
XEP-0363: HTTP File Upload

Daniel Gultsch
mailto:daniel@gultsch.de
xmpp:daniel@gultsch.de

2025-06-17
Version 1.2.0

Status Type Short Name
Draft Standards Track NOT_YET_ASSIGNED

This specification defines a protocol to request permissions from another entity to upload a file to a
specific path on an HTTP server and at the same time receive a URL from which that file can later be
downloaded again.

mailto:daniel@gultsch.de
xmpp:daniel@gultsch.de

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Requirements 1

3 Discovering Support 1

4 Requesting a slot 3

5 Upload purpose 4
5.1 Message . 4
5.2 Profile . 5
5.3 Ephemeral . 5
5.4 Permanent . 6

6 Error conditions 7

7 Upload 8

8 Implementation Notes 9

9 Security Considerations 9
9.1 Server side . 9
9.2 Uploader . 10
9.3 General . 10

10 IANA Considerations 10

11 XMPP Registrar Considerations 10
11.1 Protocol Namespaces . 10

12 XML Schema 11

3 DISCOVERING SUPPORT

1 Introduction
XMPP protocol extensions already define methods for peer-to-peer file transfer such as SI File
Transfer (XEP-0096) 1 or Jingle File Transfer (XEP-0234) 2 however due to their very nature
of being peer-to-peer they don’t work very well in scenarios where it is requeried to send a
file to multiple recipients or multiple resources of the same recipient at once. They also don’t
work alongside offline storage, MUC history and Message Archive Management (XEP-0313) 3.
Uploading files manually to an HTTP server and sharing the link has been a workaround for
this for a long time now. While users have a variety of services to choose from the downside
of this manual approach is that an XMPP client can not automate this process on behalf of
the user since these services don’t share a common API. Furthermore using a third party
service would probably require the user to enter additional credentials into their XMPP client
specifically for the file upload.
This XEP defines an approach to request permissions from another entity to upload a file to
a specific path on an HTTP server and at the same time receive an URL from which that file
can later be downloaded again. These tuples consisting of a PUT and a GET-URL are called slots.

2 Requirements
• Be as easy to implement as possible. This is groundedon the idea thatmost programming
languages already have HTTP libraries available.

• Be agnostic toward the distribution of the actual URL. Users can choose to send the
URL in the body of a message stanza, utilize Out-of-Band Data (XEP-0066) 4, Jingle HTTP
Transport Method (XEP-0370) 5, or even use it as their avatar in User Avatar (XEP-0084)
6.

• Anyone who knows the URL SHOULD be able to access it.

3 Discovering Support
An entity advertises support for this protocol by including the ”urn:xmpp:http:upload:0” in
its service discovery information features as specified in Service Discovery (XEP-0030) 7 or
section 6.3 of Entity Capabilities (XEP-0115) 8. To avoid unnecessary round trips an entity
SHOULD also include the maximum file size as specified in Service Discovery Extensions

1XEP-0096: SI File Transfer <https://xmpp.org/extensions/xep-0096.html>.
2XEP-0234: Jingle File Transfer <https://xmpp.org/extensions/xep-0234.html>.
3XEP-0313: Message Archive Management <https://xmpp.org/extensions/xep-0313.html>.
4XEP-0066: Out of Band Data <https://xmpp.org/extensions/xep-0066.html>.
5XEP-0370: Jingle HTTP Transport Method <https://xmpp.org/extensions/xep-0370.html>.
6XEP-0084: User Avatar <https://xmpp.org/extensions/xep-0084.html>.
7XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.
8XEP-0115: Entity Capabilities <https://xmpp.org/extensions/xep-0115.html>.

1

https://xmpp.org/extensions/xep-0096.html
https://xmpp.org/extensions/xep-0096.html
https://xmpp.org/extensions/xep-0234.html
https://xmpp.org/extensions/xep-0313.html
https://xmpp.org/extensions/xep-0066.html
https://xmpp.org/extensions/xep-0370.html
https://xmpp.org/extensions/xep-0370.html
https://xmpp.org/extensions/xep-0084.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0128.html
https://xmpp.org/extensions/xep-0128.html
https://xmpp.org/extensions/xep-0234.html
https://xmpp.org/extensions/xep-0313.html
https://xmpp.org/extensions/xep-0066.html
https://xmpp.org/extensions/xep-0370.html
https://xmpp.org/extensions/xep-0084.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0115.html

3 DISCOVERING SUPPORT

(XEP-0128) 9 if such a limitation exists. The field name MUST be ”max-file-size” and the value
MUST be in bytes.
A user’s server SHOULD include any known entities that provide such services into its service
discovery items.

Listing 1: Client sends service discovery request to server
<iq from=’romeo@montague.tld/garden ’

id=’step_01 ’
to=’montague.tld’
type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#items ’/>
</iq>

Listing 2: Server replies to service discovery request
<iq from=’montague.tld’

id=’step_01 ’
to=’romeo@montague.tld/garden ’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#items ’>
<item jid=’upload.montague.tld’ name=’HTTP␣File␣Upload ’ />
<item jid=’conference.montague.tld’ name=’Chatroom␣Service ’ />

</query >
</iq>

Listing 3: Client sends service discovery request to upload service
<iq from=’romeo@montague.tld/garden ’

id=’step_02 ’
to=’upload.montague.tld’
type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

Listing 4: Upload service replies to service discovery request and reports a maximum file size
of 5MiB

<iq from=’upload.montague.tld’
id=’step_02 ’
to=’romeo@montague.tld/garden ’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
<identity category=’store ’

type=’file’
name=’HTTP␣File␣Upload ’ />

<feature var=’urn:xmpp:http:upload:0 ’ />

9XEP-0128: Service Discovery Extensions <https://xmpp.org/extensions/xep-0128.html>.

2

https://xmpp.org/extensions/xep-0128.html

4 REQUESTING A SLOT

<x type=’result ’ xmlns=’jabber:x:data ’>
<field var=’FORM_TYPE ’ type=’hidden ’>

<value >urn:xmpp:http:upload:0 </value >
</field >
<field var=’max -file -size’>

<value >5242880 </value >
</field >

</x>
</query >

</iq>

4 Requesting a slot
A client requests a new upload slot by sending an IQ-get to the upload service containing a
<request> child element qualified by the urn:xmpp:http:upload:0 namespace. This element
MUST include the attributes filename and size containing the file name and size (in bytes)
respectively.
An additional attribute content-type containing the Content-Type is OPTIONAL.

Listing 5: Client requests a slot on the upload service
<iq from=’romeo@montague.tld/garden ’

id=’step_03 ’
to=’upload.montague.tld’
type=’get’>

<request xmlns=’urn:xmpp:http:upload:0 ’
filename=’très␣cool.jpg’
size=’23456 ’
content -type=’image/jpeg’ />

</iq>

The upload service responds with both a PUT and a GET URL wrapped by a <slot> element.
The service SHOULD keep the file name and especially the file ending intact. Using the same
hostname for PUT and GET is OPTIONAL. The host MUST provide Transport Layer Security
(RFC 5246 10). Both HTTPS URLs MUST adhere to RFC 3986 11. Non ASCII characters MUST be
percent-encoded.
The <put> element MAY also contain a number of <header> elements which correspond to
HTTP header fields. Each <header> element MUST have a name-attribute and a content with
the value of the header. Only the following header names are allowed: Authorization, Cookie,
Expires. The allowed headers provided in the response MUST be included in the HTTP PUT
request. Other header names MUST be ignored by the requesting entity and MUST NOT be
included in the HTTP request. The requesting entity MUST strip any newline characters from
the header name and value before performing the HTTP request, but MUST preserve the
10RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2 <http://tools.ietf.org/html/rfc5246>.
11RFC 3986: Uniform Resource Identifiers (URI): Generic Syntax <http://tools.ietf.org/html/rfc3986>.

3

http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc3986

5 UPLOAD PURPOSE

relative order of multiple values for the same header in the request. Each header name MAY
be present zero or more times, and are case insensitive (eXpires is the same as Expires).

Listing 6: The upload service responds with a slot
<iq from=’upload.montague.tld’

id=’step_03 ’
to=’romeo@montague.tld/garden ’
type=’result ’>

<slot xmlns=’urn:xmpp:http:upload:0 ’>
<put url=’https: // upload.montague.tld/4a771ac1 -f0b2 -4a4a -9700-

f2a26fa2bb67/tr%C3%A8s %20 cool.jpg’>
<header name=’Authorization ’>Basic Base64String ==</header >
<header name=’Cookie ’>foo=bar; user=romeo </header >

</put>
<get url=’https: // download.montague.tld/4a771ac1 -f0b2 -4a4a -9700-

f2a26fa2bb67/tr%C3%A8s %20 cool.jpg’ />
</slot>

</iq>

5 Upload purpose
Retention policy is out of scope for this document. However, common retention strategies
include enforcing user quotas that trigger the deletion of the oldest files when exceeded, and
automatically deleting files older than a specified timeframe. This retention policy works well
for message attachments, which are downloaded once per recipient device, but it may not
be suitable for files requiring longer availability, like user avatars or microblog post images.
To alleviate this problem, the requesting entity MAY specify a purpose when requesting an
upload slot. This allows the upload service to sort files into different ’buckets’ and apply
different retention periods to those buckets. If no purpose is specified, the service MUST
assume ’message’ as the default purpose.

5.1 Message
An entity advertises support for the ’message’ purpose by including
”urn:xmpp:http:upload:purpose:0#message” in its service discovery features.
The requesting entity indicates that the upload slot is meant to be used for messaging pur-
poses by including an element ’message’ qualified by the ’urn:xmpp:http:upload:purpose:0’
namespace.
Note: As the ’message’ purpose is the default, explicitly announcing the feature and including
this purpose in the slot request is technically redundant and is done solely for the sake of
completeness.

4

5 UPLOAD PURPOSE

Listing 7: Client requests a slot for the purpose of sending it as a message
<iq from=’romeo@montague.tld/garden ’

id=’step_03 ’
to=’upload.montague.tld’
type=’get’>

<request xmlns=’urn:xmpp:http:upload:0 ’
filename=’hi.jpg’
size=’23425 ’
content -type=’image/jpeg’>

<message xmlns=”urn:xmpp:http:upload:purpose:0” />
</request >

</iq>

5.2 Profile
An entity advertises support for the ’profile’ purpose by including
”urn:xmpp:http:upload:purpose:0#profile” in its service discovery features.
The requesting entity indicates that the upload slot is meant to be used for profile purposes
by including a ’profile’ element, qualified by the urn:xmpp:http:upload:purpose:0 namespace.
This purpose is for files, such as avatars (User Avatar (XEP-0084) 12) or cover photos, that
require longer retention, are smaller in size, and need a significantly lower overall quota.

Listing 8: Client requests an HTTP upload slot for the purpose of uploading an avatar
<iq from=’romeo@montague.tld/garden ’

id=’step_03 ’
to=’upload.montague.tld’
type=’get’>

<request xmlns=’urn:xmpp:http:upload:0 ’
filename=’avatar.jpg’
size=’100’
content -type=’image/jpeg’>

<profile xmlns=”urn:xmpp:http:upload:purpose:0”/>
</request >

</iq>

5.3 Ephemeral
An entity advertises support for the ephemeral purpose by including
”urn:xmpp:http:upload:purpose:0#ephemeral” in its service discovery features.
The requesting entity indicates that the upload slot is meant to be used for ephemeral pur-
poses by including an ’ephemeral’ element, qualified by the urn:xmpp:http:upload:purpose:0
namespace. The element MUST have an attribute called ’expire-before’ that contains a
DateTime as specified in XMPP Date and Time Profiles (XEP-0082) 13. This purpose is similar
12XEP-0084: User Avatar <https://xmpp.org/extensions/xep-0084.html>.
13XEP-0082: XMPP Date and Time Profiles <https://xmpp.org/extensions/xep-0082.html>.

5

https://xmpp.org/extensions/xep-0084.html
https://xmpp.org/extensions/xep-0082.html
https://xmpp.org/extensions/xep-0084.html
https://xmpp.org/extensions/xep-0082.html

5 UPLOAD PURPOSE

to the default ’message’ purpose but imposes an upper limit on the retention period, as
specified by the requesting entity. The upload service MAY delete the file earlier based on
its own retention policies, but MUST NOT make the file available after the time specified in
the expire-before attribute.Example use cases for this purpose include, but are not limited to
Ephemeral Messages (XEP-0466) 14 or ’Stories’ that expire after 24 hours.

Listing 9: Client requests a slot with a limited lifetime
<iq from=’romeo@montague.tld/garden ’

id=’step_03 ’
to=’upload.montague.tld’
type=’get’>

<request xmlns=’urn:xmpp:http:upload:0 ’
filename=’eiffel -tower -status -picture.jpg’
size=’100’
content -type=’image/jpeg’>

<ephemeral xmlns=”urn:xmpp:http:upload:purpose:0”
expire -before=”2025 -09 -10 T23:08:25Z” />

</request >
</iq>

5.4 Permanent
An entity advertises support for the permanent purpose by including
”urn:xmpp:http:upload:purpose:0#permanent” in its service discovery features.
The requesting entity indicates that the upload slot ismeant for long term storage by including
a ’permanent’ element, qualified by the urn:xmpp:http:upload:purpose:0 namespace.Example
use cases for this purpose include, but are not limited toMicroblogging Over XMPP (XEP-0277)
15 and PubSub Social Feed (XEP-0472) 16.Support for this purpose - like any other specific
purpose - is OPTIONAL.

Listing 10: Client requests a slot for permanent storage
<iq from=’romeo@montague.tld/garden ’

id=’step_03 ’
to=’upload.montague.tld’
type=’get’>

<request xmlns=’urn:xmpp:http:upload:0 ’
filename=’pubsub -blog -picture.jpg’
size=’42000 ’
content -type=’image/jpeg’>

<permanent xmlns=”urn:xmpp:http:upload:purpose:0” />
</request >

14XEP-0466: Ephemeral Messages <https://xmpp.org/extensions/xep-0466.html>.
15XEP-0277: Microblogging over XMPP <https://xmpp.org/extensions/xep-0277.html>.
16XEP-0472: PubSub Social Feed <https://xmpp.org/extensions/xep-0472.html>.

6

https://xmpp.org/extensions/xep-0466.html
https://xmpp.org/extensions/xep-0277.html
https://xmpp.org/extensions/xep-0472.html
https://xmpp.org/extensions/xep-0466.html
https://xmpp.org/extensions/xep-0277.html
https://xmpp.org/extensions/xep-0472.html

6 ERROR CONDITIONS

</iq>

6 Error conditions
Instead of providing the client with a slot the service MAY respond with an error if the
requested file size is too large. In addition the entity MAY inform the requester about the
maximum file size.

Listing 11: Alternative response by the upload service if the file size was too large
<iq from=’upload.montague.tld’

id=’step_03 ’
to=’romeo@montague.tld/garden ’
type=’error ’>

<request xmlns=’urn:xmpp:http:upload:0 ’
filename=’très␣cool.jpg’
size=’23456 ’
content -type=’image/jpeg’ />

<error type=’modify ’>
<not -acceptable xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’ />
<text xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’>File too large.

The maximum file size is 20000 bytes </text>
<file -too -large xmlns=’urn:xmpp:http:upload:0 ’>

<max -file -size>20000 </max -file -size>
</file -too -large>

</error >
</iq>

For any other type of error the service SHOULD respond with appropriate error types to
indicate temporary or permanent errors.
For temporary errors such as exceeding a personal quota the service MAY include a <retry/>
element qualified by the urn:xmpp:http:upload:0 namespace as a child of the <error/> element.
The retry element MUST include an attribute ’stamp’ which indicates the time at which the
requesting entity may try again. The format of the timestamp MUST adhere to the date-time
format specified in XMPP Date and Time Profiles (XEP-0082) 17 andMUST be expressed in UTC.

Listing 12: Alternative response by the upload service to indicate a temporary error after the
client exceeded a quota

<iq from=’upload.montague.tld’
id=’step_03 ’
to=’romeo@montague.tld/garden ’
type=’error ’>

<request xmlns=’urn:xmpp:http:upload:0 ’
filename=’très␣cool.jpg’

17XEP-0082: XMPP Date and Time Profiles <https://xmpp.org/extensions/xep-0082.html>.

7

https://xmpp.org/extensions/xep-0082.html
https://xmpp.org/extensions/xep-0082.html

7 UPLOAD

size=’23456 ’
content -type=’image/jpeg’ />

<error type=’wait’>
<resource -constraint xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’ /

>
<text xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’>Quota reached.

You can only upload 5 files in 5 minutes </text>
<retry xmlns=’urn:xmpp:http:upload:0 ’

stamp=’2017 -12 -03 T23:42:05Z ’ />
</error >

</iq>

Listing 13: Alternative response by the upload service to indicate an auth error to a client that
is not allowed to upload files

<iq from=’upload.montague.tld’
id=’step_03 ’
to=’romeo@montague.tld/garden ’
type=’error ’>

<request xmlns=’urn:xmpp:http:upload:0 ’
filename=’très␣cool.jpg’
size=’23456 ’
content -type=’image/jpeg’ />

<error type=’auth’>
<forbidden xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’ />
<text xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’>Only premium

members are allowed to upload files </text>
</error >

</iq>

7 Upload
The actual upload of the file happens via HTTP-PUT and is out of scope of this document. The
upload service MUST reject the file upload if the Content-Length does not match the size of
the slot request. The service SHOULD reject the file if the Content-Type has been specified
beforehand and does not match. The service MAY assume application/octet-stream as a
Content-Type if it the client did not specify a Content-Type at all.
In addition to the Content-Length and Content-Type header the client MUST include all
allowed headers that came with the slot assignment.
There is no further XMPP communication required between the upload service and the client.
A HTTP status Code of 201means that the server is now ready to serve the file via the provided
GET URL. If the upload fails for whatever reasons the client MAY request a new slot.

8

9 SECURITY CONSIDERATIONS

8 Implementation Notes
The upload service SHOULD choose an appropriate timeout for the validity of the PUT URL.
Since there is no reason for a client to wait between requesting the slot and starting the
upload, relatively low timeout values of around 300s are RECOMMENDED.
To make HTTP Upload work in web clients (including those hosted on a different domain)
the upload service SHOULD set appropriate CORS-Headers. The exact headers and values
are out of scope of this document but may include: Access-Control-Allow-Origin, Access-Control-
Allow-Methods and Access-Control-Allow-Headers. For HTTP upload services that use custom
Authorization or Cookie request header the CORS-Header Access-Control-Allow-Credentials might
also be of importance.

Access -Control -Allow -Origin: *
Access -Control -Allow -Methods: OPTIONS , HEAD , GET , PUT
Access -Control -Allow -Headers: Authorization , Content -Type
Access -Control -Allow -Credentials: true

Clients SHOULD NOT interpret headers and treat them as opaque.

9 Security Considerations
9.1 Server side
Note: This section is not normative; it may be updated when general web security
recommendations change in the future.
It is recommended to run the HTTP upload domain used for GET requests in appropriate
isolation from other HTTP based services to avoid user-generated, malicious scripts to be
executed in the context of said services. Isolation techniques can include, but are not limited
to, setting the Content-Security-Policy.

Content -Security -Policy: default -src ’none’; frame -ancestors ’none’;

The provided policy will prohibit a browser from executing all active content from the HTTP
upload domain (default-src ’none’) and forbid embedding it from other pages (frame-ancestors
’none’). More information on Content-Security-Policy can be found on infosec.mozilla.org.
Further isolation can be achieved by hosting those files on an entirely different domain
instead of using subdomains.
Headersmay be signed so that receiving HTTP entities can verify these haven’t been tempered
with by clients.

9

https://www.w3.org/TR/cors/
https://infosec.mozilla.org/guidelines/web_security#content-security-policy

11 XMPP REGISTRAR CONSIDERATIONS

9.2 Uploader
• Requesting entities MUST strip any newline characters from the HTTP header names
and values before making the PUT request.

• Requesting entities MUST ensure that only the headers that are explicitly allowed by
this XEP (Authorization, Cookie, Expires) are copied from the slot response to the HTTP
request.

9.3 General
• Service implementors SHOULD use long randomized parts in their URLs making it im-
possible to guess the location of arbitrary files.

• Implementors should keep inmind, thatwithout additional end-to-end-encryption, files
uploaded to a service described in this document may be stored in plain text. Client im-
plementors are advised to either use this only for semi public files (for example files
shared in a public MUC or a PEP Avatar) or implement appropriate end-to-end encryp-
tion.

• Up- and downloading files will leak the client’s IP address to the HTTP service. The HTTP
service might not be the same service as the XMPP service the client is currently con-
nected to.

10 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA).

11 XMPP Registrar Considerations
11.1 Protocol Namespaces
This specification defines the following XML namespace:

• urn:xmpp:http:upload:0

Upon advancement of this specification from a status of Experimental to a status of
Draft, the XMPP Registrar 18 shall add the foregoing namespace to the registry located
at <https://xmpp.org/registrar/namespaces.html>, as described in Section 4 of XMPP
Registrar Function (XEP-0053) 19.

18The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

19XEP-0053: XMPP Registrar Function <https://xmpp.org/extensions/xep-0053.html>.

10

https://xmpp.org/registrar/
https://xmpp.org/registrar/namespaces.html
https://xmpp.org/extensions/xep-0053.html
https://xmpp.org/extensions/xep-0053.html
https://xmpp.org/registrar/
https://xmpp.org/extensions/xep-0053.html

12 XML SCHEMA

12 XML Schema

<xml version=”1.0” encoding=”utf8”>
<xs:schema xmlns:xs=”http: //www.w3.org /2001/ XMLSchema”

targetNamespace=”urn:xmpp:http:upload:0”
xmlns=”urn:xmpp:http:upload:0”>

<xs:element name=”request”>
<xs:complexType >

<xs:attribute name=”filename” type=”xs:string” use=”required”/>
<xs:attribute name=”size” type=”xs:positiveInteger” use=”

required”/>
<xs:attribute name=”content -type” type=”xs:string” use=”optional

”/>
</xs:complexType >

</xs:element >
<xs:element name=”slot”>

<xs:complexType >
<xs:sequence >

<xs:element name=”put” minOccurs=”1” maxOccurs=”1”>
<xs:complexType >

<xs:attribute name=”url” type=”xs:string” use=”required”/>
<xs:sequence >

<xs:element name=”header” minOccurs=”0” maxOccurs=”
unbounded” type=”xs:string”>

<xs:complexType >
<xs:attribute name=”name” use=”required”>

<xs:simpleType >
<xs:restriction base=”xs:string”>

<xs:enumeration value=”Authorization”/>
<xs:enumeration value=”Cookie”/>
<xs:enumeration value=”Expires”/>

</xs:restriction >
</xs:simpleType >

</xs:attribute >
</xs:complexType >

</xs:element >
</xs:sequence >

</xs:complexType >
</xs:element >
<xs:element name=”get” minOccurs=”1” maxOccurs=”1”>

<xs:complexType >
<xs:attribute name=”url” type=”xs:string” use=”required”/>

</xs:complexType >
</xs:element >

</xs:sequence >
</xs:complexType >

</xs:element >
<xs:element name=”file -too -large”>

<xs:complexType >

11

12 XML SCHEMA

<xs:sequence >
<xs:element name=”max -file -size” type=”xs:positiveInteger”

minOccurs=”0” maxOccurs=”1”/>
</xs:sequence >

</xs:complexType >
</xs:element >
<xs:element name=”retry”>

<xs:complexType >
<xs:attribute name=”stamp” type=”xs:string” use=”required”/>

</xs:complexType >
</xs:element >

</xs:schema >

12

	Introduction
	Requirements
	Discovering Support
	Requesting a slot
	Upload purpose
	Message
	Profile
	Ephemeral
	Permanent

	Error conditions
	Upload
	Implementation Notes
	Security Considerations
	Server side
	Uploader
	General

	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces

	XML Schema

