
XEP-0373: OpenPGP for XMPP

Florian Schmaus
mailto:flo@geekplace.eu
xmpp:flo@geekplace.eu

Dominik Schürmann
mailto:dominik@dominikschuermann.de
xmpp:dominik@dominikschuermann.de

Vincent Breitmoser
mailto:look@my.amazin.horse
xmpp:valodim@stratum0.org

2021-05-04
Version 0.7.0

Status Type Short Name
Experimental Standards Track ox

Specifies end-to-end encryption and authentication of data with the help of OpenPGP, announcement,
discovery and retrieval of public keys and a mechanism to synchronize secret keys over multiple devices.

mailto:flo@geekplace.eu
xmpp:flo@geekplace.eu
mailto:dominik@dominikschuermann.de
xmpp:dominik@dominikschuermann.de
mailto:look@my.amazin.horse
xmpp:valodim@stratum0.org

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2020 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Glossary 1

3 OpenPGP Encrypted and Signed Data 2
3.1 Exchanging OpenPGP Encrypted and Signed Data 2
3.2 Verification of <openpgp/> Content . 3

4 Announcing and Discovering Public Keys via PEP 4
4.1 The OpenPGP Public-Key Data Node . 4
4.2 The OpenPGP Public Key Metadata Node . 5
4.3 Discovering Public Keys of a User . 6
4.4 Requesting Public Keys . 7
4.5 Receiving notifications about key changes . 8

5 Synchronizing the Secret Key with a Private PEP Node 8
5.1 Required PEP features . 8

5.1.1 Discovering support . 8
5.2 Requesting Information About the Secret Key PEP Node 9

5.2.1 Client Sends Request . 9
5.2.2 PEP Service Success Response . 10
5.2.3 PEP Node Does Not Exist Response . 10
5.2.4 PEP Not Supported . 10

5.3 Creating the Secret Key PEP Node . 11
5.4 Encrypting the Secret Key Backup . 11

6 Business Rules 12
6.1 OpenPGP Packet Format Version Restriction 12
6.2 PubSub Node Configuration . 12
6.3 Key Enforcement . 13

7 Implementors Advice 13
7.1 Design Principles and Techniques . 13
7.2 Stanza Size . 13
7.3 XMPP Address Normalization . 14

8 Rationale 14
8.1 Key Handling . 14
8.2 OpenPGP Element and Content Element Design 14
8.3 Addressing the Issues and Problems of XEP-0027 15
8.4 Not using OpenPGP ASCII Armor . 15
8.5 OpenPGP User IDs . 15

9 Security Considerations 15

10 IANA Considerations 16

11 XMPP Registrar Considerations 16
11.1 Protocol Namespaces . 16

12 XML Schema 16

13 Acknowledgements 16

2 GLOSSARY

1 Introduction
This XMPP extension protocol specifies the foundations of end-to-end encryption and au-
thentication, based on digital signatures, of data with the help of OpenPGP. Additional XEPs
will use this extension protocol as building block when specifying their own OpenPGP profile
suiting their use case. One such profile is the Instant Messaging Profile specified in OpenPGP
for XMPP Instant Messaging (XEP-0374) 1.
XMPP provides the mechanisms to solve a lot of issues that come with modern day OpenPGP
usage. For example, based on Personal Eventing Protocol (XEP-0163) 2 this specification
describes a standardized way to discover OpenPGP public keys of other entities. But unlike
the OpenPGP keyservers, this process establishes a strong relation between the key and the
key’s owning entity (usually a human user). A similar mechanism described herein allows to
synchronize the secret key(s) across multiple devices.
OpenPGP in return allows for end-to-end encrypted data to be exchanged between one, two
or even multiple entities (multi-end-to-multi-end encryption). Therefore this XEP can be
used for example to implement end-to-end encrypted Multi-User Chat (XEP-0045) 3.

2 Glossary
OpenPGP element An XMPP extension element: <openpgp/> qualified by the

’urn:xmpp:openpgp:0’ namespace

OpenPGP content element An element embedded via OpenPGP in a <openpgp/> element. Ei-
ther one of <signcrypt/>, <sign/> or <crypt/>, qualified by the ’urn:xmpp:openpgp:0’
namespace.

PEP Personal Eventing Protocol (XEP-0163) XEP-0163: Personal Eventing Protocol
<https://xmpp.org/extensions/xep-0163.html>.

Public-Key metadata node (”metadata node”) A PEP node containing metadata of the en-
tity’s public OpenPGP key.

Public-Key data node (”data node”) A PEP node containing an entity’s public OpenPGP key.

Secret-Key node A PEP node containing an entity’s encrypted secret OpenPGP key.

OpenPGP v4 Fingerprint String A String representing the OpenPGP v4 fingerprint of a key.
If the key consists of a primary key and subkeys, this is the fingerprint of the primary
key.

1XEP-0374: OpenPGP for XMPP Instant Messaging <https://xmpp.org/extensions/xep-0374.html>.
2XEP-0163: Personal Eventing Protocol <https://xmpp.org/extensions/xep-0163.html>.
3XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>.

1

https://xmpp.org/extensions/xep-0374.html
https://xmpp.org/extensions/xep-0374.html
https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0374.html
https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0045.html

3 OPENPGP ENCRYPTED AND SIGNED DATA

3 OpenPGP Encrypted and Signed Data
3.1 Exchanging OpenPGP Encrypted and Signed Data
The <openpgp/> extension element qualified by the ’urn:xmpp:openpgp:0’ namespace is used
in order to exchange encrypted and signed data.

Listing 1: The <openpgp/> extension within a message.
<message to=’juliet@example.org’>

<openpgp xmlns=’urn:xmpp:openpgp:0 ’>
BASE64_OPENPGP_MESSAGE

</openpgp >
</message >

The text content of <openpgp/> (”BASE64_OPENPGP_MESSAGE”) is a Base64 encoded (RFC
4648 4 § 4) OpenPGP message as specified in RFC 4880 5 which contains an encrypted and/or
signed UTF-8 (RFC 3629 6) encoded string. This string MUST correspond to exactly one
OpenPGP content element, that is, it represents either a <signcrypt/>, a <sign/> or a <crypt/>
extension element qualified by the ’urn:xmpp:openpgp:0’ namespace. Note that OpenPGP’s
ASCII Armor is not used, instead the XMPP client MUST encode the raw bytes of the OpenPGP
message using Base64.
In case of a <signcrypt/> element, the OpenPGP message embedded in the <openpgp/>
element MUST be encrypted and signed, and SHOULD also be encrypted to self. In case of a
<sign/> element, the OpenPGP message MUST be signed and MUST NOT be encrypted. In case
of <crypt/> the OpenPGP message MUST NOT be signed, but MUST be encrypted.

Listing 2: The <signcrypt/> extension element.
<signcrypt xmlns=’urn:xmpp:openpgp:0 ’>

<to jid=’juliet@example.org’/>
<time stamp=’2014 -07 -10 T17:06:00 +02 :00’/>
<rpad>

f0rm1l4n4 -mT8y33j!Y%fRSrcd^ZE4Q7VDt1L%WEgR!kv
</rpad>
<payload >

<body xmlns=’jabber:client ’>
This is a secret message.

</body>
</payload >

</signcrypt >

OpenPGP content elements MUST possess exactly one ’time’ element as direct child elements.
The <signcrypt/> and <sign/> content elements MUST contain at least one ’to’ element(s),

4RFC 4648: The Base16, Base32, and Base64 Data Encodings <http://tools.ietf.org/html/rfc4648>.
5RFC 4880: OpenPGP Message Format <http://tools.ietf.org/html/rfc4880>.
6RFC 3629: UTF-8, a transformation format of ISO 10646 <http://tools.ietf.org/html/rfc3629>.

2

http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc4648#section-4
http://tools.ietf.org/html/rfc4880
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4880
http://tools.ietf.org/html/rfc3629

3 OPENPGP ENCRYPTED AND SIGNED DATA

which MUST have a ’jid’ attribute containing the intended recipient’s XMPP address of the
signed and/or encrypted data to prevent Surreptitious Forward Attacks7. The XMPP address
found in the ’to’ element’s ’jid’ attribute SHOULD be without Resourcepart (i.e., a bare JID).
A <crypt/> content element may not carry a ’to’ attribute. The ’time’ element MUST have
a ’stamp’ attribute which contains the timestamp when the OpenPGP content element was
signed and/or encrypted in the DateTime format as specified in XMPP Date and Time Profiles
(XEP-0082) 8 § 3.2. The <signcrypt/> and <crypt/> elements SHOULD furthermore contain a
’rpad’ element which text content is a random-length random-content padding.

Content Element ’to’ Element ’time’ Element <rpad/> Ele-
ment

<payload/> Ele-
ment

<signcrypt/> MUST have at
least one

MUST have ex-
actly one

SHOULD have
exactly one

MUST have ex-
actly one

<sign/> MUST have at
least one

MUST have ex-
actly one

OPTIONAL MUST have ex-
actly one

<crypt/> OPTIONAL MUST have ex-
actly one

SHOULD have
exactly one

MUST have ex-
actly one

OpenPGP content elements MUST possess exactly one <payload/> element. The child ele-
ments of <payload/> can be seen as OpenPGP secured Stanza extension elements which are
encrypted and/or signed. After the <openpgp/> element and the including <signcrypt/>,
<sign/> or <crypt/> element was verified, they are processed according to the specification
of the relevant OpenPGP for XMPP profile (see for example OpenPGP for XMPP Instant
Messaging (XEP-0374) 9).

3.2 Verification of <openpgp/> Content
Recipients MUST verify that the signature is valid, that the signature’s key corresponds to the
sender’s key, and that the sender’s key has a User ID containing the sender’s XMPP address in
the form ”xmpp:juliet@example.org” (for details see ”OpenPGPUser IDs”). Thus, the recipient
may need to retrieve the key from the Personal Eventing Protocol node as described above.
At least one of the XMPP addresses found in the ’to’ elements contained in OpenPGP content
element MUST correspond to the outer ’to’ of the XMPP <message/>. Furthermore, recipients
are RECOMMENDED to verify the ’time’ element for plausibility or to display it to a user for

7Jee Hea An, Yevgeniy Dodis, and Tal Rabin. 2002. On the Security of Joint Signature and Encryption. In
Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques:
Advances in Cryptology (EUROCRYPT ’02), Lars R. Knudsen (Ed.). Springer-Verlag, London, UK, UK, 83-107.
<https://www.iacr.org/archive/eurocrypt2002/23320080/adr.pdf>

8XEP-0082: XMPP Date and Time Profiles <https://xmpp.org/extensions/xep-0082.html>.
9XEP-0374: OpenPGP for XMPP Instant Messaging <https://xmpp.org/extensions/xep-0374.html>.

3

https://xmpp.org/extensions/xep-0082.html
https://xmpp.org/extensions/xep-0082.html
https://xmpp.org/extensions/xep-0374.html
https://xmpp.org/extensions/xep-0374.html
https://www.iacr.org/archive/eurocrypt2002/23320080/adr.pdf
https://xmpp.org/extensions/xep-0082.html
https://xmpp.org/extensions/xep-0374.html

4 ANNOUNCING AND DISCOVERING PUBLIC KEYS VIA PEP

verification.

4 Announcing and Discovering Public Keys via PEP
Parties interested in exchanging encrypted data between each other via OpenPGP need to
know the public key(s) of the recipients. The following section specifies a mechanism to
announce and discover public keys.
Two PEP node types are invovled: A ”medatata node” is used to store meta information about
OpenPGP keys used by an entity while the actual public keys are stored in ”data nodes”.

4.1 The OpenPGP Public-Key Data Node
The public key data, as specified in RFC 4880, is stored in a PEP data node. Note that OpenPGP’s
ASCII Armor is not used, instead the XMPP client MUST encode the public key using Base64.
The id of the node MUST be ”urn:xmpp:openpgp:0:public-keys:” followed by the fingerprint
string of the OpenPGP public-key contained in the data node.
In absence of a use-case specific access model, it is RECOMMENDED to use the ’open’ access
model for the public key data node in order to give entities without presence subscription
read access to the public key.
The access model can be changed efficiently by using publish-options.
The OpenPGP v4 fingerprint string is obtained as follows: First the raw bytes of the fingerprint
are computed as specified in RFC 4880 § 12.2.. Then the bytes are encoded as a hexadecimal
string using upper case characters10.
The publishing entity SHOULD set the PubSub item ID to the time the item is published
encoded as DateTime format specified in XEP-0082.
The data node MUST contain an <pubkey/> element qualified by the ’urn:xmpp:openpgp:0’
namespace. The element MUST include a <data/> element which contains the data of the key
Base64 encoded.

Listing 3: Saving the public key in the data node.
<iq type=’set’ from=’juliet@example.org/balcony ’ id=’publish1 ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<publish node=’urn:xmpp:openpgp:0:public -

keys:1357B01865B2503C18453D208CAC2A9678548E35 ’>
<item id=’2020 -01 -21 T10:46:21Z ’>

<pubkey xmlns=’urn:xmpp:openpgp:0 ’>
<data>

BASE64_OPENPGP_PUBLIC_KEY
</data>

</pubkey >

10This matches the representation used by GnuPG minus the SPACE separation.

4

4 ANNOUNCING AND DISCOVERING PUBLIC KEYS VIA PEP

</item>
</publish >
<publish -options >

<x xmlns=’jabber:x:data ’ type=’submit ’>
<field var=’FORM_TYPE ’ type=’hidden ’>

<value >http:// jabber.org/protocol/pubsub#publish -options </
value >

</field >
<field var=’pubsub#access_model ’>

<value >open</value >
</field >

</x>
</publish -options >

</pubsub >
</iq>

4.2 The OpenPGP Public Key Metadata Node
To update the public keys used by an entity, the metadata node is updated. Before adding a
OpenPGP key fingerprint to the metadata node, the publisher MUST ensure that the public
key is available at the corresponding data node.
Just like with the public key data node, in absence of a use-case specific access model, it is
RECOMMENDED to set the access model of the metadata node to ’open’, such that entities
without mutual presence subscription are still able to access the node items.
The ID of the metadata node is ’urn:xmpp:openpgp:0:public-keys’. It contains a <public-keys-
list/> element qualified by the ’urn:xmpp:openpgp:0’ namespace containing one or more
<pubkey-metadata/> elements. Every pubkey-metadata elementMUST have a ’v4-fingerprint’
attribute, containing the OpenPGP v4 fingerprint string, and a ’date’ attribute, containing
the time the key was published or updated in DateTime format of XEP-0082. An OpenPGP V4
fingerprint MUST NOT occur in the list more than once.

Listing 4: Publishing a public key to the metadata node.
<iq type=’set’ from=’juliet@example.org/balcony ’ id=’publish1 ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<publish node=’urn:xmpp:openpgp:0:public -keys’>

<item>
<public -keys -list xmlns=’urn:xmpp:openpgp:0 ’>

<pubkey -metadata
v4 -fingerprint=’1357 B01865B2503C18453D208CAC2A9678548E35 ’
date=’2018 -03 -01 T15:26:12Z ’
/>

<pubkey -metadata
v4 -fingerprint=’67819 B343B2AB70DED9320872C6464AF2A8E4C02 ’
date=’1953 -05 -16 T12:00:00Z ’
/>

</public -keys -list>

5

4 ANNOUNCING AND DISCOVERING PUBLIC KEYS VIA PEP

</item>
</publish >
<publish -options >

<x xmlns=’jabber:x:data ’ type=’submit ’>
<field var=’FORM_TYPE ’ type=’hidden ’>

<value >http:// jabber.org/protocol/pubsub#publish -options </
value >

</field >
<field var=’pubsub#access_model ’>

<value >open</value >
</field >

</x>
</publish -options >

</pubsub >
</iq>

4.3 Discovering Public Keys of a User
In order to discover the OpenPGP public keys of a remote entity, the interested entity first
queries the remote entity’s metadata note to learn about the currently annouced OpenPGP
keys.

Listing 5: Requesting the metadata node of a user.
<iq from=’romeo@example.org/orchard ’

to=’juliet@example.org’
type=’get’
id=’getmeta ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<items node=’urn:xmpp:openpgp:0:public -keys’/>

</pubsub >
</iq>

Listing 6: Personal Eventing Protocol result containing the metadata node of the user.
<iq from=’juliet@example.org’

to=’romeo@example.org/orchard ’
type=’result ’
id=’getmeta ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<items node=’urn:xmpp:openpgp:0:public -keys’>

<item>
<public -keys -list xmlns=’urn:xmpp:openpgp:0 ’>

<pubkey -metadata
v4 -fingerprint=’1357 B01865B2503C18453D208CAC2A9678548E35 ’
date=’2018 -03 -01 T15:26:12Z ’
/>

<pubkey -metadata

6

4 ANNOUNCING AND DISCOVERING PUBLIC KEYS VIA PEP

v4 -fingerprint=’67819 B343B2AB70DED9320872C6464AF2A8E4C02 ’
date=’1953 -05 -16 T12:00:00Z ’
/>

</public -keys -list>
</item>

</items >
</pubsub >

</iq>

4.4 Requesting Public Keys
OpenPGP key(s) can be retrieved by querying the data node for a specific fingerprint.

Listing 7: Requesting an OpenPGP public key from an XMPP entity.
<iq from=’romeo@example.org/orchard ’

to=’juliet@example.org’
type=’get’
id=’getpub ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<items node=’urn:xmpp:openpgp:0:public -

keys:1357B01865B2503C18453D208CAC2A9678548E35 ’
max_items=’1’/>

</pubsub >
</iq>

Listing 8: Personal Eventing Protocol result containing the requested public key.
<iq from=’juliet@example.org’

to=’romeo@example.org/orchard ’
type=’result ’
id=’getpub ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<items node=’urn:xmpp:openpgp:0:public -

keys:1357B01865B2503C18453D208CAC2A9678548E35 ’>
<item id=’2020 -01 -21 T10:46:21Z ’>

<pubkey xmlns=’urn:xmpp:openpgp:0 ’>
<data>

BASE64_OPENPGP_PUBLIC_KEY
</data>

</pubkey >
</item>

</items >
</pubsub >

</iq>

Note that the result may contain multiple pubkey elements. Only the public keys found in
the most recent item MUST be used. Requesters may want to limit the results to the most

7

5 SYNCHRONIZING THE SECRET KEY WITH A PRIVATE PEP NODE

recent item using the ’max_items’ attribute set to ’1’. Clients could alternatively use Result
Set Management (XEP-0059) 11 as an alternative to ’max_items’ but accoding to XEP-0060 RSM
is not (yet) mandatory for PubSub services.
Some XMPP services may not provide the Personal Eventing Protocol feature required to
provide the mechanism described here. If so, they will return an <iq/> error of type service-
unavailable.

4.5 Receiving notifications about key changes
Entities creating PEP nodes defined herein SHOULD configure the nodes as notification-only
nodes by setting ’pubsub#deliver_payloads” configuration field to ’false’.
Entities which are subscribed to the metadata node or advertise the
”urn:xmpp:openpgp:0:public-keys+notify” feature via Service Discovery (XEP-0030) 12

(see XEP-0060 § 9.2) receive a notification upon a node update. Entities subscribed to PEP
nodes defined hereinMUST be prepared that PubSub notificationsmay bewithout the payload
and only contain the published item’s ID.

5 Synchronizing the Secret Key with a Private PEP Node
A private PEP node is used to allow XMPP clients to synchronize the user’s secret OpenPGP
key. Where private PEP node is defined: A PEP node in whitelist mode where only the bare JID
of the key owner is whitelisted as described in Best Practices for Persistent Storage of Private
Data via Publish-Subscribe (XEP-0223) 13. The secret key is additionally encrypted.

5.1 Required PEP features
The used PEP server MUST support PEP and the whitelist access model. It SHOULD also
support persistent items.

5.1.1 Discovering support

Listing 9: Account owner queries server regarding protocol support
<iq from=’juliet@capulet.lit/balcony ’

to=’juliet@capulet.lit’
id=’disco1 ’
type=’get’>

11XEP-0059: Result Set Management <https://xmpp.org/extensions/xep-0059.html>.
12XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.
13XEP-0223: Best Practices for Persistent Storage of Private Data via Publish-Subscribe <https://xmpp.org/ext

ensions/xep-0223.html>.

8

https://xmpp.org/extensions/xep-0059.html
https://xmpp.org/extensions/xep-0059.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0060.html#filtered-notifications
https://xmpp.org/extensions/xep-0223.html
https://xmpp.org/extensions/xep-0223.html
https://xmpp.org/extensions/xep-0059.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0223.html
https://xmpp.org/extensions/xep-0223.html

5 SYNCHRONIZING THE SECRET KEY WITH A PRIVATE PEP NODE

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

The service discovery result must contain a PEP identity ’<identity category=’pubsub’
type=’pep’/>, and the ’http://jabber.org/protocol/pubsub#access-whitelist’ feature. Ideally it
also contains the ’http://jabber.org/protocol/pubsub#persistent-items’ feature

Listing 10: Server communicates protocol support
<iq from=’juliet@capulet.lit’

to=’juliet@capulet.lit/balcony ’
id=’disco1 ’
type=’result ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
<identity category=’account ’ type=’registered ’/>
<identity category=’pubsub ’ type=’pep’/>
<feature var=’http: // jabber.org/protocol/pubsub#access -presence ’/>
<feature var=’http: // jabber.org/protocol/pubsub#auto -create ’/>
<feature var=’http: // jabber.org/protocol/pubsub#auto -subscribe ’/>
<feature var=’http: // jabber.org/protocol/pubsub#config -node’/>
<feature var=’http: // jabber.org/protocol/pubsub#create -and -

configure ’/>
<feature var=’http: // jabber.org/protocol/pubsub#create -nodes ’/>
<feature var=’http: // jabber.org/protocol/pubsub#filtered -

notifications ’/>
<feature var=’http: // jabber.org/protocol/pubsub#persistent -items ’/

>
<feature var=’http: // jabber.org/protocol/pubsub#publish ’/>
<feature var=’http: // jabber.org/protocol/pubsub#retrieve -items ’/>
<feature var=’http: // jabber.org/protocol/pubsub#subscribe ’/>
...

</query >
</iq>

5.2 Requesting Information About the Secret Key PEP Node
In order to synchronize the secret key over a private PEP node, clients first need to discover
and verify the node for the correct settings.

5.2.1 Client Sends Request

Listing 11: Requesting the user’s secret key.
<iq from=’romeo@example.org/orchard ’

to=’juliet@example.org’
type=’get’

9

5 SYNCHRONIZING THE SECRET KEY WITH A PRIVATE PEP NODE

id=’getsecret ’>
<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>

<items node=’urn:xmpp:openpgp:0:secret -key’
max_items=’1’/>

</pubsub >
</iq>

5.2.2 PEP Service Success Response

Listing 12: Personal Eventing Protocol result containing the requested secret key.
<iq from=’juliet@example.org’

to=’romeo@example.org/orchard ’
type=’result ’
id=’getsecret ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<items node=’urn:xmpp:openpgp:0:secret -key’>

<item>
<secretkey xmlns=’urn:xmpp:openpgp:0 ’>

BASE64_OPENPGP_ENCRYPTED_SECRET_KEY
</secretkey >

</item>
</items >

</pubsub >
</iq>

5.2.3 PEP Node Does Not Exist Response

If the node does not exist the service will return an <iq/> error indicating the item-not-found
error condition. The client MUST then create it with an whitelist access model.

Listing 13: Node does not exist
<iq from=’juliet@example.org’

to=’romeo@example.org/orchard ’
type=’error ’
id=’getsecret ’>

<error type=’cancel ’>
<item -not -found xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

5.2.4 PEP Not Supported

The service will return a service-unavailable error <iq/> if it does not support PEP.

10

5 SYNCHRONIZING THE SECRET KEY WITH A PRIVATE PEP NODE

Listing 14: Node does not exist
<iq from=’juliet@example.org’

to=’romeo@example.org/orchard ’
type=’error ’
id=’getsecret ’>

<error type=’cancel ’>
<service -unavailable xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

5.3 Creating the Secret Key PEP Node

Listing 15: Client creates secret key PEP node
<iq type=’set’

from=’juliet@example.org/balcony ’
id=’create -node’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<create node=’urn:xmpp:openpgp:0:secret -key’/>
<configure >

<x xmlns=’jabber:x:data ’ type=’submit ’>
<field var=’FORM_TYPE ’ type=’hidden ’>

<value >http:// jabber.org/protocol/pubsub#node_config </value >
</field >
<field var=’pubsub#access_model ’>

<value >whitelist </value >
</field >
<field var=’pubsub#send_last_published_item ’>

<value >on_sub </value >
</field >

</x>
</configure >

</pubsub >
</iq>

Listing 16: Service informs requesting entity of success
<iq type=’result ’

to=’juliet@example.org/balcony ’
id=’create -node’/>

The node is now created and the only affiliated entity is the bare JID of the user, who created
the node, with an affiliation as ’owner’.

5.4 Encrypting the Secret Key Backup
In order to set a new secret key, clients store the encrypted secret key as Base64 encoded
raw OpenPGP message within an <secretkey/> element qualified by the ’urn:xmpp:openpgp:0’

11

6 BUSINESS RULES

namespace. These secret key backups are created as follows:

1. All secret keys that should be included in the backup MUST be concatenated in their
transferable key format (RFC 4880 § 11.1). The octet indicating string-to-key usage con-
ventions MUST be set to zero in the corresponding Secret-Key Packet(s) (RFC 4880 §
5.5.3). The secret key material will be encrypted in step 4 using a Symmetric-Key En-
crypted Session Key Packet.

2. A backup code is generated from secure random: The backup code consists of 24 upper
case characters from the Latin alphabet and numbers without ’O’ (”LATIN CAPITAL LET-
TER O”) and ’0’ (”DIGIT ZERO”) (alphabet: 123456789ABCDEFGHIJKLMNPQRSTUVWXYZ)
grouped into 4-character chunks, e.g., TWNK-KD5Y-MT3T-E1GS-DRDB-KVTW. The char-
acters MUST be generated from cryptographically secure random. For example getran-
dom(2), SecureRandom or /dev/urandom. More information about the randomness re-
quirements for security can be found in RFC 4086 14

3. The whole backup code including the dashes is directly used as a string to encrypt the
concatenated transferable keys as an OpenPGP message. More precisely: It is used as
the symmetric-key for a Symmetric-Key Encrypted Session Key Packet according to RFC
4880 § 5.3; the symmetric-key is thus 29 characters long including the dashes. The en-
cryption algorithm MUST be one of the standardized OpenPGP symmetric algorithms,
e.g, AES-128.

6 Business Rules
6.1 OpenPGP Packet Format Version Restriction
Implementations of this XEP MUST generate and accept only version 4 (or higher) OpenPGP
packets. Lower version OpenPGP packets are insecure in many aspects (see for example RFC
4880 § 5.5.2.).

6.2 PubSub Node Configuration
The Public-Keymetadata node and the Secret-Key node SHOULD be configured to either never
send the latest item, or to send the latest item only when a new entity subscribed. Thus the
nodes ’send_last_published_item’ configuration option SHOULD be set to either ’never’ or
’on_sub’ (see XEP-0060 § 16.4.4).

14RFC 4086: Randomness Requirements for Security <http://tools.ietf.org/html/rfc4086>.

12

http://tools.ietf.org/html/rfc4880#section-11.2
https://tools.ietf.org/html/rfc4880#section-5.5.3
https://tools.ietf.org/html/rfc4880#section-5.5.3
https://lwn.net/Articles/606141/
https://lwn.net/Articles/606141/
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
http://tools.ietf.org/html/rfc4086
http://tools.ietf.org/html/rfc4880#section-5.3
http://tools.ietf.org/html/rfc4880#section-5.5.2
https://xmpp.org/extensions/xep-0060.html#registrar-formtypes-config
http://tools.ietf.org/html/rfc4086

7 IMPLEMENTORS ADVICE

6.3 Key Enforcement
Whenever an entity becomes aware that the metadata node has changed (e.g., by receiving a
PEP update from their own account), it SHOULD check that the list contains the key they use.
If the key has been removed, the entity SHOULD reannounce it.

7 Implementors Advice
7.1 Design Principles and Techniques
OpenPGP implementations have a sad history of being not very user-friendly which results
in users either not using OpenPGP or in users wrongly using OpenPGP. Implementors of this
XEP, and additional future XEPs based on this XEP, therefore should read STEED15 and ”Why
Johnny can’t encrypt”16. Implementors of this XEP are encouraged to provide the concepts
described in STEED:

• Automatic key generation

• Automatic key distribution

• Opportunistic encryption

• Trust upon first contact

Furthermore implementors should design the user interface for effective security by following
the design principles and techniques for security mentioned in ”Why Johnny Can’t Encrypt”.

7.2 Stanza Size
Implementors should be aware that the size OpenPGP public and secret keys is somewhere in
the range of tens of kilobytes. Applying Base64 encoding on keys, as it is described herein,
further increases the size. The formula to determine the Base64 encoded size is: ceil(bytes /
3) * 4. Thus the lower bound for the maximum stanza size of 10000 bytes, as specified in RFC
6120 § 13.12. 4., is usually exceeded. However all XMPP server implementations, the authors
are aware of, follow the recommendation of the RFC and do not blindly set the maximum
stanza size to such a low value, but use amuch higher threshold. Therefore, this should hardly
be an issue for implementations. Nevertheless, it is advised to keep the size of OpenPGP keys
small by removing all signatures except the most recent self-signature on each User ID before

15Koch, Werner, and Marcus Brinkman ”STEED — Usable End-to-End Encryption”, White Paper, g10 GmbH, 2011-
10-17. <http://g10code.com/steed.html>

16Whitten, Alma, and J. Doug Tygar. ”Why Johnny Can’t Encrypt: A Usability Evaluation of PGP 5.0.” Usenix Secu-
rity. Vol. 1999. 1999. <https://www.cs.berkeley.edu/~{}tygar/papers/Why_Johnny_Cant_Encrypt/OReil
ly.pdf>

13

http://g10code.com/steed.html
https://www.cs.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt/OReilly.pdf
https://www.cs.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt/OReilly.pdf
http://g10code.com/steed.html
https://www.cs.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt/OReilly.pdf
https://www.cs.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt/OReilly.pdf

8 RATIONALE

exporting the key (cf. GnuPG’s --export-options export-minimal). In addition, implementors
are advised to handle <policy-violation/> error responses when trying to transmit Base64
encoded keys.

7.3 XMPP Address Normalization
The format of XMPP addresses, sometimes called JIDs, is well defined. Thus they need to be
normalized, as defined in RFC 7622 17. When implementations are required to compare XMPP
addresses for equality, as it is the case in ”Verification of <openpgp/> Content”, then they also
have to compare the normalized versions of the addresses.

8 Rationale
8.1 Key Handling
This specification intentionally does not specify if the used OpenPGP key should be a primary
key or a subkey. It is even possible to announce multiple public keys in the Personal Eventing
Protocol node. Implementations MUST be prepared to find multiple public keys. The authors
however believe that for ease of use only one OpenPGP key specially crafted for the XMPP use
case should be created, announced and used.

8.2 OpenPGP Element and Content Element Design
The <openpgp/> and OpenPGP content elements are container elements for arbitrary signed
and encrypted data and can thus act as building blocks for encrypted data included in Mes-
sage, IQ and Presence stanzas. For example, future specifications may use them to implement
encrypted versions of In-Band Bytestreams (XEP-0047) 18 or Jingle In-Band Bytestreams
Transport Method (XEP-0261) 19.
Note that signed OpenPGP messages already contain a timestamp as per the OpenPGP specifi-
cation. OpenPGP content elements nevertheless require the ’time’ element because not every
OpenPGP API may provide access to the embedded OpenPGP timestamp.
The ’rpad’ element of the OpenPGP content elements exists to prevent length-based side
channel attacks.

17RFC 7622: Extensible Messaging and Presence Protocol (XMPP): Address Format <http://tools.ietf.org/htm
l/rfc7622>.

18XEP-0047: In-Band Bytestreams <https://xmpp.org/extensions/xep-0047.html>.
19XEP-0261: Jingle In-Band Bytestreams Transport Method <https://xmpp.org/extensions/xep-0261.html>.

14

http://tools.ietf.org/html/rfc7622
https://xmpp.org/extensions/xep-0047.html
https://xmpp.org/extensions/xep-0261.html
https://xmpp.org/extensions/xep-0261.html
http://tools.ietf.org/html/rfc7622
http://tools.ietf.org/html/rfc7622
https://xmpp.org/extensions/xep-0047.html
https://xmpp.org/extensions/xep-0261.html

9 SECURITY CONSIDERATIONS

8.3 Addressing the Issues and Problems of XEP-0027
This specification addresses all relevant issues of Current Jabber OpenPGP Usage (XEP-0027)
20 (§ 4, § 5). It mitigates replay attacks by including the recipient’s address and a timestamp
in the OpenPGP content element21. It allows for both, signing and encrypting of the element.
The scope of the specification was deliberately limited to OpenPGP.
Features like signed presences, which is provided by XEP-0027, may be added later on as
add-on XEP to this.

8.4 Not using OpenPGP ASCII Armor
We decided against OpenPGP ASCII Armor (which contains an additional checksum) and in
favor for Base64, because encoding should be part of the network application rather than the
crypto layer. Also XMPP, needs no additional error correction of payload. In ”MIME Security
with OpenPGP” (RFC 3156 22), ASCII Armor has only been chosen to be backwards compatible
with legacy applications supporting non-MIME OpenPGP emails only.

8.5 OpenPGP User IDs
OpenPGP User IDs normally consist of a name - email address pair, e.g., ”Juliet
<juliet@example.org>” (RFC 4880 § 5.11). For this XEP, we require User IDs of the for-
mat ”xmpp:juliet@example.org”. First, it is required to have at least one User ID indicating
the use of this OpenPGP key. When doing certification of keys (key signing), the partner must
know what User ID she actually certifies. Second, this format uses the standardized URI from
XEP-0147 to indicate that this User ID corresponds to a key that is used for XMPP. Third,
having the Real Name inside provides no additional security or guideline if this key should be
certified. The XMPP address is the only trust anchor here.

9 Security Considerations
The scope of this XEP is intentionally limited, so that the specification just defines way for
XMPP entities to discover, announce and synchronize OpenPGP keys, and how to exchange
signed and encrypted data between two or more parties. Everything else is outside its
scope. For example, how ’secure’ the key material is protected on the endpoints is up to the
implementation.
And while this XEP specifies a mechanism how to discover and retrieve a public key, it does
not define how the trust relation to this key should be established. Even if key discovery
and retrieval over XMPP provides a stronger coupling between the possessing entity (the

20XEP-0027: Current Jabber OpenPGP Usage <https://xmpp.org/extensions/xep-0027.html>.
21Full Replay attack prevention would require a counter based approach.
22RFC 3156: MIME Security with OpenPGP <http://tools.ietf.org/html/rfc3156>.

15

https://xmpp.org/extensions/xep-0027.html
https://xmpp.org/extensions/xep-0027.html#security
https://xmpp.org/extensions/xep-0027.html#issues
http://tools.ietf.org/html/rfc3156
http://tools.ietf.org/html/rfc4880#section-5.11
https://xmpp.org/extensions/xep-0027.html
http://tools.ietf.org/html/rfc3156

13 ACKNOWLEDGEMENTS

XMPP address) and the key, as compared to the OpenPGP keyservers, how a XMPP server
authenticates a remote server is a server policy, which does vary from server to server.
Implementation MUST provide a way for the user to establish and assign trust to a public key.
For example by using a QR code shown on the recipient’s device screen.
Besides the protocol defined herein, OpenPGP implementations are another big attack surface.
Needless to say that the security of encrypted data exchanged using this protocol depends on
the security of the used OpenPGP implementation. It is strongly RECOMMENED to use existing
implementations instead of writing your own. OpenPGP implementations have suffered
from various vulnerabilities in the past which opened up DoS attack vectors. For example
CVE-2013-4402 and CVE-2014-4717.

10 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
23.

11 XMPP Registrar Considerations
11.1 Protocol Namespaces
The XMPP Registrar 24 includes ’urn:xmpp:openpgp:0’ in its registry of protocol namespaces
(see <https://xmpp.org/registrar/namespaces.html>).

12 XML Schema
TODO: Add after the XEP leaves the ’experimental’ state.

13 Acknowledgements
Thanks to Emmanuel Gil Peyrot, Sergei Golovan, Marc Laporte, Georg Lukas, Adithya Abraham
Philip, Brian Cully, fiaxh, Paul Schaub, Philipp Hörist and Stefan Kropp for their feedback.
The first draft of this specification was worked out and written on the wall of the ’Kymera’

23The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

24The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

16

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4402
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4617
http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/registrar/namespaces.html
http://www.iana.org/
https://xmpp.org/registrar/

13 ACKNOWLEDGEMENTS

room in one of Google’s buildings by the authors, consisting of members of the XMPP Stan-
dards Foundation and the OpenKeychain project, at the GSOC Mentors Summit 2015. The
authorswould like to thankGoogle formaking it possible by bringing the right people together.

17

	Introduction
	Glossary
	OpenPGP Encrypted and Signed Data
	Exchanging OpenPGP Encrypted and Signed Data
	Verification of <openpgp/> Content

	Announcing and Discovering Public Keys via PEP
	The OpenPGP Public-Key Data Node
	The OpenPGP Public Key Metadata Node
	Discovering Public Keys of a User
	Requesting Public Keys
	Receiving notifications about key changes

	Synchronizing the Secret Key with a Private PEP Node
	Required PEP features
	Discovering support

	Requesting Information About the Secret Key PEP Node
	Client Sends Request
	PEP Service Success Response
	PEP Node Does Not Exist Response
	PEP Not Supported

	Creating the Secret Key PEP Node
	Encrypting the Secret Key Backup

	Business Rules
	OpenPGP Packet Format Version Restriction
	PubSub Node Configuration
	Key Enforcement

	Implementors Advice
	Design Principles and Techniques
	Stanza Size
	XMPP Address Normalization

	Rationale
	Key Handling
	OpenPGP Element and Content Element Design
	Addressing the Issues and Problems of XEP-0027
	Not using OpenPGP ASCII Armor
	OpenPGP User IDs

	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces

	XML Schema
	Acknowledgements

