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2 REQUIREMENTS

1 Introduction
This specification defines a protocol that allows a client that successfully authenticates
using one mechanism (e.g. a password-based authentication mechanism) to exchange it for
a server-generated token. Such tokens can be used on subsequent connections to quickly
and efficiently authenticate to the server. They also exclude the client from interactive
authentication steps, such as multi-factor authentication.
This allows clients, especially those operating in shared or less secure environments (such as
web browsers), to avoid storing a password locally at all. It also enables a user to selectively
revoke a client’s access to their account.

1.1 Why tokens?
XMPP streams are most commonly authenticated using passwords today. Unfortunately,
passwords may not be unique to the service that the user is authenticating to, may be
optimized for memorability rather than security, and may contain sensitive information.
Therefore, secure password authentication mechanisms (such as SCRAM and OPAQUE) neces-
sarily involve multiple round-trips and more resource-intensive cryptography to protect the
password during authentication and at rest.
Using server-issued secret tokens can improve security in many ways - such tokens can be
longer, more random (unguessable) and can be rotatedmuchmore frequently than passwords.
They are also useless outside the scope of the service that they were issued by and for, and
easily invalidated, reducing consequences of accidental or malicious exposure.
Without the sameweaknesses as passwords, it is appropriate to use simpler and faster authen-
tication mechanisms when authenticating using tokens. That is how this protocol reduces
authentication overheadwhilemaintaining an equivalent (or higher) level of account security.

2 Requirements
• Authenticate security without introducing any extra round-trips.

• Integrate with Extensible SASL Profile (XEP-0388) 1.

• Support rotation and revocation of tokens.

• Allow channel binding for clients that can support it, while resisting downgrade attacks.

• Safe to use in TLS 1.3 0-RTT (”early data”) extensions.

1XEP-0388: Extensible SASL Profile <https://xmpp.org/extensions/xep-0388.html>.
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2.1 Differences from XEP-0397 Instant Stream Resumption
A XEP with very similar goals already exists, Instant Stream Resumption (XEP-0397) 2. While
inspired by several aspects of that protocol, FAST has a number of differences:

• This protocol does not link tokens to the lifetime of a XEP-0198 session. In fact it does
not depend on XEP-0198 at all, though that can be negotiated alongside using the usual
SASL2 methods for that.

• In particular, the above means that session establishment can still be accomplished in a
single round-trip even if a XEP-0198 session has expired.

• Channel binding is not required, thus making this protocol suitable for clients that can-
not support it, such as web clients.

• Token rotation is resilient over unreliable links.

3 Use Cases
3.1 Server advertises support for FAST
Servers that support FAST MUST advertise this as a SASL2 inline feature. The <fast/> feature
element is qualified by the ‘urn:xmpp:fast:0’ namespace.
The <fast/> element MUST contain one or more compatible authentication mechanisms.
These mechanisms MUST support authenticating with a token (instead of a password) and
MUST result in success or failure within a single round-trip. There SHOULD be at least one
mechanism capable of channel binding, and there SHOULD be at least onemechanismwithout
channel binding. A set of compatible mechanisms can be found in draft-schmaus-sasl-ht-083.
If the server allows the client to include authentication data in a TLS 0-RTT extension payload,
it MUST indicate this with a ’tls-0rtt’ attribute on the element set to ’1’ or ’true’.

Listing 1: Server advertises support for FAST
<stream:features >

<authentication xmlns=’urn:xmpp:sasl:2 ’>
<mechanism >SCRAM -SHA -1</mechanism >
<mechanism >SCRAM -SHA -1-PLUS</mechanism >
<inline >

<fast xmlns=’urn:xmpp:fast:0 ’ tls -0rtt=’true’>
<mechanism >HT-SHA -256- ENDP</mechanism >
<mechanism >HT-SHA -256- EXPR</mechanism >
<mechanism >HT-SHA -256- NONE</mechanism >

</fast>

2XEP-0397: Instant Stream Resumption <https://xmpp.org/extensions/xep-0397.html>.
3draft-schmaus-sasl-ht-08: TheHashed Token SASLMechanism <https://datatracker.ietf.org/doc/draft-s
chmaus-kitten-sasl-ht/08/>.
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</inline >
</authentication >

</stream:features >

3.2 Client performs initial authentication
Initially, the client won’t have any FAST token to authenticate with. To obtain a token, it
MUST first authenticate using another method, e.g. using a password.
To request a FAST token, a client MUST include a <request-token/> element qualified by the
’urn:xmpp:fast:0’ namespace. The element MUST contain a ’mechanism’ attribute, the value
of which MUST be one of the FAST mechanisms advertised by the server.
In the following example, the client authenticates with SCRAM-SHA-1-PLUS using a password,
but requests a token for fast reauthentication in the future, using the HT-SHA-256-ENDP
mechanism.

<authenticate xmlns=’urn:xmpp:sasl:2 ’ mechanism=’SCRAM -SHA -1-PLUS’>
<initial -response >[base64 encoded SASL data]</initial -response >
<bind xmlns=’urn:xmpp:bind:0 ’>

<tag>AwesomeXMPP </tag>
</bind>
<request -token xmlns=’urn:xmpp:fast:0 ’ mechanism=’HT -SHA -256- ENDP’

/>
</authenticate >

3.3 Server provides token to client
Upon receiving a token request and successfully authenticating the client, the server gen-
erates a new unique token, valid for the requested mechanism, and includes it in the SASL2
<success/> response in a <token/> element qualified by the ’urn:xmpp:fast:0’ namespace.
The server MUST NOT provide a token unless the client has been successfully and fully
authenticated, including any necessary post-authentication tasks (such as multi-factor
authentication).
The <token/> element MUST possess the following attributes:

’token’ The secret token to be used for authentication.

’expiry’ The timestamp at which the token will expire, in the DateTime profile defined
by XMPP Date and Time Profiles (XEP-0082) XEP-0082: XMPP Date and Time Profiles
<https://xmpp.org/extensions/xep-0082.html>..

Listing 2: Server provides a new token to the client
<success xmlns=’urn:xmpp:sasl:2 ’>
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<authorization -identity >user@example.com/AwesomeXMPP .4232 f4d4</
authorization -identity >

<bound xmlns=’urn:xmpp:bind:0 ’>
<metadata xmlns=’urn:xmpp:mam:2 ’>

<start id=’YWxwaGEg ’ timestamp=’2008 -08 -22 T21:09:04Z ’ />
<end id=’b21lZ2Eg ’ timestamp=’2020 -04 -20 T14:34:21Z ’ />

</metadata >
</bound >
<token xmlns=’urn:xmpp:fast:0 ’

expiry=’2020 -03 -12 T14:36:15Z ’
token=’WXZzciBwYmFmdmZnZiBqdmd1IGp2eXFhcmZm ’ />

</success >

3.4 Client authenticates using FAST
The client authenticates normally using SASL2, using the FAST SASL mechanism it previously
selected, and the token provided by the server. To indicate that it is providing a token, the
client MUST include a <fast/> element qualified by the ’urn:xmpp:fast:0’ namespace, within
its SASL2 authentication request.
If the server indicated support for TLS 0-RTT data, the client MAY send its authentication
request within the TLS 0-RTT payload of its handshake. If it does this, it MUST also include
a ’count’ attribute on the <fast/> element. The value of this attribute MUST be a positive
integer, which is incremented by the client on every authentication attempt with this token
(it SHOULD be reset to zero when the token changes).
Servers MUST reject any authentication requests received via TLS 0-RTT payloads that do
not include a <count/> element, or where the count is less than or equal to a count that has
already been processed for this token. This protects against replay attacks that 0-RTT is
susceptible to.
Servers MUST bind tokens to the mechanism selected by the client in its original request,
and reject attempts to use them with other mechanisms. For example, if the client selected
a mechanism capable of channel binding, an attempt to use a mechanism without channel
binding MUST fail even if the token would otherwise be accepted by that mechanism.

Listing 3: Client authenticates successfully using a FAST token
<authenticate xmlns=’urn:xmpp:sasl:2 ’ mechanism=’HT -SHA -256- ENDP’>

<initial -response >[base64 encoded SASL data]</initial -response >
<bind xmlns=’urn:xmpp:bind:0 ’>

<tag>AwesomeXMPP </tag>
</bind>
<fast xmlns=’urn:xmpp:fast:0 ’ count=’123’ />

</authenticate >

<success xmlns=’urn:xmpp:sasl:2 ’>
<authorization -identity >user@example.com/AwesomeXMPP .4232 f4d4</

authorization -identity >
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<bound xmlns=’urn:xmpp:bind:0 ’>
<metadata xmlns=’urn:xmpp:mam:2 ’>

<start id=’YWxwaGEg ’ timestamp=’2008 -08 -22 T21:09:04Z ’ />
<end id=’b21lZ2Eg ’ timestamp=’2020 -04 -20 T14:34:21Z ’ />

</metadata >
</bound >

</success >

3.5 Server initiates token rotation
If the authentication succeeded, but the token is due for rotation (e.g. it is close to expiry),
the server will generate a new token and provide it to the client in the <success/> response
(even if the client did not explicitly request a token):

Listing 4: Server provides an updated token to the client
<success xmlns=’urn:xmpp:sasl:2 ’>

<authorization -identity >user@example.com/AwesomeXMPP .4232 f4d4</
authorization -identity >

<bound xmlns=’urn:xmpp:bind:0 ’>
<metadata xmlns=’urn:xmpp:mam:2 ’>

<start id=’YWxwaGEg ’ timestamp=’2008 -08 -22 T21:09:04Z ’ />
<end id=’b21lZ2Eg ’ timestamp=’2020 -04 -20 T14:34:21Z ’ />

</metadata >
</bound >
<token xmlns=’urn:xmpp:fast:0 ’

expiry=’2020 -03 -31 T14:36:15Z ’
token=’R3VyIHpiZmcgbnl2aXIgdmYgZ3VyIGp2eXFyZmcu ’ />

</success >

When the server provides a new token to the client in this way, it MUST NOT invalidate the
existing token until the new token is actually used by the client. This ensures that if the client
gets disconnected before receiving the newer token from the server, it can still successfully
authenticate on its next connection attempt.
Upon successful use of any token, the server MUST invalidate all tokens issued to the same
client with an earlier expiry than the current token (even if those tokens have not yet reached
their expiry time).
Additionally, upon providing a new token to the client, the server SHOULD invalidate any
tokens previously generated that have not been used.

3.6 Client requests token invalidation
A client can choose to invalidate a token before its expiry.
For example, a client might implement a ”log out” mechanism for people sharing a web
browser or system. Explicitly invalidating the token with the server ensures that even if an
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unauthorized user managed to recover the token from the system, it would be useless.
To invalidate the token, the client MUST successfully authenticate using the token as normal,
but include an ’invalidate’ attribute on the <fast/> element with a value of ’1’ or ’true’.
Upon successful authentication with the ’invalidate’ attribute set, the server MUST immedi-
ately invalidate the token and prevent its use for future authentication attempts. The server
MUST NOT include a new token in the response (even if the token was due for rotation),
unless the client also included a FAST <request-token/> element in its authentication request.
The client MAY close the stream after the server acknowledges successful authentication, or
it MAY proceed with the session as normal.

Listing 5: Client requests token invalidation
<authenticate xmlns=’urn:xmpp:sasl:2 ’ mechanism=’HT -SHA -256- ENDP’>

<initial -response >[base64 encoded SASL data]</initial -response >
<fast xmlns=’urn:xmpp:fast:0 ’ count=’123’ invalidate=’true’/>

</authenticate >

4 Business Rules
4.1 Client responsibilities

• Tokens are issued on a per-client basis. Clients MUST treat tokens as sensitive informa-
tion, equivalent to passwords. For example, they should not be exposed in user inter-
faces or included in backups and other data exports.

• Clients wishing to use FAST authentication MUST provide the authenticating JID in the
secure stream’s ’from’ attribute. They MUST also provide the a SASL2 <user-agent> el-
ement with an ’id’ attribute (both of these values are discussed in more detail in XEP-
0388).

• If a client attempts authentication using a token, but the server returns a SASL <fail-
ure/>, the client SHOULD discard the token and automatically fall back to alternative
authentication mechanisms.

4.2 Server responsibilities
• Tokens should be issued with a reasonable lifetime, reflective of a deployment’s policy
on inactive devices. Shorter lifetimes require more frequent rotation and increase the
chances that a device will get ”logged out” if it is offline during a token expiry. Longer
lifetimes put tokens at greater risk of exposure in the event a device or its data becomes
lost, stolen or compromised.

• Servers MUST NOT require interactive authentication steps (such as multi-factor au-
thentication) when authenticating via a FAST token. If the server no longer trusts a
token, it MUST instead fail the authentication (returning the SASL ’credentials-expired’
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error condition), and then allow the client to authenticate using other mechanisms (e.g.
password based).

5 Implementation Notes
5.1 Server-side handling of multiple active tokens
As noted in the section on token rotation, this specification requires a server to sometimes
accept multiple tokens for the same client. This can be achieved with the following algorithm:

• For every client using FAST, have two token slots - ’current’ and ’new’.

• Whenever generating a new token, always place it into the ’new’ slot.

• During authentication, first check against the token in the ’new’ slot (if any). If success-
ful, move the token from the ’new’ slot to the ’current’ slot (overwrite any existing token
in that slot).

• If the client’s provided token does not match the token in the ’new’ slot, or if the ’new’
slot is empty, compare against the token in the ’current’ slot (if any).

This method ensures servers do not need to check against an unbounded number of active
tokens, while still allowing safe rollover on unreliable connections. It also ensures that tokens
are invalidated as soon as later tokens are used by the client.
Note that anywhere in this flow where the server verifies the client’s token against a stored
token, it needs to check not just the token itself, but also that the token has not expired,
that the correct mechanism was used, and the replay counter (if applicable). Token hash
comparison itself MUST be performed using constant-time comparison functions, as already
available in most environments and cryptography libraries.

6 Security Considerations
FAST authentication MUST only be performed over a secure connection (e.g. using TLS with
verified certificates). Due to the lack of a challenge/response step, it is generally true that any
attacker able to passively observe the authentication exchange can replay the authentication
and gain access to the account. Channel binding mechanisms mitigate certain attacks, and
MUST be preferred by the client. However they do not mitigate all attacks, and are not
available in all environments.
When the SASL payload is included in the TLS 0-RTT payload and combined with the single
round-trip property of FAST SASL mechanisms, an attacker may be able to replay the same
authentication multiple times, including the negotiation of features requested by the client
(resumption and/or resource binding, for example). Such feature negotiations may have
side-effects, such as (but not necessarily limited to) the disruption of established sessions.
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The per-token counter described in this document mitigates this issue.
Mechanisms that communicate using hashes (including HMACs) MUST be compared by
the server using constant-time comparison functions, to prevent leaking secrets via timing
attacks.

7 IANA Considerations
None.

8 XMPP Registrar Considerations
This specification defines the following XML namespace:

• urn:xmpp:fast:0
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10 XML Schema
TODO before reaching Stable.
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