XVIPP

XEP-0460: Pubsub Caching Hints

Jérdme Poisson
mailto:goffi@goffi.org
xmpp:goffi@jabber.fr

2021-08-10
Version 0.1.0

Status Type Short Name
Experimental Standards Track pubsub-caching

This specification provides a way to get caching information from a Pubsub node

mailto:goffi@goffi.org
xmpp:goffi@jabber.fr

Legal

Copyright

This XMPP Extension Protocol is copyright © 1999 - 2024 by the XMPP Standards Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
"Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https: //xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents

10

11

12

13

14

15

16

17

18

19

20

21

Introduction

Requirements

Glossary

Caching Hints Discovery

Node Persistence

Max Items and Item Expire

Consistent Items: items are always identical for all users
Consistent Set: All Users Have the Same Series of Items
Stable Items: Items Won’t Appear Out of Order

Always Notify

Public Node

The Node can be used for Suggestions

Purging a Node

Summary

Example

discovering support

Implementation Notes

Security Considerations

IANA Considerations

XMPP Registrar Considerations

XML Schema

3

GLOSSARY

1 Introduction

XMPP Pubsub as described in Publish-Subscribe (XEP-0060) ! is a very powerful and versatile
tool, which is used for numerous XMPP features. For many reasons, notably speed improve-
ment and resources optimisation, XMPP clients may want to cache internally Pubsub nodes
and keep cache synchronised with cached pubsub service. Unfortunately the flexibility of
Pubsub makes the choice of a good caching strategy complicated and non optimal. This XEP
standardize a way for the Pubsub service to give extra information to fix this situation.

2 Requirements

Caching information must be using base XEP-0060 Pubsub features and be easy to obtain for
the client, and easy to add for the pubsub service. The desired goals are:

use existing XEP-0060 features to get the data

avoid duplication of data in cache

know if cache can be shared between users

know if a data can be re-used in a "discovery” feature
know if items are silently removed or modified

know if data synchronisation notifications (new items, deletion) are always sent

3 Glossary

Dynamic Items — items which may vary according to parameters like requesting user
or time of the day

Static Items — items which don’t change dynamically. This is the most common case.

Consistent Set — set of items inside a node is a same whatever allowed user is requesting
it.

Stable Items — items are added in order (to the end of the queue).

Silently — in this context, silently means that a modification happens to an item without
sending notification to subscribers.

1XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>,

https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html

/6 MAXITEMS AND ITEM EXPIRE

4 Caching Hints Discovery

Pubsub Caching Hints are using the Pubsub node metadata as described in Discover Node
Metadata section of Publish-Subscribe (XEP-0060) 2

Hints are advertised using well known fields in Pubsub metadata disco extension. If a
Pubsub service implements this XEP, and if it also manages a Personal Eventing Protocol
(XEP-0163) * service, the fields described here MUST be present for both Pubsub and PEP nodes.

5 Node Persistence

To properly cache a node, a client must known if they are kept in storage or not. To
advertise that fact, a Pubsub node compliant with this standard MUST use a field named
{urn:xmpp:pubsub-caching:0}persistence of type list-single and whose value can be one of:

« persistent — items are kept in persistent storage

+ semi-persistent — items are kept in temporary storage (e.g. memory storage), and may
disappear without notification (e.g. the server is restarted)

+ transient — items are not stored, and are only sent to subscribers once published (but
they can’t be retrieve with a Pubsub Get)

« transient-with-last-item — only last item is kept in cache and can be retrieved by a
Pubsub Get

6 Max Items and Item Expire

It may be necessary to cache a node, to know how many items the Pubsub Service is keeping
before silently deleting them, or when they do expire. This is done by advertising it using
the pubsub#max_items and pubsub#item_expire fields of type integer-or-max (this type is
defined in XEP-0060).

Both fields are mentioned in XEP-0060, but as a reminder:

+ pubsub#max_items — indicates the maximum number of items that are kept in a node.
Above this number items are silently removed. max indicate that server limit is used (if
this limit is known, a Pubsub implementation SHOULD indicated it explicitly).

+ pubsub#item_expire — indicates the number of seconds before an item is silently re-
moved. max is used if there is not limit

ZXEP-0060: Publish-Subscribe <https: //xmpp.org/extensions/xep-0060.html>,
*XEP-0163: Personal Eventing Protocol <https://xmpp.org/extensions/xep-0163.html>,

https://xmpp.org/extensions/xep-0060.html#entity-metadata
https://xmpp.org/extensions/xep-0060.html#entity-metadata
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0060.html#usecase.xdata
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0163.html

\J 9 STABLE ITEMS: ITEMS WON'T APPEAR OUT OF ORDER

7 Consistent Items: items are always identical for all users

Pubsub is most often used to let allowed users store and retrieve unmodified items. However,
nothing in Publish-Subscribe (XEP-0060) * prevents a Pubsub service to return dynamic
items with identical IDs depending on factors like the JID of the requestor, time of the day,
or something else. For instance, a weather service could return local prevision for follow-
ing day using item identifier like "tomorrow_forecast”, or a machine learning algorithm
could return favorite Shakespeare books to a user using “favorite” item id, in which case
romeo@montaigu.lit would probably have different results than juliet@capulet.lit

For obvious reason those items are hard to impossible to cache. Pubsub services SHOULD
avoid using dynamic items, unless there is a really good reason for it.

If a Pubsub service implements Caching Hints and if items are static (i.e. items with the same
ID are identical whatever user is requesting them, time of day it is, or any other variable
parameter), then it MUST advertise this fact by using the field named {urn:xmpp:pubsub-
caching:0}consistent-items of type boolean with the value of true.

Note that overwriting an items as specified in XEP-0060 Publish an Item to a Node is a normal
Pubsub use case which SHOULD result in proper notifications being sent to subscribers, if the
item is not otherwise different, this is considered as static item and MUST result in a value of
true for the {urn:xmpp:pubsub-caching:0}consistent-items field.

Respectively, if a Pubsub node delivers one or more dynamic items, it MUST avertise the fact
by using the value of false for the same field.

8 Consistent Set: All Users Have the Same Series of Items

A Pubsub service may have a feature to restrict individual items from a node to some entities
(e.g. to have some items only visible to family, friends or coworkers). In this case, we say that
the node has inconsistent items set, and this implies that cache must not be shared between
users (as some users may have access to some items that other don’t).

If a Pubsub node is always returning the same items ids to all allowed users, it MUST advertise
this fact by using the value true for the boolean field {urn:xmpp:pubsub-caching:0}consistent-
set.

On the other hand, if a Pubsub node may return different items according to the requesting
entities (assuming that entities are allowed at the node level), it MUST advertise this fact by
using the value false for the same field.

9 Stable Items: Items Won’t Appear Out of Order

Normally, items are managed like a queue in a node, i.e. new items are appended to one ends,
and existing items can only be deleted (or overwritten, in which case an item with the same ID

4XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>,

https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html#publisher-publish-success
https://xmpp.org/extensions/xep-0060.html

\/ 11 PUBLIC NODE

is appended to the end). However, it may be necessary for a Pubsub service to include items
out of order (i.e. not appending it at the end), for instance when a Pubsub service is a bridge
to a third party protocol which receives items out of order.

Unstable items doesn’t change the fact that node can be shared between users or node, but
it may have an impact on client implementation, as the caching implementation may have
items in a different order, and items may be missed, thus this fact is valuable to know for a
client willing to cache the node. Note that unstable items SHOULD be avoided by a Pubsub
service whenever it’s possible.

If items are always appended to the end of the queue, the Pubsub node MUST advertise this
fact using the {urn:xmpp:pubsub-caching:0}stable-items field of type boolean with a value of
true.

On the other hand, if items order can’t be guaranteed, the Pubsub node MUST advertise this
fact by using the value of false for the same field

10 Always Notify

To synchronize correctly a Pubsub node, an XMPP client must be aware of any modification
that happen to its items or to the node itself. This is possible thanks to the subscription
mechanism of Publish-Subscribe (XEP-0060) °. However, notification can be skipped, notably
item retraction notification must be explicitly requested by the client, and thus may be
missing, resulting in cache becoming out of sync with the Pubsub service

To avoid that, the Pubsub service may enforce notifications for all modifying events to a node
or its items, even if they are not explicitly requested by the user doing the modification.

If anode always sends notification, including <retact> notifications even if notify attribute is not
set, then it must advertise this fact using the field named {urn:xmpp:pubsub-caching:0}alway-
notify of type boolean with the value of true. If notifications may be omitted, then the same
field must be used with the value of false.

A Pubsub service allowing a node to have notifications always sent SHOULD allow the node
owners to activate or deactivate this feature through node configuration, using the well-
known field with the same name of {urn:xmpp:pubsub-caching:0}always-notify and the same
type of boolean. It’s up to the implementation to determine if the default value should be true
or false.

11 Public Node

If the node is public, i.e. if it as an open access model that means that a client can safely share
the cache between users (providing that the consistent items and consistent set fields are also
both true).

If a Pubsub node is public, it MUST advertise this fact by exposing it in its metadata using the

SXEP-0060: Publish-Subscribe <https: //xmpp.org/extensions/xep-0060.html>,

https://xmpp.org/extensions/xep-0060.html#subscriber
https://xmpp.org/extensions/xep-0060.html#subscriber
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html#publisher-delete
https://xmpp.org/extensions/xep-0060.html#owner-configure
https://xmpp.org/extensions/xep-0060.html#accessmodels
https://xmpp.org/extensions/xep-0060.html

\/ 14 SUMMARY

field named pubsub#access_model of type list-single with a value of open

If the node has an other access model, it is up to the Pubsub implementation to advertise
publicly or not this data in the node metadata. It may be a privacy concern to expose any
other access model than open

12 The Node can be used for Suggestions

An XMPP client may have a feature to suggest new Pubsub nodes to users (for network
exploration, and let users find rapidly interesting content). If the discovery feature is not
restricted to some users somehow, this SHOULD be done using only public nodes. But even
for a public node, the node owner may no be willing to have they node suggested to random
users.

To avoid using inappropriately a public node for suggestion, a Pubsub node MUST announce
if the node is usable for suggestion or node by using the field named {urn:xmpp:pubsub-
caching:0}allowed-for-suggestions of type boolean. It is up to the Pubsub implementation
to decide how this field is set, but it SHOULD have a default value of false and it should be
modifiable by node owner through node configuration, using the well-known field with the
same name of {urn:xmpp:pubsub-caching:0}allowed-for-suggestions and the same type of
boolean.

A client MUST NOT use a node with {urn:xmpp:pubsub-caching:0}allowed-for-suggestions set
to false for suggestions

13 Purging a Node

Publish-Subscribe (XEP-0060) ® wording about purging all node items is not clear about the
last item, and it may or may not be kept.

To make it explicit, a client implementing this specification MUST use the field named
{urn:xmpp:pubsub-caching:0}purge-keep-last-item of type boolean with the value of true if
the last item is NOT retracted when a node purge is performed. On the opposite, the value
of true MUST be used if ALL items are retracted when a node purge is performed, actually
leaving the node empty, with no item at all.

14 Summary

Here a is a table summarizing all fields to announce when implementing this XEP. All fields
but pubsub#access_model are mandatory if a Pubsub service advertise support for this XEP.

®XEP-0060: Publish-Subscribe <https: //xmpp.org/extensions/xep-0060.html>,

https://xmpp.org/extensions/xep-0060.html#owner-configure
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html#owner-purge
https://xmpp.org/extensions/xep-0060.html

\/ 14 SUMMARY

name field type meaning comment
Max Items pubsub#max_- integer-or- How many
items max items are
kept in
storage

Item Expire

Node Persistence

Consistent Items

Consistent Set

Stable Items

Always Notify

Public Node

Allowed for Suggestions

Purge Keep Last Item

pubsub#item_- integer-or-

expire max

{urn:xmpp:pubsuist-single

caching:O}persistence

{urn:xmpp:pubsiimolean
caching:o}consistent-

items
{urn:xmpp:pubsiimolean

caching:O}consistent-

set
{urn:xmpp:pubsitmolean

caching:0}stable-

items
{urn:xmpp:pubsitmolean

caching:0}always-
notify

pubsub#access_-list-single

model

{urn:xxmpp:pubsidwolean
caching:0}allowed-

for-

suggestions

{urn:xmpp:pubsiimolean
caching:0}purge-
keep-last-

item

How many
seconds items

are kept
Items are

kept in
persistent

storage
Items are

static

All users have
the same

items
Items are not

added out of
order
Modifying
Notifications
are Always
sent to sub-
scribers, even
if not explic-
itly requested
by publisher.
Items can be
retrieved by
anybody
Node and its
items can be
suggested to
random users

Last item
is always
kept when a
node purge is
performed

if value is not
open, it may
be omitted

SHOULD be
settable by
node owner,

and MUST
default to
false

\/ 15 EXAMPLE

15 Example

Here is an example of Pubsub metadata advertised by a node on a service implementing this
XEP. This example is a "happy path”, i.e. features announced here are cache friendly.

Listing 1: Entity queries a node for information

<iq type=’'get’
from='francisco@denmark.lit/barracks’
to=’pubsub.shakespeare.lit’
id="metal’>
<query xmlns=’http://jabber.org/protocol/disco#info’
node="princely_musings’/>
</iqg>

Listing 2: Entities Receive Pubsub Node Metadata with Caching Hints

<iq type=’'result’
from=’pubsub.shakespeare.lit’
to="francisco@denmark.lit/barracks’
id=’caching_hints’>
<query xmlns=’http://jabber.org/protocol/disco#info’
node=’princely_musings’>
<identity category=’pubsub’ type=’leaf’/>
<feature var=’http://jabber.org/protocol/pubsub’/>
<x xmlns=’jabber:x:data’ type=’result’>
<field var=’pubsub#title’ label=’A_short_name_for_the_node’ type
=’text-single’>
<value>Princely Musings (Atom)</value>
</field>
<field var=’pubsub#max_items’ label=’How_many_items_are_kept_in_
storage’ type=’text-single’>
<value>max</value>
</field>
<field var=’pubsub#item_expire’ label=’How_many._seconds_items.
are_kept’ type=’text-single’>
<value>max</value>
</field>
<field var=’{urn:xmpp:pubsub-caching:0}persistence’ label=’"How._
items_are_stored’ type='text-single’>
<value>persistent</value>
</field>
<field var=’{urn:xmpp:pubsub-caching:0}consistent-items’ label="’
Are_items_static’ type=’'boolean’>
<value>true</value>
</field>
<field var=’{urn:xmpp:pubsub-caching:0}consistent-set’ label=’
Are_items_set_consistent’ type=’boolean’>
<value>true</value>

\/ 16 DISCOVERING SUPPORT

</field>
<field var=’{urn:xmpp:pubsub-caching:0}stable-items’ label=’Are.
items_stable’ type=’boolean’>
<value>true</value>
</field>
<field var=’{urn:xmpp:pubsub-caching:0}always-notify’ label=’Are
_hotifications_always.sent’ type=’boolean’>
<value>true</value>
</field>
<field var=’pubsub#access_model’ label=’Access._model’ type=’'list
-single’>
<value>open</value>
</field>
<field var=’{urn:xmpp:pubsub-caching:0}allowed-for-suggestions”’
label="Can_node_be_used_for_suggestions’ type=’boolean’>
<value>true</value>
</field>
<field var=’{urn:xmpp:pubsub-caching:0}purge-keep-last-item’
label="1Is_last_item_kept_when_a_node_purge_is._performed’
type="boolean’>
<value>false</value>
</field>
</ x>
</query>
</ig>

16 discovering support

If a server supports the "Pubsub Caching Hints” protocol, it must advertize it by including
the "urn:xmpp:pubsub-caching:0” discovery feature (see Protocol Namespaces regarding is-
suance of one or more permanent namespaces) in response to a Service Discovery (XEP-0030)
7 information request:

Listing 3: service discovery information request

<iq from=’example.org’
id="discol’
to="example.com’
type=’'get’>
<query xmlns=’http://jabber.org/protocol/disco#info’/>
</ig>

Listing 4: service discovery information response

<iq from=’example.com’

7XEP-0030:ServiceDiscover“_y<https://xmpp.org/extensions/xep—003®.html>

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

\/ 21 XML SCHEMA

id=’"discol’
to=’example.org’
type=’result’>
<query xmlns=’http://jabber.org/protocol/disco#info’>.

<feature var=’urn:xmpp:pubsub-caching:0’/>..

</query>
</ig>

17 Implementation Notes

As order of insertion and overwriting of items may be relevant to the client, it is recommended
for caching-friendly Pubsub service to implement Order-By (XEP-0413) , thus client can cache
items using an order by date of creation.

18 Security Considerations

TODO

19 IANA Considerations

TODO

20 XMPP Registrar Considerations

TODO

21 XML Schema

TODO

8XEP—0413:Order—By<https://xmpp.org/extensions/xep—®413.htm1>.

https://xmpp.org/extensions/xep-0413.html
https://xmpp.org/extensions/xep-0413.html

	Introduction
	Requirements
	Glossary
	Caching Hints Discovery
	Node Persistence
	Max Items and Item Expire
	Consistent Items: items are always identical for all users
	Consistent Set: All Users Have the Same Series of Items
	Stable Items: Items Won't Appear Out of Order
	Always Notify
	Public Node
	The Node can be used for Suggestions
	Purging a Node
	Summary
	Example
	discovering support
	Implementation Notes
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	XML Schema

