUST cause the media server to pause recording, allowing for later appending.

Listing 76: Client requests record component pause, server confirms
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit/eh3u28 ’
type=’set’
id=’h7ed2 ’>

<pause xmlns=’urn:xmpp:rayo:record:1 ’/>
</iq>

<iq from=’9f00061@call.shakespeare.lit/eh3u28 ’
to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’/>

A client may instruct a record component to resume recording if it has previously been
paused. The server MUST cause the media server to resume recording, appending to the
original file.

Listing 77: Client requests record component resume, server confirms
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit/eh3u28 ’
type=’set’
id=’h7ed2 ’>

<resume xmlns=’urn:xmpp:rayo:record:1 ’/>
</iq>

<iq from=’9f00061@call.shakespeare.lit/eh3u28 ’
to=’juliet@capulet.lit/balcony ’
type=’result ’
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id=’h7ed2 ’/>

The record component does not provide any intermediate events.
The record completion reason MUST be one of the core Rayo reasons, or one of the following
reasons. Record component completion provides recording metadata in all cases.

• max-duration (indicating that the max duration was reached).

• initial-timeout (indicating that the initial timeout was triggered).

• final-timeout (indicating that the final timeout was triggered).

The server MUST present the recording for consumption by the client by way of recording
metadata on the complete reason, including a URI at which the recording may be fetched. It
MUST provide uri, duration & size data as specified on the recording element.

Listing 78: Component indicates it has completed due to being stopped, providing the
recording

<presence from=’9f00061@call.shakespeare.lit/eh3u28 ’
to=’juliet@capulet.lit/courtyard ’
type=’unavailable ’>

<complete xmlns=’urn:xmpp:rayo:ext:1 ’>
<stop xmlns=’urn:xmpp:rayo:ext:complete:1 ’/>
<recording xmlns=’urn:xmpp:rayo:record:complete:1 ’ uri=’xmpp:http:

//rayo.io/recordings/foo.wav’ duration=’20000 ’ size=’
12287492817 ’/>

</complete >
</presence >

6.6 Session Termination
Session termination may occur by one of several methods:

• An inbound call may be redirected by a PCP to some other target.

• An inbound call may be rejected by a PCP.

• An active call, whether inbound or outbound, may be hung up (gracefully ended) by a
DCP.

• An active call may be hung up (gracefully ended) by the remote party.

• An outbound call may be rejected by the remote party.

A call end notification will be dispatched to the PCP if one of the following conditions is met:
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• The call has been accepted and has a PCP.

• The call is outbound and implicitly has a PCP (the requesting party).

6.6.1 Call Redirection

If a client can determine a more appropriate target for an incoming call, it may wish to relay
this information to the caller in the form of a URI (eg SIP). The target URI must be specified in
the ’to’ attribute of the redirect element.

Listing 79: Client instructs a call to redirect, with some headers
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit’
type=’set’
id=’h7ed2 ’>

<redirect xmlns=’urn:xmpp:rayo:1 ’
to=’sip:other@there.com’>

<header name=”x-skill” value=”agent” />
<header name=”x-customer -id” value=”8877” />

</redirect >
</iq>

The server should send an appropriate redirection instruction to the underlying session.
If the server is able to successfully relay the redirection to the calling party, it should send an
empty IQ result to confirm the command has completed execution:

Listing 80: Server acknowledges successful redirect
<iq from=’9f00061@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’/>

If the server is unable to perform the redirect because the call is in a state where a redirect is
not possible, it should return an unexpected-request (wait) error indicating such:

Listing 81: Server indicates that the call is in a state where a redirect is not possible.
<iq from=’9f00061@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<redirect xmlns=’urn:xmpp:rayo:1 ’
to=’sip:other@there.com’>

<header name=”x-skill” value=”agent” />
<header name=”x-customer -id” value=”8877” />

</redirect >
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<error type=’wait’>
<unexpected -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

6.6.2 Call Rejection

If a client cannot handle an incoming call, it MAY reject it. The client MUST do this before
accepting the call. The target URImust be specified in the ’to’ attribute of the redirect element.

Listing 82: Client instructs a call to reject, with some headers
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit’
type=’set’
id=’h7ed2 ’>

<reject xmlns=’urn:xmpp:rayo:1 ’>
<header name=”x-reject -description” value=”Sorry ,␣she␣cannae␣take␣

it!” />
</reject >

</iq>

The server should reject the underlying session. If the server is able to do so successfully, it
should send an empty IQ result to confirm the command has completed execution:

Listing 83: Server acknowledges successful rejection
<iq from=’9f00061@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’/>

If the server is unable to perform the rejection because the call has already been accepted, it
should return a not-allowed (cancel) error indicating such:

Listing 84: Server indicates that the call already has another DCP and that control of the call is
no longer available.

<iq from=’9f00061@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<reject xmlns=’urn:xmpp:rayo:1 ’>
<header name=”x-reject -description” value=”Sorry ,␣she␣cannae␣take␣

it!” />
</reject >
<error type=’cancel ’>

<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
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</error >
</iq>

6.6.3 Call Hangup

If a client wishes to end a call it should send a hangup command to the call instructing it to do
so:

Listing 85: Client instructs a call to hangup, with some headers
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit’
type=’set’
id=’h7ed2 ’>

<hangup xmlns=’urn:xmpp:rayo:1 ’>
<header name=”x-call -result” value=”4” />

</hangup >
</iq>

The server should queue the call for immediate hangup and return a response indicating
success of the command:

Listing 86: Server acknowledges hangup queueing
<iq from=’9f00061@call.shakespeare.lit’

to=’juliet@capulet.lit/balcony ’
type=’result ’
id=’h7ed2 ’/>

The server MUST follow this sequence to hang up a call:

• Terminate all components of the call, and components MUST send a complete event
indicating hangup as the cause.

• Terminate all joins on the call, sending unjoined events.

• Terminate the underlying session.

6.6.4 Call End Notification

The server MUST monitor a call’s underlying session and react appropriately in the case that
it comes to an end:

• The server MUST determine the reason for the call ending to be one of the appropriate
end reasons.

47



6 SESSION FLOW

• If the call ending was not a result of a hangup command from a client, the server MUST
terminate all components on the call, which MUST send a complete event indicating
hangup as the cause. The server MUST additionally terminate all joins on the call, send-
ing unjoined events.

• The serverMUST send an end event (of type unavailable) on behalf of the call, specifying
the above determined reason as a child element, to all JIDs to which an offer was sent or
from which a command was received.

• The server MUST NOT send any more events from a call which has ended and declared
itself unavailable.

• The server MUST respond to any commands sent to an ended call (or one which never
existed) with an item-not-found (cancel) error.

Listing 87: Controlling party receives notification of the call being terminated due to a remote
party hangup

<presence from=’9f00061@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
type=’unavailable ’>

<end xmlns=’urn:xmpp:rayo:1 ’>
<hangup/>

</end>
</presence >

Listing 88: Non-existant call receives a command
<iq from=’juliet@capulet.lit/balcony ’

to=’9f00061@call.shakespeare.lit’
type=’set’
id=’h7ed2 ’>

<answer xmlns=’urn:xmpp:rayo:1 ’/>
</iq>

<iq from=’9f00061@call.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
type=’error ’
id=’h7ed2 ’>

<answer xmlns=’urn:xmpp:rayo:1 ’/>
<error type=’cancel ’>

<item -not -found xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

6.7 Headers
In elements which may carry child <header/> elements, a server or client MAY specify several
header elements with the same name. In such cases, these MUST be considered to form a
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collection of ordered values for the key provided.

Listing 89: Client requests establishment of a new outbound session with multiple values for
the SIP Route header

<iq from=’juliet@capulet.lit/balcony ’
to=’shakespeare.lit’
type=’set’
id=’h7ed2 ’>

<dial xmlns=’urn:xmpp:rayo:1 ’
to=’tel: +13055195825 ’
from=’tel: +14152226789 ’>

<header name=”Route” value=”foo” />
<header name=”Route” value=”bar” />

</dial>
</iq>

6.8 Instant Messages
6.8.1 Call-bound Messages

XMPP message stanzas directed to the call’s JID with a type of ’normal’ MAY be forwarded to
the calling party by translating the message into the calling party’s protocol. In the case of
SIP, this SHOULD follow the conventions set out in draft-ietf-stox-im-06 with the exception of
the <thread/> to Call-ID mapping, as the Call-ID will always be that of the calling party.
If a message is directed to the call’s JID with a type other than ’normal’ then the server
MUST return a <feature-not-implemented/> error with a type of ’modify’. If no translation is
possible then the server SHOULD return the same error but with a type of ’cancel’.

Listing 90: Translation of a XMPP message into a SIP MESSAGE
<message

from=’juliet@capulet.lit/balcony ’
to=’9f00061@call.shakespeare.lit’
type=’normal ’>

<body>Art thou not Romeo , and a Montague?</body>
</message >

MESSAGE sip:romeo@montague.lit SIP /2.0
Via: SIP /2.0/ UDP call.shakespeare.lit;branch=AmRHlGRD0WD7BHgM5fKc
Max -Forwards: 70
From: <sip:call.shakespeare.lit>;tag=78 aBN3CgAB8MK
To: <sip:romeo@montague.lit>;tag=Z7nlVUbvTOmV6
Call -ID: 2819297471
CSeq: 55119460 MESSAGE
Content -Type: text/plain
Content -Length: 35
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Art thou not Romeo , and a Montague?

7 Formal Definition
7.1 Header Element
The <header/> element MUST be empty.
The attributes of the <header/> element are as follows.

Attribute Definition Inclusion
name A token giving the name by which the

header may be known.
REQUIRED

value The string value of the named header. REQUIRED

7.2 Offer Element
Informs the recipient that a new call is available for control and invites it to take control using
progress commands below.
The <offer/> element MAY contain one or more <header/> elements.
The attributes of the <offer/> element are as follows.

Attribute Definition Inclusion
to The target URI for the call. May me

a tel URI, SIP URI, a JID (for Jingle) or
some other platform-specific address-
ing mechanism.

REQUIRED

from The caller ID URI for the call. May be
a tel URI, SIP URI, a JID (for Jingle) or
some other platform-specific address-
ing mechanism.

OPTIONAL

7.3 Ringing Element
Indication that an outbound call has begun ringing, or accepted by the remote party.
The <ringing/> element MAY contain one or more <header/> elements.
The <ringing/> element has no attributes.
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7.4 Answered Element
Indication that an outbound call has been answered and that the 3rd party negotiation has
completed. At this point, the media stream should be open.
The <answered/> element MAY contain one or more <header/> elements.
The <answered/> element has no attributes.

7.5 End Element
Indication that the call has come to an end, giving the reason.
The <end/> element MUST contain a single end reason element. It MAY also contain one or
more <header/> elements.
The <end/> element has no attributes.

7.5.1 End Reason Element

The following are valid end reason elements. Unless otherwise stated, they all MUST be
empty.
The attributes of the end reason element are as follows.

Attribute Definition Inclusion
platform-code A platform-specific end code. This

could be a SIP code, ITU-T Q.850 or
some other system. The code may
be an arbitrary string.

OPTIONAL

<hungup/> Indication that the call ended due to a normal hangup by the remote party.

<hangup-command/> Indication that the call ended due to a normal hangup triggered by a
hangup command.

<timeout/> Indication that the call ended due to a timeout in contacting the remote party.

<busy/> Indication that the call ended due to being rejected by the remote party subsequent
to being accepted.

<rejected/> Indication that the call ended due to being rejected by the remote party before
being accepted.

<error/> Indication that the call ended due to a system error.
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7.6 Accept Element
Instructs the server to send notification to the calling party that the call will be dealt with and
that ringing may begin.
The <accept/> element MAY contain one or more <header/> elements.
The <accept/> element has no attributes.

7.7 Answer Element
Instructs the server to pick up an incoming call and connect the media stream.
The <answer/> element MAY contain one or more <header/> elements.
The <answer/> element has no attributes.

7.8 Redirect Element
Instructs the calling party that the call will not be accepted and that instead it should try to
call the URI indicated in the command.
The <redirect/> element MAY contain one or more <header/> elements.
The attributes of the <redirect/> element are as follows.

Attribute Definition Inclusion
to The new target URI for the call to be

redirected to.
REQUIRED

7.9 Reject Element
Instructs the server to reject the call with a given reason.
The <reject/> element MUST contain a single reject reason element. It MAY also contain one
or more <header/> elements.
The <reject/> element has no attributes.

7.9.1 Reject Reason Element

The following are valid reject reason elements. Unless otherwise stated, they all MUST be
empty, and they do not have any attributes.

<decline/> Indicates that the controlling party refused the call for anunspecified reason, such
as access control.
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<busy/> Indicates that the controlling party refused the call due to excess load.

<error/> Indicates that the controlling party refused the call because some error occurred.

7.10 Hangup Element
Instructs the server to bring the call to an end naturally.
The <hangup/> element MAY contain one or more <header/> elements.
The <hangup/> element has no attributes.

7.11 Dial Element
Instructs the server to create a new call and surrender control of it to the requesting party.
The <dial/> element MAY contain one or more <header/> elements. It MAY contain one or
more <join/> elements, instructing the server to join the new call in the indicated manner
rather than the default (join to the local media server).
The attributes of the <dial/> element are as follows.

Attribute Definition Inclusion Default
to Indicates the party to

whom the call should be
directed.

REQUIRED

from Indicates the caller
ID with which the
call should appear to
originate.

OPTIONAL

uri Indicates the URI at
which the client wishes
the call to be presented.

OPTIONAL

timeout Indicates the maximum
time allowed for a re-
sponse to be provided by
the remote party before
the call should be con-
sidered to have come to
an end.

OPTIONAL -1

7.12 Join Element
Instructs the server to join the media streams of the call and the specified party, given
direction and media negotiation parameters.

53



7 FORMAL DEFINITION

The <join/> element MUST be empty.
The attributes of the <join/> element are as follows.

Attribute Definition Inclusion Default
direction Indicates the direction

in which the media
should flow between
the call and the 3rd
party. Must be one of
the following values:
”duplex” - Indicates
that media should
flow in both directions
between the parties.
”send” - Indicates that
media should only flow
from the target call to
the third party. ”recv”
- Indicates that media
should only flow from
the third party to the
target call.

OPTIONAL duplex

media Indicates the manner
in which the server
should negotiate me-
dia between the two
parties. Must be one of
the following values:
”bridge” - Instructs
the server to bridge
the parties media
streams via its local
media server. ”direct”
- Instructs the server
to have the parties ne-
gotiate media directly
with one another.

OPTIONAL bridge

call-uri Indicates the 3rd party
call URI to which the
target call should be
joined.

REQUIRED unless
mixer-name is set.
MUST NOT be set if
mixer-name is set.
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Attribute Definition Inclusion Default
mixer-name Indicates the mixer

name to which the
target call should be
joined.

REQUIRED unless call-
uri is set. MUST NOT be
set if call-uri is set.

7.13 Unjoin Element
Instructs the server to unjoin the media streams of the call and the specified party.
The <unjoin/> element MUST be empty.
The attributes of the <unjoin/> element are as follows.

Attribute Definition Inclusion
call-uri Indicates the 3rd party call URI from

which the target call should be un-
joined.

OPTIONAL. MUST NOT be set if
mixer-name is set.

mixer-name Indicates the mixer name from
which the target call should be
unjoined.

OPTIONAL. MUST NOT be set if call-
uri is set.

7.14 Joined Element
Indicates that the call was successfully joined to the specified party.
The <joined/> element MUST be empty.
The attributes of the <joined/> element are as follows.

Attribute Definition Inclusion
call-uri Indicates the 3rd party call URI to

which the target call was joined.
REQUIRED unless mixer-name is set.
MUST NOT be set if mixer-name is
set.

mixer-name Indicates the mixer name to which
the target call was joined.

REQUIRED unless call-uri is set.
MUST NOT be set if call-uri is set.
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7.15 Unjoined Element
Indicates that the call ceased to be joined to the specified party.
The <unjoined/> element MUST be empty.
The attributes of the <unjoined/> element are as follows.

Attribute Definition Inclusion
call-uri Indicates the 3rd party call URI from

which the target call was unjoined.
REQUIRED unless mixer-name is set.
MUST NOT be set if mixer-name is
set.

mixer-name Indicates the mixer name from
which the target call was unjoined.

REQUIRED unless call-uri is set.
MUST NOT be set if call-uri is set.

7.16 Started Speaking Element
Indicates that a call joined to a mixer with which the controlling party has an events subscrip-
tion has activated a speech detector, providing its URI.
The <started-speaking/> element MUST be empty.
The attributes of the <started-speaking/> element are as follows.

Attribute Definition Inclusion
call-uri Indicates the URI of the call which has

triggered the speech detector.
REQUIRED

7.17 Stopped Speaking Element
Indicates that a call joined to a mixer with which the controlling party has an events subscrip-
tion has ceased activation of a speech detector, providing its URI.
The <stopped-speaking/> element MUST be empty.
The attributes of the <stopped-speaking/> element are as follows.

Attribute Definition Inclusion
call-uri Indicates the URI of the call which has

triggered the speech detector.
REQUIRED
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7.18 Ref Element
Used to give the address of a newly created resource, either a call or a component.
The <ref/> element MUST be empty.
The attributes of the <ref/> element are as follows.

Attribute Definition Inclusion
uri Gives the URI of the new resource. REQUIRED

7.19 Components
7.19.1 Stop Element

Instructs a component to come to an end before it completes naturally.
The <stop/> element MUST be empty.
The <stop/> element has no attributes.

7.19.2 Complete Element

Indicates that the component has come to an end and no further processing will occurr. Gives
the reason for the termination.
The <complete/> element MUST contain exactly one child element, indicating the reason
for the complete event being raised. The reason may be a core complete reason or a reason
specific to a particular component.
The <complete/> element has no attributes.
The following are valid complete reason elements. They all MAY contain further component-
specific metadata elements, but they do not have any attributes.

<stop/> Indicates that the component came to an end because it was issued a stop command
by the controlling party.

<hangup/> Indicates that the component came to an end because the call ended.

<error/> Indicates that the component came to an end because it encountered an error.

7.19.3 Media Output

An output component is used to instruct the server to generate audible output to a call or
mixer.
Instructs the server to begin an output component executing on the target call or mixer with
the specified document and parameters.
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The <output/> element MUST contain one or more <document/> elements. A server MUST
support the application/ssml+xml content type, but MAY additionally support others.
The attributes of the <output/> element are as follows.

Attribute Definition Possible Values Default Inclusion
start-offset Indicates some

offset through
which the out-
put should be
skipped be-
fore rendering
begins.

A positive inte-
ger in ms.

0 OPTIONAL

start-paused Indicates
wether or not
the compo-
nent should
be started in a
paused state to
be resumed at a
later time.

true|false false OPTIONAL

repeat-interval Indicates the
duration of
silence that
should space
repeats of
the rendered
document.

A positive inte-
ger in ms.

0 OPTIONAL

repeat-times Indicates the
number of
times the out-
put should be
played.

A positive inte-
ger or 0 to re-
peat forever.

1 OPTIONAL

max-time Indicates the
maximum
amount of time
for which the
output should
be allowed
to run before
being termi-
nated. Includes
repeats.

A positive inte-
ger in ms or -1
to disable.

-1 OPTIONAL
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Attribute Definition Possible Values Default Inclusion
renderer Indicates which

media engine
the server
should use to
render the Out-
put. The server
defines the
possible values
and falls back
to the platform
default if not
specified.

An arbitrary
string

OPTIONAL

voice The voice with
which to speak
the requested
document

Any voice sup-
ported by the
TTS engine.

OPTIONAL

Presents a document for rendering by the output engine.
The <document/> element MUST have either a url attribute set OR a content type and a body,
containing a document for output rendering enclosed within CDATA.
The attributes of the <document/> element are as follows.

Attribute Definition Possible Values Default Inclusion
url Provides a URI at

which the doc-
ument is avail-
able.

Any valid URI
scheme sup-
ported by the
server (eg
HTTP).

none REQUIRED
unless content-
type and con-
tent are set

content-type Indicates the
content type of
the document
provided as
CDATA.

A document
content type
token

REQUIRED
unless url is set

Instructs the server to pause the media output, but not terminate the component.
The <pause/> element MUST be empty.
The <pause/> element has no attributes.
Instructs the server to continue rendering the output from the last pause marker.
The <resume/> element MUST be empty.
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The <resume/> element has no attributes.
Instructs the server to increase the rate of output by a unit amount.
The <speed-up/> element MUST be empty.
The <speed-up/> element has no attributes.
Instructs the server to decrease the rate of output by a unit amount.
The <speed-down/> element MUST be empty.
The <speed-down/> element has no attributes.
Instructs the server to increase the volume of output by a unit amount.
The <volume-up/> element MUST be empty.
The <volume-up/> element has no attributes.
Instructs the server to decrease the volume of output by a unit amount.
The <volume-down/> element MUST be empty.
The <volume-down/> element has no attributes.
Instructs the server to move the play marker of the output forward or back in time before
resuming output.
The <seek/> element MUST be empty.
The attributes of the <seek/> element are as follows.

Attribute Definition Possible Values Inclusion
direction Indicates the direction

in time inwhich tomove
the play marker.

forward|back REQUIRED

amount Indicates the duration
by which to move the
play marker.

A positive integer, inms. REQUIRED

Indicates that the output component came to an end as a result of reaching the end of the
document to be rendered.
The <finish/> element MUST be empty.
The <finish/> element has no attributes.
Indicates that the output component came to an end due to the maximum time limit being
reached.
The <max-time/> element MUST be empty.
The <max-time/> element has no attributes.

7.19.4 Media Input

An input component is used to instruct the server to gather media input from a call or mixer,
using either DTMF or ASR.
Instructs the server to begin an input detector of the specified mode, with certain attributes,

60



7 FORMAL DEFINITION

governed by the rules provided in one or more grammar documents.
The <input/> element MUST contain one or more <grammar/> elements.
The attributes of the <input/> element are as follows.

Attribute Definition Possible Val-
ues

Default Inclusion

mode Themethod by
which to col-
lect input.

any|dtmf|voice|cpaany OPTIONAL

terminator Indicates a ter-
minator token
which, when
encountered,
should cause
the input
detection to
cease.

A token string none OPTIONAL

recognizer Indicates the
name of the
particular in-
put processor
to be engaged,
used only for
routing pur-
poses (eg to
choose which
MRCP profile
to invoke).

A token string none OPTIONAL

language Specifies the
recognition
language to
the recog-
nizer.

Any valid ISO
639-3 language
code

en-US OPTIONAL

initial-timeout Indicates the
amount of
time pre-
ceding input
which may
expire before
a timeout is
triggered.

Any posi-
tive integer
in milisec-
onds, or -1 to
disable.

-1 OPTIONAL
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Attribute Definition Possible Val-
ues

Default Inclusion

inter-digit-timeout Indicates (in
the case of
DTMF input)
the amount of
time between
input digits
which may
expire before
a timeout is
triggered.

Any posi-
tive integer
in milisec-
onds, or -1 to
disable.

-1 OPTIONAL

recognition-timeout Indicates the
time (in mil-
liseconds) for
speech input,
after speech
has begun,
to return a
Match before
triggering
a Nomatch
completion.

Integer value
from 0 to
MAXTIME-
OUT, where
MAXTIMEOUT
is imple-
mentation
specific, or -1
to disable.

-1 OPTIONAL

sensitivity Indicates how
sensitive the
interpreter
should be to
loud versus
quiet input.
Higher values
represent
greater sensi-
tivity.

A decimal
value between
0 and 1.

0.5 OPTIONAL

min-confidence Indicates the
confidence
threshold,
below which
a match is to
be considered
unreliable.

A decimal
value between
0 and 1.

0 OPTIONAL
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Attribute Definition Possible Val-
ues

Default Inclusion

max-silence Indicates the
maximum pe-
riod of silence
which may be
encountered
during input
gathering be-
fore a timeout
is triggered.

Any posi-
tive integer
in milisec-
onds, or -1 to
disable.

-1 OPTIONAL

match-content-type Indicates
the required
response
document
format.

Must sup-
port at least
applica-
tion/nlsml+xml,
but may sup-
port oth-
ers such
as applica-
tion/emma+xml.

application/nlsml+xmlOPTIONAL

Provides the grammar document by which the input detection should be governed.
The <grammar/> element MUST have either a url attribute set OR a content type and a body.
The attributes of the <grammar/> element are as follows.

Attribute Definition Possible Values Default Inclusion
url Provides a URI at

which the gram-
mar document is
available.

Any valid URI
scheme sup-
ported by the
server (eg
HTTP).

none REQUIRED
unless content-
type and con-
tent are set

content-type Indicates the
content type
of the gram-
mar document
provided as
CDATA.

A grammar con-
tent type token

none REQUIRED
unless url is set

Indicates that the component came to an end due to one of its grammars matching the
received input.
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The <match/> element MUST contain a valid response document within CDATA.
The attributes of the <match/> element are as follows.

Attribute Definition Possible Values Default Inclusion
content-type Indicates the

content type of
the result docu-
ment provided
as CDATA.

A result docu-
ment content
type token

application/nlsml+xmlREQUIRED

Indicates that the component came to an end because a timeout was triggered before input
was received.
The <noinput/> element MUST be empty.
The <noinput/> element has no attributes.
Indicates that the component came to an end because input was received which did not match
any of the specified grammars.
The <nomatch/> element MUST be empty.
The <nomatch/> element has no attributes.

7.19.5 Prompt

An prompt component is a mixture of audio output and input, and is used to link the lifecycle
of both such input may interrupt output via an arbitrary grammar.
Instructs the server to begin an input detector of the specified mode, with certain attributes,
governed by the rules provided in one or more grammar documents, while simultaneously
rendering output.
The <prompt/> element MUST contain an <input/> element and an <output/> element.
The attributes of the <prompt/> element are as follows.

Attribute Definition Possible Values Default Inclusion
barge-in Whether or not

the input detec-
tor is permitted
to interrupt the
output.

true|false true OPTIONAL

Indicates that the component’s input timers have started.
The <input-timers-started/> element MUST be empty.
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The <input-timers-started/> element has no attributes.

7.19.6 Media Recording

A record component is used to instruct the server to record audible or visual media for
temporary or permanent storage.
Instructs the server to begin recording input to the call to a file.
The <record/> element MAY contain one or more <hint/> elements.
The attributes of the <record/> element are as follows.

Attribute Definition Possible Values Default Inclusion
format File format

used during
recording.

A valid format
token, such as
’mp3’, ’wav’,
’h264’. Im-
plementation
specific.

wav OPTIONAL

start-beep Indicates
whether sub-
sequent record
will be preceded
with a beep.

true|false false OPTIONAL

stop-beep Indicates
whether sub-
sequent record
stop will be
preceded with a
beep.

true|false false OPTIONAL

start-paused Whether sub-
sequent record
will start in
PAUSE mode.

true|false false OPTIONAL

max-duration Indicates the
maximum du-
ration for the
recording.

Any positive in-
teger in milisec-
onds, or -1 to
disable.

-1 OPTIONAL
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Attribute Definition Possible Values Default Inclusion
initial-timeout Controls how

long the rec-
ognizer should
wait after the
end of the
prompt for the
caller to speak
before sending a
Recorder event.

Any positive in-
teger in milisec-
onds, or -1 to
disable.

-1 OPTIONAL

final-timeout Controls the
length of a pe-
riod of silence
after callers
have spoken to
conclude they
finished.

Any positive in-
teger in milisec-
onds, or -1 to
disable.

-1 OPTIONAL

direction Indicates the
direction of the
call to record,
meaning which
call legs(s) are
included in
the resulting
file, in case the
call is joined
to another or a
mixer.

”duplex” -
Records both
sent and re-
ceived audio.
”send” - In-
dicates that
only the audio
sent from the
caller is to be
recorded. Not
supported when
Record is exe-
cuted against a
mixer. ”recv” -
Indicates that
only and all
audio received
by the caller is
recorded.

duplex OPTIONAL

mix Whether all
channels (call
legs) should be
mixed into a
single recording
channel.

true|false false OPTIONAL
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Optional format-specific encoding hint
The <hint/> element MUST be empty.
The attributes of the <hint/> element are as follows.

Attribute Definition Inclusion
name Thenameof thehint value as expected

by the recorder.
REQUIRED

value The value of the hint provided. REQUIRED

Instructs the server to cease recording input but to leave the destination open for appending
to permit resumption from the same point.
The <pause/> element MUST be empty.
The <pause/> element has no attributes.
Instructs the server to continue recording input, appending to the same destination.
The <resume/> element MUST be empty.
The <resume/> element has no attributes.
Provides the result of a recording, as a reference to its location.
The <recording/> element MUST be empty.
The attributes of the <recording/> element are as follows.

Attribute Definition Possible Values Inclusion
uri Indicates the URI at

which the recording is
made available.

A valid URI REQUIRED

duration Indicates the duration of
the completed record-
ing.

A positive integer inmil-
liseconds.

REQUIRED

size Indicates the filesize of
the completed record-
ing.

A positive integer in
bytes.

REQUIRED

Indicates that the component came to an end due to the max duration being reached.
The <max-duration/> element MUST be empty.
The <max-duration/> element has no attributes.
Indicates that the component came to an end due to no input being detected before the
initial-timeout.
The <initial-timeout/> element MUST be empty.
The <initial-timeout/> element has no attributes.
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Indicates that the component came to an end because no input had been detected for the final
timeout duration.
The <final-timeout/> element MUST be empty.
The <final-timeout/> element has no attributes.

8 Determining Support
If an entity supports Rayo, it MUST advertise that fact by returning a feature of
”urn:xmpp:rayo:1” (see Namespace Versioning regarding the possibility of incrementing
the version number) in response to a Service Discovery (XEP-0030) 4 information request.
The response MUST also include features for the application formats and transport methods
supported by the responding entity, as described in the relevant specifications.

Listing 91: Service Discovery Information Request - Client to Server
<iq from=’kingclaudius@shakespeare.lit/castle ’

id=’disco1 ’
to=’call.rayo.org’
type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

Listing 92: Service Discovery Information Response - Client to Server
<iq from=’call.rayo.org’

id=’disco1 ’
to=’kingclaudius@shakespeare.lit/castle ’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
<feature var=’urn:xmpp:rayo:1 ’/>

</query >
</iq>

Listing 93: Service Discovery Information Request - Server to Client
<iq from=’call.rayo.org’

id=’disco1 ’
to=’laertes@shakespeare.lit/castle ’
type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

Listing 94: Service Discovery Information Response - Server to Client

4XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

68

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html


11 SECURITY CONSIDERATIONS

<iq from=’laertes@shakespeare.lit/castle ’
id=’disco1 ’
to=’call.rayo.org’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
<feature var=’urn:xmpp:rayo:client:1 ’/>

</query >
</iq>

In order for an application to determine whether an entity supports this protocol, where
possible it SHOULD use the dynamic, presence-based profile of service discovery defined in
Entity Capabilities (XEP-0115) 5. However, if an application has not received entity capabilities
information from an entity, it SHOULD use explicit service discovery instead.

9 Extending Rayo
Rayo is a protocol designed for extensibility. Rayo implementations and deployments have
great flexibility in the way they map the Rayo protocol to their underlying transport and
media layers, and the functionality they provide around the Rayo interface to the system.
Further commands and components may also be added to the Rayo protocol in order to
extend its capabilities. Such extensions should be submitted to the XSF as ProtoXEPs and use
namespaces aligning with the core component namespaces.

10 Implementation Notes
A server MUST document any cases where its behaviour differs from that in this specification
(such as lack of support for particular options/components/etc) and return an errorwhenever
a command is not understood. A server MUST NOT silently ignore any instructions.

11 Security Considerations
11.1 Denial of Service
Rayo sessions can be resource-intensive. Therefore, it is possible to launch a denial-of-service
attack against an entity by burdening it with too many Rayo sessions. Care must be taken to
accept sessions only from known entities and only if the entity’s device is able to process such
sessions.

5XEP-0115: Entity Capabilities <https://xmpp.org/extensions/xep-0115.html>.
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11.2 Communication Through Gateways
Rayo communications can be enabled through gateways to non-XMPP networks, whose
security characteristics can be quite different from those of XMPP networks. For example, on
some SIP networks authentication is optional and ”from” addresses can be easily forged. Care
must be taken in communicating through such gateways.

11.3 Information Exposure
Mere negotiation of a Rayo session can expose sensitive information about the parties
(e.g. IP addresses). Care must be taken in communicating such information, and end-to-
end encryption should be used if the parties do not trust the intermediate servers or gateways.

12 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
6.

13 XMPP Registrar Considerations
13.1 Protocol Namespaces
This specification defines the following XML namespaces:

• urn:xmpp:rayo:1

• urn:xmpp:rayo:client:1

• urn:xmpp:rayo:call:1

• urn:xmpp:rayo:mixer:1

• urn:xmpp:rayo:ext:1

• urn:xmpp:rayo:ext:complete:1

• urn:xmpp:rayo:output:1

• urn:xmpp:rayo:output:complete:1

6The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.
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• urn:xmpp:rayo:input:1

• urn:xmpp:rayo:input:complete:1

• urn:xmpp:rayo:prompt:1

• urn:xmpp:rayo:record:1

• urn:xmpp:rayo:record:complete:1

The XMPP Registrar 7 includes the foregoing namespaces in its registry at <https:
//xmpp.org/registrar/namespaces.html>, as governed by XMPP Registrar Function
(XEP-0053) 8.

13.2 Namespace Versioning
If the protocol defined in this specification undergoes a major revision that is not fully
backward-compatible with an older version, or that contains significant new features, the
XMPP Registrar shall increment the protocol version number found at the end of the XML
namespaces defined herein, as described in Section 4 of XEP-0053.

13.3 Rayo Components Registry
The XMPP Registrar maintains a registry of Rayo components. All component registrations
with the exception of those defined above shall be defined in separate specifications (not
in this document). Components defined within the XEP series MUST be registered with
the XMPP Registrar, resulting in protocol URNs of the form ”urn:xmpp:rayo:component_-
name:X” (where ”component_name” is the registered name of the component and ”X” is a
non-negative integer).
In order to submit new values to this registry, the registrant shall define an XML fragment of
the following form and either include it in the relevant XMPP Extension Protocol or send it to
the email address <registrar@xmpp.org>:

<component >
<name>The name of the component.</name>
<desc>A natural -language summary of the component.</desc>
<doc>The document in which the component is specified.</doc>

</component >

7The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

8XEP-0053: XMPP Registrar Function <https://xmpp.org/extensions/xep-0053.html>.
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14 XML Schema
14.1 Rayo

<?xml version=”1.0” encoding=”UTF -8”?>
<schema xmlns=”http: //www.w3.org /2001/ XMLSchema”

targetNamespace=”urn:xmpp:rayo:1”
xmlns:tns=”urn:xmpp:rayo:1”
elementFormDefault=”qualified”>

<annotation >
<documentation >

The protocol documented by this schema is defined at http://rayo
.org/xep

</documentation >
</annotation >

<!-- Header elements -->
<complexType name=”headerType”>

<attribute name=”name” type=”token” use=”required”>
<annotation >

<documentation >
A token giving the name by which the header may be known.

</documentation >
</annotation >

</attribute >
<attribute name=”value” type=”string” use=”required”>

<annotation >
<documentation >

The string value of the named header.
</documentation >

</annotation >
</attribute >

</complexType >

<!-- Offer Event -->
<element name=”offer”>

<annotation >
<documentation >

Informs the recipient that a new call is available for control
and invites it to take control using progress commands

below.
</documentation >

</annotation >
<complexType >

<attribute name=”to” type=”anyURI” use=”required”>
<annotation >

<documentation >
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The target URI for the call. May be a tel URI , SIP URI , a
JID (for Jingle) or some other platform -specific
addressing mechanism.

</documentation >
</annotation >

</attribute >
<attribute name=”from” type=”anyURI” use=”optional”>

<annotation >
<documentation >

The caller ID URI for the call. May be a tel URI , SIP URI ,
a JID (for Jingle) or some other platform -specific

addressing mechanism.
</documentation >

</annotation >
</attribute >
<sequence >

<element name=”header” type=”tns:headerType” minOccurs=”0”
maxOccurs=”unbounded”>

<annotation >
<documentation >

Set of header variables sent by the originating party (
eg SIP INVITE headers).

</documentation >
</annotation >

</element >
</sequence >

</complexType >
</element >

<complexType name=”callProgressType”>
<sequence >

<element name=”header” type=”tns:headerType” minOccurs=”0”
maxOccurs=”unbounded” />

</sequence >
</complexType >

<!-- Ringing Event -->
<element name=”ringing” type=”tns:callProgressType”>

<annotation >
<documentation >

Indication that an outbound call has begun ringing , or
accepted by the remote party.

</documentation >
</annotation >

</element >

<!-- Answered Event -->
<element name=”answered” type=”tns:callProgressType”>

<annotation >
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<documentation >
Indication that an outbound call has been answered and that

the 3rd party negotiation has completed. At this point ,
the media stream should be open.

</documentation >
</annotation >

</element >

<complexType name=”endReasonType”>
<attribute name=”platform -code” type=”string” use=”optional”>

<annotation >
<documentation >

A platform -specific end code. This could be a SIP code , ITU -
T Q.850 or some other system. The code may be an
arbitrary string.

</documentation >
</annotation >

</attribute >
</complexType >

<!-- End Event -->
<element name=”end”>

<annotation >
<documentation >

Indication that the call has come to an end , giving the reason
.

</documentation >
</annotation >
<complexType >

<sequence >
<choice >

<element name=”hungup” type=”tns:endReasonType”>
<annotation >

<documentation >
Indication that the call ended due to a normal hangup

by the remote party.
</documentation >

</annotation >
</element >
<element name=”hangup -command” type=”tns:endReasonType”>

<annotation >
<documentation >

Indication that the call ended due to a normal hangup
triggered by a hangup command.

</documentation >
</annotation >

</element >
<element name=”timeout” type=”tns:endReasonType”>

<annotation >
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<documentation >
Indication that the call ended due to a timeout in

contacting the remote party.
</documentation >

</annotation >
</element >
<element name=”busy” type=”tns:endReasonType”>

<annotation >
<documentation >

Indication that the call ended due to being rejected
by the remote party subsequent to being accepted.

</documentation >
</annotation >

</element >
<element name=”rejected” type=”tns:endReasonType”>

<annotation >
<documentation >

Indication that the call ended due to being rejected
by the remote party before being accepted.

</documentation >
</annotation >

</element >
<element name=”error” type=”tns:endReasonType”>

<annotation >
<documentation >

Indication that the call ended due to a system error.
</documentation >

</annotation >
</element >

</choice >
<element name=”header” type=”tns:headerType” minOccurs=”0”

maxOccurs=”unbounded”>
<annotation >

<documentation >
Set of header variables sent by the remote party along

with the indication of the call ending.
</documentation >

</annotation >
</element >

</sequence >
</complexType >

</element >

<!-- Accept Command -->
<element name=”accept”>

<annotation >
<documentation >

Instructs the server to send notification to the calling party
that the call will be dealt with and that ringing may
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begin.
</documentation >

</annotation >
<complexType >

<sequence >
<element name=”header” type=”tns:headerType” minOccurs=”0”

maxOccurs=”unbounded” />
</sequence >

</complexType >
</element >

<!-- Answer Command -->
<element name=”answer”>

<annotation >
<documentation >

Instructs the server to pick up an incoming call and connect
the media stream.

</documentation >
</annotation >
<complexType >

<sequence >
<element name=”header” type=”tns:headerType” minOccurs=”0”

maxOccurs=”unbounded” />
</sequence >

</complexType >
</element >

<!-- Redirect Command -->
<element name=”redirect”>

<annotation >
<documentation >

Instructs the calling party that the call will not be accepted
and that instead it should try to call the URI indicated

in the command.
</documentation >

</annotation >
<complexType >

<attribute name=”to” type=”anyURI” use=”required”>
<annotation >

<documentation >
The new target URI for the call to be redirected to.

</documentation >
</annotation >

</attribute >
<sequence >

<element name=”header” type=”tns:headerType” minOccurs=”0”
maxOccurs=”unbounded” />

</sequence >
</complexType >
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</element >

<!-- Reject Command -->
<element name=”reject”>

<annotation >
<documentation >

Instructs the server to reject the call with a given reason.
</documentation >

</annotation >
<complexType mixed=”true”>

<sequence >
<choice >

<element name=”decline” type=”tns:empty”>
<annotation >

<documentation >
Indicates that the controlling party refused the call

for an unspecified reason , such as access control.
</documentation >

</annotation >
</element >
<element name=”busy” type=”tns:empty”>

<annotation >
<documentation >

Indicates that the controlling party refused the call
due to excess load.

</documentation >
</annotation >

</element >
<element name=”error” type=”tns:empty”>

<annotation >
<documentation >

Indicates that the controlling party refused the call
because some error occurred.

</documentation >
</annotation >

</element >
</choice >
<element name=”header” type=”tns:headerType” minOccurs=”0”

maxOccurs=”unbounded” />
</sequence >

</complexType >
</element >

<!-- Hangup Command -->
<element name=”hangup”>

<annotation >
<documentation >

Instructs the server to bring the call to an end naturally.
</documentation >
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</annotation >
<complexType >

<sequence >
<element name=”header” type=”tns:headerType” minOccurs=”0”

maxOccurs=”unbounded” />
</sequence >

</complexType >
</element >

<!-- Dial Command -->
<element name=”dial”>

<annotation >
<documentation >

Instructs the server to create a new call and surrender
control of it to the requesting party.

</documentation >
</annotation >
<complexType >

<attribute name=”to” type=”anyURI” use=”required”>
<annotation >

<documentation >
Indicates the party to whom the call should be directed.

</documentation >
</annotation >

</attribute >
<attribute name=”from” type=”anyURI” use=”optional”>

<annotation >
<documentation >

Indicates the caller ID with which the call should appear
to originate.

</documentation >
</annotation >

</attribute >
<attribute name=”uri” type=”anyURI” use=”optional”>

<annotation >
<documentation >

Indicates the URI at which the client wishes the call to
be presented.

</documentation >
</annotation >

</attribute >
<attribute name=”timeout” type=”tns:timeoutType” use=”optional”

default=” -1”>
<annotation >

<documentation >
Indicates the maximum time allowed for a response to be

provided by the remote party before the call should be
considered to have come to an end.

</documentation >
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</annotation >
</attribute >
<sequence >

<element name=”header” type=”tns:headerType” minOccurs=”0”
maxOccurs=”unbounded” />

<element name=”join” type=”tns:joinCommandType” minOccurs=”0”
maxOccurs=”unbounded”>

<annotation >
<documentation >

Instructs the server to join the new call in the
indicated manner rather than the default (join to
the local media server).

</documentation >
</annotation >

</element >
</sequence >

</complexType >
</element >

<!-- Join Command -->
<element name=”join”>

<annotation >
<documentation >

Instructs the server to join the media streams of the call and
the specified party , given direction and media

negotiation parameters.
</documentation >

</annotation >
<complexType >

<complexContent >
<extension base=”tns:joinType”>

<attribute name=”direction” use=”optional” default=”duplex”>
<annotation >

<documentation >
Indicates the direction in which the media should flow

between the call and the 3rd party.
</documentation >

</annotation >
<simpleType >

<restriction base=”token”>
<enumeration value=”duplex”>

<annotation >
<documentation >

Indicates that media should flow in both
directions between the parties.

</documentation >
</annotation >

</enumeration >
<enumeration value=”send”>
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<annotation >
<documentation >

Indicates that media should only flow from the
target call to the third party.

</documentation >
</annotation >

</enumeration >
<enumeration value=”recv”>

<annotation >
<documentation >

Indicates that media should only flow from the
third party to the target call.

</documentation >
</annotation >

</enumeration >
</restriction >

</simpleType >
</attribute >
<attribute name=”media” use=”optional” default=”bridge”>

<annotation >
<documentation >

Indicates the manner in which the server should
negotiate media between the two parties.

</documentation >
</annotation >
<simpleType >

<restriction base=”token”>
<enumeration value=”bridge”>

<annotation >
<documentation >

Instructs the server to bridge the parties media
streams via its local media server.

</documentation >
</annotation >

</enumeration >
<enumeration value=”direct”>

<annotation >
<documentation >

Instructs the server to have the parties
negotiate media directly with one another.

</documentation >
</annotation >

</enumeration >
</restriction >

</simpleType >
</attribute >

</extension >
</complexContent >

</complexType >
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</element >

<!-- Unjoin Command -->
<element name=”unjoin” type=”tns:joinType”>

<annotation >
<documentation >

Instructs the server to unjoin the media streams of the call
and the specified party.

</documentation >
</annotation >

</element >

<!-- Joined Event -->
<element name=”joined” type=”tns:joinType”>

<annotation >
<documentation >

Indicates that the call was successfully joined to the
specified party.

</documentation >
</annotation >

</element >

<!-- Unjoined Event -->
<element name=”unjoined” type=”tns:joinType”>

<annotation >
<documentation >

Indicates that the call ceased to be joined to the specified
party.

</documentation >
</annotation >

</element >

<complexType name=”joinType”>
<attribute name=”call -uri” type=”anyURI” use=”optional”>

<annotation >
<documentation >

Indicates the 3rd party call URI to which the target call
should be joined. May not be set if the mixer -name
attribute is set.

</documentation >
</annotation >

</attribute >
<attribute name=”mixer -name” type=”token” use=”optional”>

<annotation >
<documentation >

Indicates the mixer name to which the target call should be
joined. May not be set if the call -id attribute is set.

</documentation >
</annotation >
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</attribute >
</complexType >

<!-- Started Speaking Event -->
<element name=”started -speaking” type=”tns:activeSpeakerType”>

<annotation >
<documentation >

Indicates that a call joined to a mixer with which the
controlling party has an events subscription has activated
a speech detector , providing its ID.

</documentation >
</annotation >

</element >

<!-- Stopped Speaking Event -->
<element name=”stopped -speaking” type=”tns:activeSpeakerType”>

<annotation >
<documentation >

Indicates that a call joined to a mixer with which the
controlling party has an events subscription has ceased
activation of a speech detector , providing its ID.

</documentation >
</annotation >

</element >

<complexType name=”activeSpeakerType”>
<attribute name=”call -uri” type=”anyURI” use=”required”>

<annotation >
<documentation >

Indicates the URI of the call which has triggered the speech
detector.

</documentation >
</annotation >

</attribute >
</complexType >

<!-- Resource Reference -->
<element name=”ref”>

<annotation >
<documentation >

Used to give an indication of the identity of a newly created
resource , either a call or a component.

</documentation >
</annotation >
<complexType >

<attribute name=”uri” type=”anyURI” use=”required”>
<annotation >

<documentation >
Gives the URI of the new resource.
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</documentation >
</annotation >

</attribute >
</complexType >

</element >

<!-- Utility: Empty Type -->
<simpleType name=”empty”>

<restriction base=”string”>
<enumeration value=’’ />

</restriction >
</simpleType >

<!-- Utility: Duration Type -->
<simpleType name=”durationType”>

<restriction base=”long”>
<annotation >

<documentation >
Value is a duration in milleseconds

</documentation >
</annotation >

</restriction >
</simpleType >

<!-- Utility: Timeout Type -->
<simpleType name=”timeoutType”>

<annotation >
<documentation >

A value of -1 indicates no timeout
</documentation >

</annotation >

<restriction base=”tns:durationType”>
<minInclusive value=” -1”/>

</restriction >
</simpleType >

<!-- Utility: Fraction Decimal Type -->
<simpleType name=”fractionDecimalType”>

<restriction base=”decimal”>
<minInclusive value=”0”/>
<maxInclusive value=”1”/>

</restriction >
</simpleType >

</schema >
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14.2 Rayo Ext

<?xml version=”1.0” encoding=”UTF -8”?>
<schema xmlns=”http: //www.w3.org /2001/ XMLSchema”

targetNamespace=”urn:xmpp:rayo:ext:1”
xmlns:tns=”urn:xmpp:rayo:ext:1”
elementFormDefault=”qualified”
xmlns:core=”urn:xmpp:rayo:1”>

<annotation >
<documentation >

The protocol documented by this schema is defined at http://rayo
.org/xep

</documentation >
</annotation >

<!-- Stop Command -->
<element name=”stop” type=”core:empty”>

<annotation >
<documentation >

Instructs a component to come to an end before it completes
naturally.

</documentation >
</annotation >

</element >

<!-- Complete Event -->
<element name=”complete”>

<annotation >
<documentation >

Indicates that the component has come to an end and no further
processing will occurr. Gives the reason for the

termination.
</documentation >

</annotation >
<complexType mixed=”true”>

<choice minOccurs=”1” maxOccurs=”1”>
<any>

<annotation >
<documentation >

The reason for component termination. May be either one
of the core termination reasons (stop , hangup , error
) or a component specific reason.

</documentation >
</annotation >

</any>
</choice >
<sequence >

<any minOccurs=”0” maxOccurs=”unbounded”>
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<annotation >
<documentation >

May be any component specific metadata elements , such as
<recording >.

</documentation >
</annotation >

</any>
</sequence >

</complexType >
</element >

</schema >

14.3 Rayo Ext Complete

<?xml version=”1.0” encoding=”UTF -8”?>
<schema xmlns=”http: //www.w3.org /2001/ XMLSchema”

targetNamespace=”urn:xmpp:rayo:ext:complete:1”
xmlns:tns=”urn:xmpp:rayo:ext:complete:1”
elementFormDefault=”qualified”
xmlns:core=”urn:xmpp:rayo:1”>

<annotation >
<documentation >

The protocol documented by this schema is defined at http://rayo
.org/xep

</documentation >
</annotation >

<!-- Complete due to a <stop/> command -->
<element name=”stop” type=”core:empty”>

<annotation >
<documentation >

Indicates that the component came to an end because it was
issued a stop command by the controlling party.

</documentation >
</annotation >

</element >

<!-- Complete due to a hangup -->
<element name=”hangup” type=”core:empty”>

<annotation >
<documentation >

Indicates that the component came to an end because the call
ended.

</documentation >
</annotation >

</element >
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<!-- Complete due to a system error -->
<element name=”error” type=”string”>

<annotation >
<documentation >

Indicates that the component came to an end because it
encountered an error.

</documentation >
</annotation >

</element >

</schema >

14.4 Rayo Output

<?xml version=”1.0” encoding=”UTF -8”?>
<schema xmlns=”http: //www.w3.org /2001/ XMLSchema”

targetNamespace=”urn:xmpp:rayo:output:1”
xmlns:tns=”urn:xmpp:rayo:output:1”
elementFormDefault=”qualified”
xmlns:core=”urn:xmpp:rayo:1”>

<annotation >
<documentation >

The protocol documented by this schema is defined at http://rayo
.org/xep

</documentation >
</annotation >

<complexType name=”documentType”>
<simpleContent >

<attribute name=”url” type=”anyURI” use=”optional”>
<annotation >

<documentation >
Provides a URI at which the document is available. Must

not be provided if the content -type attribute is set
or the element contains a document as CDATA.

</documentation >
</annotation >

</attribute >
<attribute name=”content -type” type=”string” use=”optional”>

<annotation >
<documentation >

Indicates the content type of the document provided as
CDATA. Must not be set if the url attribute is set.

</documentation >
</annotation >

</attribute >
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<restriction base=”CDATA” />
</simpleContent >

</complexType >

<!-- Main output command -->
<element name=”output”>

<annotation >
<documentation >

Instructs the server to begin an output component executing on
the target call or mixer with the specified document and

parameters.
</documentation >

</annotation >
<complexType >

<attribute name=”start -offset” type=”core:durationType” use=”
optional” default=”0”>

<annotation >
<documentation >

Indicates some offset through which the output should be
skipped before rendering begins.

</documentation >
</annotation >

</attribute >
<attribute name=”start -paused” type=”boolean” use=”optional”

default=”false”>
<annotation >

<documentation >
Indicates wether or not the component should be started in

a paused state to be resumed at a later time.
</documentation >

</annotation >
</attribute >
<attribute name=”repeat -interval” type=”core:durationType” use=”

optional” default=”0”>
<annotation >

<documentation >
Indicates the duration of silence that should space

repeats of the rendered document.
</documentation >

</annotation >
</attribute >
<attribute name=”repeat -times” type=”nonNegativeInteger” use=”

optional” default=”1”>
<annotation >

<documentation >
Indicates the number of times the output should be played.

</documentation >
</annotation >
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</attribute >
<attribute name=”max -time” type=”core:timeoutType” use=”optional

” default=” -1”>
<annotation >

<documentation >
Indicates the maximum amount of time for which the output

should be allowed to run before being terminated.
Includes repeats.

</documentation >
</annotation >

</attribute >
<attribute name=”renderer” type=”string” use=”optional”>

<annotation >
<documentation >

Indicates which media engine the server should use to
render the Output.

</documentation >
</annotation >

</attribute >
<attribute name=”voice” type=”string” use=”optional”>

<annotation >
<documentation >

The voice with which to speak the requested document.
</documentation >

</annotation >
</attribute >

<sequence >
<element name=”document” type=”tns:documentType” minOccurs=”1”

maxOccurs=”unbounded”>
<annotation >

<documentation >
Provides the document for rendering.

</documentation >
</annotation >

</element >
</sequence >

</complexType >
</element >

<!-- Pause command -->
<element name=”pause” type=”core:empty”>

<annotation >
<documentation >

Instructs the server to cease rendering output at the current
marker and permit resumption from the same point.

</documentation >
</annotation >

</element >
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<!-- Resume command -->
<element name=”resume” type=”core:empty”>

<annotation >
<documentation >

Instructs the server to continue rendering the output from the
last pause marker.

</documentation >
</annotation >

</element >

<!-- Speed up command -->
<element name=”speed -up” type=”core:empty”>

<annotation >
<documentation >

Instructs the server to increase the rate of output by a unit
amount.

</documentation >
</annotation >

</element >

<!-- Speed down command -->
<element name=”speed -down” type=”core:empty”>

<annotation >
<documentation >

Instructs the server to decrease the rate of output by a unit
amount.

</documentation >
</annotation >

</element >

<!-- Volume up command -->
<element name=”volume -up” type=”core:empty”>

<annotation >
<documentation >

Instructs the server to increase the volume of output by a
unit amount.

</documentation >
</annotation >

</element >

<!-- Volume down command -->
<element name=”volume -down” type=”core:empty”>

<annotation >
<documentation >

Instructs the server to decrease the volume of output by a
unit amount.

</documentation >
</annotation >
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</element >

<!-- Seek command -->
<element name=”seek”>

<annotation >
<documentation >

Instructs the server to move the play marker of the output
forward or back in time before resuming output.

</documentation >
</annotation >
<complexType >

<attribute name=”direction” type=”token” use=”required”>
<annotation >

<documentation >
Indicates the direction in time in which to move the play

marker.
</documentation >

</annotation >
<simpleType >

<restriction base=”token”>
<enumeration value=”forward”/>
<enumeration value=”back”/>

</restriction >
</simpleType >

</attribute >
<attribute name=”amount” use=”required”>

<annotation >
<documentation >

Indicates the duration by which to move the play marker.
</documentation >

</annotation >
<simpleType >

<restriction base=”core:durationType”>
<minInclusive value=”0”/>

</restriction >
</simpleType >

</attribute >
</complexType >

</element >

</schema >

14.5 Rayo Output Complete

<?xml version=”1.0” encoding=”UTF -8”?>
<schema xmlns=”http: //www.w3.org /2001/ XMLSchema”

targetNamespace=”urn:xmpp:rayo:output:complete:1”
xmlns:tns=”urn:xmpp:rayo:output:complete:1”
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elementFormDefault=”qualified”
xmlns:core=”urn:xmpp:rayo:1”>

<annotation >
<documentation >

The protocol documented by this schema is defined at http://rayo
.org/xep

</documentation >
</annotation >

<!-- Finish reason -->
<element name=”finish” type=”core:empty”>

<annotation >
<documentation >

Indicates that the output component came to an end as a result
of reaching the end of the document to be rendered.

</documentation >
</annotation >

</element >

<!-- MaxTime reason -->
<element name=”max -time” type=”core:empty”>

<annotation >
<documentation >

Indicates that the output component came to an end due to the
maximum time limit being reached.

</documentation >
</annotation >

</element >

</schema >

14.6 Rayo Input

<?xml version=”1.0” encoding=”UTF -8”?>
<schema xmlns=”http: //www.w3.org /2001/ XMLSchema”

targetNamespace=”urn:xmpp:rayo:input:1”
xmlns:tns=”urn:xmpp:rayo:input:1”
elementFormDefault=”qualified”
xmlns:core=”urn:xmpp:rayo:1”>

<annotation >
<documentation >

The protocol documented by this schema is defined at http://rayo
.org/xep

</documentation >
</annotation >
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<complexType name=”grammarType”>
<simpleContent >

<attribute name=”url” type=”anyURI” use=”optional”>
<annotation >

<documentation >
Provides a URI at which the grammar document is available.

Must not be provided if the content -type attribute is
set or the element contains a grammar document as

CDATA.
</documentation >

</annotation >
</attribute >
<attribute name=”content -type” type=”string” use=”optional”>

<annotation >
<documentation >

Indicates the content type of the grammar document
provided as CDATA. Must not be set if the url
attribute is set.

</documentation >
</annotation >

</attribute >

<restriction base=”CDATA” />
</simpleContent >

</complexType >

<!-- Main Input command -->
<element name=”input”>

<annotation >
<documentation >

Instructs the server to begin an input detector of the
specified mode , with certain attributes , governed by the
rules provided in one or more grammar documents.

</documentation >
</annotation >
<complexType >

<simpleContent >
<attribute name=”mode” use=”optional” default=”dtmf”>

<annotation >
<documentation >

The method by which to collect input.
</documentation >

</annotation >
<simpleType >

<restriction base=”token”>
<enumeration value=”any” />
<enumeration value=”voice” />
<enumeration value=”dtmf” />
<enumeration value=”cpa” />
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</restriction >
</simpleType >

</attribute >
<attribute name=”terminator” type=”token” use=”optional”

default=””>
<annotation >

<documentation >
Indicates a terminator token which , when encountered ,

should cause the input detection to cease.
</documentation >

</annotation >
</attribute >
<attribute name=”recognizer” type=”token” use=”optional”

default=””>
<annotation >

<documentation >
Indicates the name of the particular input processor to

be engaged , used only for routing purposes (eg to
choose which MRCP profile to invoke).

</documentation >
</annotation >

</attribute >
<attribute name=”language” type=”token” use=”optional” default

=”en -US”>
<annotation >

<documentation >
Specifies the recognition language to the recognizer.

</documentation >
</annotation >

</attribute >
<attribute name=”initial -timeout” type=”core:timeoutType” use=

”optional” default=” -1”>
<annotation >

<documentation >
Indicates the amount of time preceding input which may

expire before a timeout is triggered.
</documentation >

</annotation >
</attribute >
<attribute name=”inter -digit -timeout” type=”core:timeoutType”

use=”optional” default=” -1”>
<annotation >

<documentation >
Indicates (in the case of DTMF input) the amount of time

between input digits which may expire before a
timeout is triggered.

</documentation >
</annotation >

</attribute >
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<attribute name=”recognition -timeout” type=”core:timeoutType”
use=”optional” default=” -1”>

<annotation >
<documentation >

Indicates the time (in milliseconds) for speech input ,
after speech has begun , to return a Match before
triggering a Nomatch completion.

</documentation >
</annotation >

</attribute >
<attribute name=”sensitivity” type=”core:fractionDecimalType”

use=”optional” default=”0.5”>
<annotation >

<documentation >
Indicates how sensitive the interpreter should be to

loud versus quiet input. Higher values represent
greater sensitivity.

</documentation >
</annotation >

</attribute >
<attribute name=”min -confidence” type=”

core:fractionDecimalType” use=”optional” default=”0”>
<annotation >

<documentation >
Indicates the confidence threshold , below which a match

is to be considered unreliable.
</documentation >

</annotation >
</attribute >
<attribute name=”max -silence” type=”core:timeoutType” use=”

optional” default=” -1”>
<annotation >

<documentation >
Indicates the maximum period of silence which may be

encountered during input gathering before a timeout
is triggered.

</documentation >
</annotation >

</attribute >
<attribute name=”match -content -type” type=”token” use=”

optional” default=”application/nlsml+xml”>
<annotation >

<documentation >
Indicates the required response document format.

</documentation >
</annotation >

</attribute >

<sequence >
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<element name=”grammar” type=”tns:grammarType” minOccurs=”1”
maxOccurs=”unbounded”>

<annotation >
<documentation >

Provides the grammar document by which the input
detection should be governed.

</documentation >
</annotation >

</element >
</sequence >

</simpleContent >
</complexType >

</element >

</schema >

14.7 Rayo Input Complete

<?xml version=”1.0” encoding=”UTF -8”?>
<schema xmlns=”http: //www.w3.org /2001/ XMLSchema”

targetNamespace=”urn:xmpp:rayo:input:complete:1”
xmlns:tns=”urn:xmpp:rayo:input:complete:1”
elementFormDefault=”qualified”
xmlns:core=”urn:xmpp:rayo:1”>

<annotation >
<documentation >

The protocol documented by this schema is defined at http://rayo
.org/xep

</documentation >
</annotation >

<!-- Finish reason -->
<element name=”match”>

<annotation >
<documentation >

Indicates that the component came to an end due to one of its
grammars matching the received input. Provides the NLSML
result of the grammar match after any symantic processing
which may have been performed. See the NLSML spec for
details.

</documentation >
</annotation >

<complexType >
<simpleContent >

<attribute name=”content -type” type=”token” use=”required”
default=”application/nlsml+xml”>
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<annotation >
<documentation >

Indicates the content type of the result document
provided as CDATA.

</documentation >
</annotation >

</attribute >
</simpleContent >

</complexType >
</element >

<!-- Initial timeout reason -->
<element name=”noinput” type=”core:empty”>

<annotation >
<documentation >

Indicates that the component came to an end because a timeout
was triggered before input was received.

</documentation >
</annotation >

</element >

<!-- NoMatch reason -->
<element name=”nomatch” type=”core:empty”>

<annotation >
<documentation >

Indicates that the component came to an end because input was
received which did not match any of the specified grammars
.

</documentation >
</annotation >

</element >

</schema >

14.8 Rayo Prompt

<?xml version=”1.0” encoding=”UTF -8”?>
<schema xmlns=”http: //www.w3.org /2001/ XMLSchema”

targetNamespace=”urn:xmpp:rayo:prompt:1”
xmlns:tns=”urn:xmpp:rayo:prompt:1”
elementFormDefault=”qualified”
xmlns:core=”urn:xmpp:rayo:1”
xmlns:output=”urn:xmpp:rayo:output:1”
xmlns:input=”urn:xmpp:rayo:input:1”>

<annotation >
<documentation >
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The protocol documented by this schema is defined at http://rayo
.org/xep

</documentation >
</annotation >

<!-- Main Prompt command -->
<element name=”prompt”>

<annotation >
<documentation >

Instructs the server to begin an input detector of the
specified mode , with certain attributes , governed by the
rules provided in one or more grammar documents , while
simultaneously rendering output.

</documentation >
</annotation >
<complexType >

<simpleContent >
<attribute name=”barge -in” type=”boolean” use=”optional”

default=”true”>
<annotation >

<documentation >
Whether or not the input detector is permitted to

interrupt the output.
</documentation >

</annotation >
</attribute >

<sequence >
<element name=”output” type=”output:outputType” minOccurs=”1

” maxOccurs=”1”>
<annotation >

<documentation >
Provides the output component to be executed

</documentation >
</annotation >

</element >
<element name=”input” type=”input:inputType” minOccurs=”1”

maxOccurs=”1”>
<annotation >

<documentation >
Provides the input component to be executed

</documentation >
</annotation >

</element >
</sequence >

</simpleContent >
</complexType >

</element >
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<!-- Input Timers Started Event -->
<element name=”input -timers -started”>

<annotation >
<documentation >

Indicates that the component ’s␣input␣timers␣have␣started.
␣␣␣␣␣␣ </documentation >
␣␣␣␣</annotation >
␣␣ </element >

</schema >

14.9 Rayo Record

<?xml version=”1.0” encoding=”UTF -8”?>
<schema xmlns=”http: //www.w3.org /2001/ XMLSchema”

targetNamespace=”urn:xmpp:rayo:record:1”
xmlns:tns=”urn:xmpp:rayo:record:1”
elementFormDefault=”qualified”
xmlns:core=”urn:xmpp:rayo:1”>

<annotation >
<documentation >

The protocol documented by this schema is defined at http://rayo
.org/xep

</documentation >
</annotation >

<!-- Main Record command -->
<element name=”record”>

<annotation >
<documentation >

Instructs the server to begin recording input to the call to a
file.

</documentation >
</annotation >
<complexType >

<attribute name=”format” type=”token” use=”optional” default=”
wav”>

<annotation >
<documentation >

File format used during recording.
</documentation >

</annotation >
</attribute >
<attribute name=”start -beep” type=”boolean” use=”optional”

default=”false”>
<annotation >

<documentation >
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Indicates whether subsequent record will be preceded with
a beep.

</documentation >
</annotation >

</attribute >
<attribute name=”stop -beep” type=”boolean” use=”optional”

default=”false”>
<annotation >

<documentation >
Indicates whether subsequent record stop will be preceded

with a beep.
</documentation >

</annotation >
</attribute >
<attribute name=”start -paused” type=”boolean” use=”optional”

default=”false”>
<annotation >

<documentation >
Whether subsequent record will start in PAUSE mode.

</documentation >
</annotation >

</attribute >
<attribute name=”max -duration” type=”core:timeoutType” use=”

optional” default=” -1”>
<annotation >

<documentation >
Indicates the maximum duration for the recording.

</documentation >
</annotation >

</attribute >
<attribute name=”initial -timeout” type=”core:timeoutType” use=”

optional” default=” -1”>
<annotation >

<documentation >
Controls how long the recognizer should wait after the end

of the prompt for the caller to speak before sending
a Recorder event.

</documentation >
</annotation >

</attribute >
<attribute name=”final -timeout” type=”core:timeoutType” use=”

optional” default=” -1”>
<annotation >

<documentation >
Controls the length of a period of silence after callers

have spoken to conclude they finished.
</documentation >

</annotation >
</attribute >
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<attribute name=”direction” use=”optional” default=”duplex”>
<annotation >

<documentation >
Indicates the direction of the call to record , as in media

produced or received by the calling party.
</documentation >

</annotation >
<simpleType >

<restriction base=”token”>
<enumeration value=”duplex”>

<annotation >
<documentation >

Records both sent and received audio.
</documentation >

</annotation >
</enumeration >
<enumeration value=”send”>

<annotation >
<documentation >

Indicates that only the audio sent from the caller
is to be recorded. Not supported when Record is
executed against a mixer.

</documentation >
</annotation >

</enumeration >
<enumeration value=”recv”>

<annotation >
<documentation >

Indicates that only and all audio received by the
caller is recorded.

</documentation >
</annotation >

</enumeration >
</restriction >

</simpleType >
</attribute >
<attribute name=”mix” type=”boolean” use=”optional” default=”

false”>
<annotation >

<documentation >
Whether all channels (call legs) should be mixed into a

single recording channel.
</documentation >

</annotation >
</attribute >

<sequence >
<element name=”hint” minOccurs=”0” maxOccurs=”unbounded”>

<annotation >
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<documentation >
Optional format -specific encoding hints

</documentation >
</annotation >
<complexType >

<attribute name=”name” type=”string” use=”required”>
<annotation >

<documentation >
The name of the hint value as expected by the

recorder.
</documentation >

</annotation >
</attribute >
<attribute name=”value” type=”string” use=”required”>

<annotation >
<documentation >

The value of the hint provided.
</documentation >

</annotation >
</attribute >

</complexType >
</element >

</sequence >
</complexType >

</element >

<!-- Pause command -->
<element name=”pause” type=”core:empty”>

<annotation >
<documentation >

Instructs the server to cease recording input but to leave the
destination open for appending to permit resumption from

the same point.
</documentation >

</annotation >
</element >

<!-- Resume command -->
<element name=”resume” type=”core:empty”>

<annotation >
<documentation >

Instructs the server to continue recording input , appending to
the same destination.

</documentation >
</annotation >

</element >

</schema >
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14.10 Rayo Record Complete

<?xml version=”1.0” encoding=”UTF -8”?>
<schema xmlns=”http: //www.w3.org /2001/ XMLSchema”

targetNamespace=”urn:xmpp:rayo:record:complete:1”
xmlns:tns=”urn:xmpp:rayo:record:complete:1”
elementFormDefault=”qualified”
xmlns:core=”urn:xmpp:rayo:1”>

<annotation >
<documentation >

The protocol documented by this schema is defined at http://rayo
.org/xep

</documentation >
</annotation >

<!-- Recording data -->
<element name=”recording” type=”core:empty”>

<attribute name=”uri” type=”anyURI” use=”required”>
<annotation >

<documentation >
Indicates the URI at which the recording is made available.

</documentation >
</annotation >

</attribute >
<attribute name=”duration” type=”core:durationType” use=”required”

>
<annotation >

<documentation >
Indicates the duration of the completed recording.

</documentation >
</annotation >

</attribute >
<attribute name=”size” type=”long” use=”required”>

<annotation >
<documentation >

Indicates the filesize (in bytes) of the completed recording
.

</documentation >
</annotation >

</attribute >
</complexType >

<!-- Max Duration reason -->
<element name=”max -duration” type=”core:empty”>

<annotation >
<documentation >

Indicates that the component came to an end due to the max
duration being reached.
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</documentation >
</annotation >

</element >

<!-- Initial Timeout reason -->
<element name=”initial -timeout” type=”core:empty”>

<annotation >
<documentation >

Indicates that the component came to an end due to no input
being detected before the initial -timeout.

</documentation >
</annotation >

</element >

<!-- Final Timeout reason -->
<element name=”final -timeout” type=”core:empty”>

<annotation >
<documentation >

Indicates that the component came to an end because no input
had been detected for the final timeout duration.

</documentation >
</annotation >

</element >

</schema >

15 History
Prior to the development of the Rayo protocol, the most widely-used 3PCC protocols were
Asterisk’s AGI and AMI. Unfortunately, these protocols have many drawbacks, not least
in their inconsistency and relatively poor documentation, but also in that they are poorly
secured and lacking in attributes required for significant scalability. Much 3PCC activity is
also done using process-internal APIs rather than a wire protocol like XMPP.
Rayo was developed to satisfy three main desires:

• To separate the application logic from the back-end call processing infrastructure for
large-scale scripting-based hosted voice application platforms. This helps to ensure that
the performance of the back-end infrastructure cannot be impacted by the applications
controling it, and specifically to allow sandboxing the applications.

• To create a platform-agnostic protocol for the control of live media sessions that has
been designed from the start for such use.

• To enable authenticated, federated, web-scale 3PCC on platformswith APIs only suitable
for trusted internal use (Asterisk, FreeSWITCH, etc).
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